1 | // Copyright 2012 the V8 project authors. All rights reserved. |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions are |
4 | // met: |
5 | // |
6 | // * Redistributions of source code must retain the above copyright |
7 | // notice, this list of conditions and the following disclaimer. |
8 | // * Redistributions in binary form must reproduce the above |
9 | // copyright notice, this list of conditions and the following |
10 | // disclaimer in the documentation and/or other materials provided |
11 | // with the distribution. |
12 | // * Neither the name of Google Inc. nor the names of its |
13 | // contributors may be used to endorse or promote products derived |
14 | // from this software without specific prior written permission. |
15 | // |
16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | |
28 | #ifndef DOUBLE_CONVERSION_DOUBLE_H_ |
29 | #define DOUBLE_CONVERSION_DOUBLE_H_ |
30 | |
31 | #include <wtf/dtoa/diy-fp.h> |
32 | |
33 | namespace WTF { |
34 | namespace double_conversion { |
35 | |
36 | // We assume that doubles and uint64_t have the same endianness. |
37 | static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } |
38 | static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } |
39 | static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } |
40 | static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } |
41 | |
42 | // Helper functions for doubles. |
43 | class Double { |
44 | public: |
45 | static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); |
46 | static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); |
47 | static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); |
48 | static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); |
49 | static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. |
50 | static const int kSignificandSize = 53; |
51 | |
52 | Double() : d64_(0) {} |
53 | explicit Double(double d) : d64_(double_to_uint64(d)) {} |
54 | explicit Double(uint64_t d64) : d64_(d64) {} |
55 | explicit Double(DiyFp diy_fp) |
56 | : d64_(DiyFpToUint64(diy_fp)) {} |
57 | |
58 | // The value encoded by this Double must be greater or equal to +0.0. |
59 | // It must not be special (infinity, or NaN). |
60 | DiyFp AsDiyFp() const { |
61 | ASSERT(Sign() > 0); |
62 | ASSERT(!IsSpecial()); |
63 | return DiyFp(Significand(), Exponent()); |
64 | } |
65 | |
66 | // The value encoded by this Double must be strictly greater than 0. |
67 | DiyFp AsNormalizedDiyFp() const { |
68 | ASSERT(value() > 0.0); |
69 | uint64_t f = Significand(); |
70 | int e = Exponent(); |
71 | |
72 | // The current double could be a denormal. |
73 | while ((f & kHiddenBit) == 0) { |
74 | f <<= 1; |
75 | e--; |
76 | } |
77 | // Do the final shifts in one go. |
78 | f <<= DiyFp::kSignificandSize - kSignificandSize; |
79 | e -= DiyFp::kSignificandSize - kSignificandSize; |
80 | return DiyFp(f, e); |
81 | } |
82 | |
83 | // Returns the double's bit as uint64. |
84 | uint64_t AsUint64() const { |
85 | return d64_; |
86 | } |
87 | |
88 | // Returns the next greater double. Returns +infinity on input +infinity. |
89 | double NextDouble() const { |
90 | if (d64_ == kInfinity) return Double(kInfinity).value(); |
91 | if (Sign() < 0 && Significand() == 0) { |
92 | // -0.0 |
93 | return 0.0; |
94 | } |
95 | if (Sign() < 0) { |
96 | return Double(d64_ - 1).value(); |
97 | } else { |
98 | return Double(d64_ + 1).value(); |
99 | } |
100 | } |
101 | |
102 | double PreviousDouble() const { |
103 | if (d64_ == (kInfinity | kSignMask)) return -Infinity(); |
104 | if (Sign() < 0) { |
105 | return Double(d64_ + 1).value(); |
106 | } else { |
107 | if (Significand() == 0) return -0.0; |
108 | return Double(d64_ - 1).value(); |
109 | } |
110 | } |
111 | |
112 | int Exponent() const { |
113 | if (IsDenormal()) return kDenormalExponent; |
114 | |
115 | uint64_t d64 = AsUint64(); |
116 | int biased_e = |
117 | static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); |
118 | return biased_e - kExponentBias; |
119 | } |
120 | |
121 | uint64_t Significand() const { |
122 | uint64_t d64 = AsUint64(); |
123 | uint64_t significand = d64 & kSignificandMask; |
124 | if (!IsDenormal()) { |
125 | return significand + kHiddenBit; |
126 | } else { |
127 | return significand; |
128 | } |
129 | } |
130 | |
131 | // Returns true if the double is a denormal. |
132 | bool IsDenormal() const { |
133 | uint64_t d64 = AsUint64(); |
134 | return (d64 & kExponentMask) == 0; |
135 | } |
136 | |
137 | // We consider denormals not to be special. |
138 | // Hence only Infinity and NaN are special. |
139 | bool IsSpecial() const { |
140 | uint64_t d64 = AsUint64(); |
141 | return (d64 & kExponentMask) == kExponentMask; |
142 | } |
143 | |
