1 | /* |
2 | * Copyright (C) 2013-2019 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "FTLOSRExitCompiler.h" |
28 | |
29 | #if ENABLE(FTL_JIT) |
30 | |
31 | #include "DFGOSRExitCompilerCommon.h" |
32 | #include "DFGOSRExitPreparation.h" |
33 | #include "FTLExitArgumentForOperand.h" |
34 | #include "FTLJITCode.h" |
35 | #include "FTLLocation.h" |
36 | #include "FTLOSRExit.h" |
37 | #include "FTLOperations.h" |
38 | #include "FTLState.h" |
39 | #include "FTLSaveRestore.h" |
40 | #include "LinkBuffer.h" |
41 | #include "MaxFrameExtentForSlowPathCall.h" |
42 | #include "OperandsInlines.h" |
43 | #include "JSCInlines.h" |
44 | |
45 | namespace JSC { namespace FTL { |
46 | |
47 | using namespace DFG; |
48 | |
49 | static void reboxAccordingToFormat( |
50 | DataFormat format, AssemblyHelpers& jit, GPRReg value, GPRReg scratch1, GPRReg scratch2) |
51 | { |
52 | switch (format) { |
53 | case DataFormatInt32: { |
54 | jit.zeroExtend32ToPtr(value, value); |
55 | jit.or64(GPRInfo::tagTypeNumberRegister, value); |
56 | break; |
57 | } |
58 | |
59 | case DataFormatInt52: { |
60 | jit.rshift64(AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), value); |
61 | jit.moveDoubleTo64(FPRInfo::fpRegT0, scratch2); |
62 | jit.boxInt52(value, value, scratch1, FPRInfo::fpRegT0); |
63 | jit.move64ToDouble(scratch2, FPRInfo::fpRegT0); |
64 | break; |
65 | } |
66 | |
67 | case DataFormatStrictInt52: { |
68 | jit.moveDoubleTo64(FPRInfo::fpRegT0, scratch2); |
69 | jit.boxInt52(value, value, scratch1, FPRInfo::fpRegT0); |
70 | jit.move64ToDouble(scratch2, FPRInfo::fpRegT0); |
71 | break; |
72 | } |
73 | |
74 | case DataFormatBoolean: { |
75 | jit.zeroExtend32ToPtr(value, value); |
76 | jit.or32(MacroAssembler::TrustedImm32(ValueFalse), value); |
77 | break; |
78 | } |
79 | |
80 | case DataFormatJS: { |
81 | // Done already! |
82 | break; |
83 | } |
84 | |
85 | case DataFormatDouble: { |
86 | jit.moveDoubleTo64(FPRInfo::fpRegT0, scratch1); |
87 | jit.move64ToDouble(value, FPRInfo::fpRegT0); |
88 | jit.purifyNaN(FPRInfo::fpRegT0); |
89 | jit.boxDouble(FPRInfo::fpRegT0, value); |
90 | jit.move64ToDouble(scratch1, FPRInfo::fpRegT0); |
91 | break; |
92 | } |
93 | |
94 | default: |
95 | RELEASE_ASSERT_NOT_REACHED(); |
96 | break; |
97 | } |
98 | } |
99 | |
100 | static void compileRecovery( |
101 | CCallHelpers& jit, const ExitValue& value, |
102 | Vector<B3::ValueRep>& valueReps, |
103 | char* registerScratch, |
104 | const HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*>& materializationToPointer) |
105 | { |
106 | switch (value.kind()) { |
107 | case ExitValueDead: |
108 | jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT0); |
109 | break; |
110 | |
111 | case ExitValueConstant: |
112 | jit.move(MacroAssembler::TrustedImm64(JSValue::encode(value.constant())), GPRInfo::regT0); |
113 | break; |
114 | |
115 | case ExitValueArgument: |
116 | Location::forValueRep(valueReps[value.exitArgument().argument()]).restoreInto( |
117 | jit, registerScratch, GPRInfo::regT0); |
118 | break; |
119 | |
120 | case ExitValueInJSStack: |
121 | case ExitValueInJSStackAsInt32: |
122 | case ExitValueInJSStackAsInt52: |
123 | case ExitValueInJSStackAsDouble: |
124 | jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0); |
125 | break; |
126 | |
127 | case ExitValueMaterializeNewObject: |
128 | jit.loadPtr(materializationToPointer.get(value.objectMaterialization()), GPRInfo::regT0); |
129 | break; |
130 | |
131 | default: |
132 | RELEASE_ASSERT_NOT_REACHED(); |
133 | break; |
134 | } |
135 | |
136 | reboxAccordingToFormat( |
137 | value.dataFormat(), jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); |
138 | } |
139 | |
140 | static void compileStub( |
141 | unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock) |
142 | { |
143 | // This code requires framePointerRegister is the same as callFrameRegister |
144 | static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same" ); |
145 | |
146 | CCallHelpers jit(codeBlock); |
147 | |
148 | // The first thing we need to do is restablish our frame in the case of an exception. |
149 | if (exit.isGenericUnwindHandler()) { |
150 | RELEASE_ASSERT(vm->callFrameForCatch); // The first time we hit this exit, like at all other times, this field should be non-null. |
151 | jit.restoreCalleeSavesFromEntryFrameCalleeSavesBuffer(vm->topEntryFrame); |
152 | jit.loadPtr(vm->addressOfCallFrameForCatch(), MacroAssembler::framePointerRegister); |
153 | jit.addPtr(CCallHelpers::TrustedImm32(codeBlock->stackPointerOffset() * sizeof(Register)), |
154 | MacroAssembler::framePointerRegister, CCallHelpers::stackPointerRegister); |
155 | |
156 | // Do a pushToSave because that's what the exit compiler below expects the stack |
157 | // to look like because that's the last thing the ExitThunkGenerator does. The code |
158 | // below doesn't actually use the value that was pushed, but it does rely on the |