144 | bool IsNan() const { |
145 | uint64_t d64 = AsUint64(); |
146 | return ((d64 & kExponentMask) == kExponentMask) && |
147 | ((d64 & kSignificandMask) != 0); |
148 | } |
149 | |
150 | bool IsInfinite() const { |
151 | uint64_t d64 = AsUint64(); |
152 | return ((d64 & kExponentMask) == kExponentMask) && |
153 | ((d64 & kSignificandMask) == 0); |
154 | } |
155 | |
156 | int Sign() const { |
157 | uint64_t d64 = AsUint64(); |
158 | return (d64 & kSignMask) == 0? 1: -1; |
159 | } |
160 | |
161 | // Precondition: the value encoded by this Double must be greater or equal |
162 | // than +0.0. |
163 | DiyFp UpperBoundary() const { |
164 | ASSERT(Sign() > 0); |
165 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
166 | } |
167 | |
168 | // Computes the two boundaries of this. |
169 | // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
170 | // exponent as m_plus. |
171 | // Precondition: the value encoded by this Double must be greater than 0. |
172 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
173 | ASSERT(value() > 0.0); |
174 | DiyFp v = this->AsDiyFp(); |
175 | DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
176 | DiyFp m_minus; |
177 | if (LowerBoundaryIsCloser()) { |
178 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
179 | } else { |
180 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
181 | } |
182 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
183 | m_minus.set_e(m_plus.e()); |
184 | *out_m_plus = m_plus; |
185 | *out_m_minus = m_minus; |
186 | } |
187 | |
188 | bool LowerBoundaryIsCloser() const { |
189 | // The boundary is closer if the significand is of the form f == 2^p-1 then |
190 | // the lower boundary is closer. |
191 | // Think of v = 1000e10 and v- = 9999e9. |
192 | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
193 | // at a distance of 1e8. |
194 | // The only exception is for the smallest normal: the largest denormal is |
195 | // at the same distance as its successor. |
196 | // Note: denormals have the same exponent as the smallest normals. |
197 | bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); |
198 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
199 | } |
200 | |
201 | double value() const { return uint64_to_double(d64_); } |
202 | |
203 | // Returns the significand size for a given order of magnitude. |
204 | // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. |
205 | // This function returns the number of significant binary digits v will have |
206 | // once it's encoded into a double. In almost all cases this is equal to |
207 | // kSignificandSize. The only exceptions are denormals. They start with |
208 | // leading zeroes and their effective significand-size is hence smaller. |
209 | static int SignificandSizeForOrderOfMagnitude(int order) { |
210 | if (order >= (kDenormalExponent + kSignificandSize)) { |
211 | return kSignificandSize; |
212 | } |
213 | if (order <= kDenormalExponent) return 0; |
214 | return order - kDenormalExponent; |
215 | } |
216 | |
217 | static double Infinity() { |
218 | return Double(kInfinity).value(); |
219 | } |
220 | |
221 | static double NaN() { |
222 | return Double(kNaN).value(); |
223 | } |
224 | |
225 | private: |
226 | static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; |
227 | static const int kDenormalExponent = -kExponentBias + 1; |
228 | static const int kMaxExponent = 0x7FF - kExponentBias; |
229 | static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); |
230 | static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); |
231 | |
232 | const uint64_t d64_; |
233 | |
234 | static uint64_t DiyFpToUint64(DiyFp diy_fp) { |
235 | uint64_t significand = diy_fp.f(); |
236 | int exponent = diy_fp.e(); |
237 | while (significand > kHiddenBit + kSignificandMask) { |
238 | significand >>= 1; |
239 | exponent++; |
240 | } |
241 | if (exponent >= kMaxExponent) { |
242 | return kInfinity; |
243 | } |
244 | if (exponent < kDenormalExponent) { |
245 | return 0; |
246 | } |
247 | while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { |
248 | significand <<= 1; |
249 | exponent--; |
250 | } |
251 | uint64_t biased_exponent; |
252 | if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { |
253 | biased_exponent = 0; |
254 | } else { |
255 | biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); |
256 | } |
257 | return (significand & kSignificandMask) | |
258 | (biased_exponent << kPhysicalSignificandSize); |
259 | } |
260 | |
261 | DC_DISALLOW_COPY_AND_ASSIGN(Double); |
262 | }; |
263 | |
264 | class Single { |
265 | public: |
266 | static const uint32_t kSignMask = 0x80000000; |
267 | static const uint32_t kExponentMask = 0x7F800000; |
268 | static const uint32_t kSignificandMask = 0x007FFFFF; |