159 | // general shape of the stack being as it is in the non-exception OSR case. |
160 | jit.pushToSaveImmediateWithoutTouchingRegisters(CCallHelpers::TrustedImm32(0xbadbeef)); |
161 | } |
162 | |
163 | // We need scratch space to save all registers, to build up the JS stack, to deal with unwind |
164 | // fixup, pointers to all of the objects we materialize, and the elements inside those objects |
165 | // that we materialize. |
166 | |
167 | // Figure out how much space we need for those object allocations. |
168 | unsigned numMaterializations = 0; |
169 | size_t maxMaterializationNumArguments = 0; |
170 | for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) { |
171 | numMaterializations++; |
172 | |
173 | maxMaterializationNumArguments = std::max( |
174 | maxMaterializationNumArguments, |
175 | materialization->properties().size()); |
176 | } |
177 | |
178 | ScratchBuffer* scratchBuffer = vm->scratchBufferForSize( |
179 | sizeof(EncodedJSValue) * ( |
180 | exit.m_descriptor->m_values.size() + numMaterializations + maxMaterializationNumArguments) + |
181 | requiredScratchMemorySizeInBytes() + |
182 | codeBlock->calleeSaveRegisters()->size() * sizeof(uint64_t)); |
183 | EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; |
184 | EncodedJSValue* materializationPointers = scratch + exit.m_descriptor->m_values.size(); |
185 | EncodedJSValue* materializationArguments = materializationPointers + numMaterializations; |
186 | char* registerScratch = bitwise_cast<char*>(materializationArguments + maxMaterializationNumArguments); |
187 | uint64_t* unwindScratch = bitwise_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes()); |
188 | |
189 | HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer; |
190 | unsigned materializationCount = 0; |
191 | for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) { |
192 | materializationToPointer.add( |
193 | materialization, materializationPointers + materializationCount++); |
194 | } |
195 | |
196 | auto recoverValue = [&] (const ExitValue& value) { |
197 | compileRecovery( |
198 | jit, value, |
199 | exit.m_valueReps, |
200 | registerScratch, materializationToPointer); |
201 | }; |
202 | |
203 | // Note that we come in here, the stack used to be as B3 left it except that someone called pushToSave(). |
204 | // We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use |
205 | // that slot for saveAllRegisters(). |
206 | |
207 | saveAllRegisters(jit, registerScratch); |
208 | |
209 | if (validateDFGDoesGC) { |
210 | // We're about to exit optimized code. So, there's no longer any optimized |
211 | // code running that expects no GC. We need to set this before object |
212 | // materialization below. |
213 | |
214 | // Even though we set Heap::m_expectDoesGC in compileFTLOSRExit(), we also need |
215 | // to set it here because compileFTLOSRExit() is only called on the first time |
216 | // we exit from this site, but all subsequent exits will take this compiled |
217 | // ramp without calling compileFTLOSRExit() first. |
218 | jit.store8(CCallHelpers::TrustedImm32(true), vm->heap.addressOfExpectDoesGC()); |
219 | } |
220 | |
221 | // Bring the stack back into a sane form and assert that it's sane. |
222 | jit.popToRestore(GPRInfo::regT0); |
223 | jit.checkStackPointerAlignment(); |
224 | |
225 | if (UNLIKELY(vm->m_perBytecodeProfiler && jitCode->dfgCommon()->compilation)) { |
226 | Profiler::Database& database = *vm->m_perBytecodeProfiler; |
227 | Profiler::Compilation* compilation = jitCode->dfgCommon()->compilation.get(); |
228 | |
229 | Profiler::OSRExit* profilerExit = compilation->addOSRExit( |
230 | exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin), |
231 | exit.m_kind, exit.m_kind == UncountableInvalidation); |
232 | jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress())); |
233 | } |
234 | |
235 | // The remaining code assumes that SP/FP are in the same state that they were in the FTL's |
236 | // call frame. |
237 | |
238 | // Get the call frame and tag thingies. |
239 | // Restore the exiting function's callFrame value into a regT4 |
240 | jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister); |
241 | jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister); |
242 | |
243 | // Do some value profiling. |
244 | if (exit.m_descriptor->m_profileDataFormat != DataFormatNone) { |
245 | Location::forValueRep(exit.m_valueReps[0]).restoreInto(jit, registerScratch, GPRInfo::regT0); |
246 | reboxAccordingToFormat( |
247 | exit.m_descriptor->m_profileDataFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); |
248 | |
249 | if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { |
250 | CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; |
251 | if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex())) { |
252 | jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1); |
253 | jit.store32(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructureID()); |