269 | static const uint32_t kHiddenBit = 0x00800000; |
270 | static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. |
271 | static const int kSignificandSize = 24; |
272 | |
273 | Single() : d32_(0) {} |
274 | explicit Single(float f) : d32_(float_to_uint32(f)) {} |
275 | explicit Single(uint32_t d32) : d32_(d32) {} |
276 | |
277 | // The value encoded by this Single must be greater or equal to +0.0. |
278 | // It must not be special (infinity, or NaN). |
279 | DiyFp AsDiyFp() const { |
280 | ASSERT(Sign() > 0); |
281 | ASSERT(!IsSpecial()); |
282 | return DiyFp(Significand(), Exponent()); |
283 | } |
284 | |
285 | // Returns the single's bit as uint64. |
286 | uint32_t AsUint32() const { |
287 | return d32_; |
288 | } |
289 | |
290 | int Exponent() const { |
291 | if (IsDenormal()) return kDenormalExponent; |
292 | |
293 | uint32_t d32 = AsUint32(); |
294 | int biased_e = |
295 | static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); |
296 | return biased_e - kExponentBias; |
297 | } |
298 | |
299 | uint32_t Significand() const { |
300 | uint32_t d32 = AsUint32(); |
301 | uint32_t significand = d32 & kSignificandMask; |
302 | if (!IsDenormal()) { |
303 | return significand + kHiddenBit; |
304 | } else { |
305 | return significand; |
306 | } |
307 | } |
308 | |
309 | // Returns true if the single is a denormal. |
310 | bool IsDenormal() const { |
311 | uint32_t d32 = AsUint32(); |
312 | return (d32 & kExponentMask) == 0; |
313 | } |
314 | |
315 | // We consider denormals not to be special. |
316 | // Hence only Infinity and NaN are special. |
317 | bool IsSpecial() const { |
318 | uint32_t d32 = AsUint32(); |
319 | return (d32 & kExponentMask) == kExponentMask; |
320 | } |
321 | |
322 | bool IsNan() const { |
323 | uint32_t d32 = AsUint32(); |
324 | return ((d32 & kExponentMask) == kExponentMask) && |
325 | ((d32 & kSignificandMask) != 0); |
326 | } |
327 | |
328 | bool IsInfinite() const { |
329 | uint32_t d32 = AsUint32(); |
330 | return ((d32 & kExponentMask) == kExponentMask) && |
331 | ((d32 & kSignificandMask) == 0); |
332 | } |
333 | |
334 | int Sign() const { |
335 | uint32_t d32 = AsUint32(); |
336 | return (d32 & kSignMask) == 0? 1: -1; |
337 | } |
338 | |
339 | // Computes the two boundaries of this. |
340 | // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
341 | // exponent as m_plus. |
342 | // Precondition: the value encoded by this Single must be greater than 0. |
343 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
344 | ASSERT(value() > 0.0); |
345 | DiyFp v = this->AsDiyFp(); |
346 | DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
347 | DiyFp m_minus; |
348 | if (LowerBoundaryIsCloser()) { |
349 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
350 | } else { |
351 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
352 | } |
353 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
354 | m_minus.set_e(m_plus.e()); |
355 | *out_m_plus = m_plus; |
356 | *out_m_minus = m_minus; |
357 | } |
358 | |
359 | // Precondition: the value encoded by this Single must be greater or equal |
360 | // than +0.0. |
361 | DiyFp UpperBoundary() const { |
362 | ASSERT(Sign() > 0); |
363 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
364 | } |
365 | |
366 | bool LowerBoundaryIsCloser() const { |
367 | // The boundary is closer if the significand is of the form f == 2^p-1 then |
368 | // the lower boundary is closer. |
369 | // Think of v = 1000e10 and v- = 9999e9. |
370 | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
371 | // at a distance of 1e8. |
372 | // The only exception is for the smallest normal: the largest denormal is |
373 | // at the same distance as its successor. |
374 | // Note: denormals have the same exponent as the smallest normals. |
375 | bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); |
376 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
377 | } |
378 | |
379 | float value() const { return uint32_to_float(d32_); } |
380 | |
381 | static float Infinity() { |
382 | return Single(kInfinity).value(); |
383 | } |
384 | |
385 | static float NaN() { |
386 | return Single(kNaN).value(); |
387 | } |
388 | |
389 | private: |
390 | static const int kExponentBias = 0x7F + kPhysicalSignificandSize; |
391 | static const int kDenormalExponent = -kExponentBias + 1; |
392 | static const int kMaxExponent = 0xFF - kExponentBias; |
393 | static const uint32_t kInfinity = 0x7F800000; |
394 | static const uint32_t kNaN = 0x7FC00000; |
395 | |
396 | const uint32_t d32_; |
397 | |
398 | DC_DISALLOW_COPY_AND_ASSIGN(Single); |
399 | }; |
400 | |
401 | } // namespace double_conversion |
402 | } // namespace WTF |
403 | |
404 | #endif // DOUBLE_CONVERSION_DOUBLE_H_ |
405 | |