254 | |
255 | jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::typeInfoTypeOffset()), GPRInfo::regT2); |
256 | jit.sub32(MacroAssembler::TrustedImm32(FirstTypedArrayType), GPRInfo::regT2); |
257 | auto notTypedArray = jit.branch32(MacroAssembler::AboveOrEqual, GPRInfo::regT2, MacroAssembler::TrustedImm32(NumberOfTypedArrayTypesExcludingDataView)); |
258 | jit.move(MacroAssembler::TrustedImmPtr(typedArrayModes), GPRInfo::regT1); |
259 | jit.load32(MacroAssembler::BaseIndex(GPRInfo::regT1, GPRInfo::regT2, MacroAssembler::TimesFour), GPRInfo::regT2); |
260 | auto storeArrayModes = jit.jump(); |
261 | |
262 | notTypedArray.link(&jit); |
263 | jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeAndMiscOffset()), GPRInfo::regT1); |
264 | jit.and32(MacroAssembler::TrustedImm32(IndexingModeMask), GPRInfo::regT1); |
265 | jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2); |
266 | jit.lshift32(GPRInfo::regT1, GPRInfo::regT2); |
267 | storeArrayModes.link(&jit); |
268 | jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes())); |
269 | } |
270 | } |
271 | |
272 | if (exit.m_descriptor->m_valueProfile) |
273 | exit.m_descriptor->m_valueProfile.emitReportValue(jit, JSValueRegs(GPRInfo::regT0)); |
274 | } |
275 | |
276 | // Materialize all objects. Don't materialize an object until all |
277 | // of the objects it needs have been materialized. We break cycles |
278 | // by populating objects late - we only consider an object as |
279 | // needing another object if the later is needed for the |
280 | // allocation of the former. |
281 | |
282 | HashSet<ExitTimeObjectMaterialization*> toMaterialize; |
283 | for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) |
284 | toMaterialize.add(materialization); |
285 | |
286 | while (!toMaterialize.isEmpty()) { |
287 | unsigned previousToMaterializeSize = toMaterialize.size(); |
288 | |
289 | Vector<ExitTimeObjectMaterialization*> worklist; |
290 | worklist.appendRange(toMaterialize.begin(), toMaterialize.end()); |
291 | for (ExitTimeObjectMaterialization* materialization : worklist) { |
292 | // Check if we can do anything about this right now. |
293 | bool allGood = true; |
294 | for (ExitPropertyValue value : materialization->properties()) { |
295 | if (!value.value().isObjectMaterialization()) |
296 | continue; |
297 | if (!value.location().neededForMaterialization()) |
298 | continue; |
299 | if (toMaterialize.contains(value.value().objectMaterialization())) { |
300 | // Gotta skip this one, since it needs a |
301 | // materialization that hasn't been materialized. |
302 | allGood = false; |
303 | break; |
304 | } |
305 | } |
306 | if (!allGood) |
307 | continue; |
308 | |
309 | // All systems go for materializing the object. First we |
310 | // recover the values of all of its fields and then we |
311 | // call a function to actually allocate the beast. |
312 | // We only recover the fields that are needed for the allocation. |
313 | for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { |
314 | const ExitPropertyValue& property = materialization->properties()[propertyIndex]; |
315 | if (!property.location().neededForMaterialization()) |
316 | continue; |
317 | |
318 | recoverValue(property.value()); |
319 | jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); |
320 | } |
321 | |
322 | static_assert(FunctionTraits<decltype(operationMaterializeObjectInOSR)>::arity < GPRInfo::numberOfArgumentRegisters, "This call assumes that we don't pass arguments on the stack." ); |
323 | jit.setupArguments<decltype(operationMaterializeObjectInOSR)>( |
324 | CCallHelpers::TrustedImmPtr(materialization), |
325 | CCallHelpers::TrustedImmPtr(materializationArguments)); |
326 | jit.move(CCallHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0); |
327 | jit.call(GPRInfo::nonArgGPR0, OperationPtrTag); |
328 | jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization)); |
329 | |
330 | // Let everyone know that we're done. |
331 | toMaterialize.remove(materialization); |
332 | } |
333 | |
334 | // We expect progress! This ensures that we crash rather than looping infinitely if there |
335 | // is something broken about this fixpoint. Or, this could happen if we ever violate the |
336 | // "materializations form a DAG" rule. |
337 | RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize); |
338 | } |
339 | |
340 | // Now that all the objects have been allocated, we populate them |
341 | // with the correct values. This time we can recover all the |
342 | // fields, including those that are only needed for the allocation. |
343 | for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) { |
344 | for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { |
345 | recoverValue(materialization->properties()[propertyIndex].value()); |
346 | jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); |
347 | } |
348 | |
349 | static_assert(FunctionTraits<decltype(operationPopulateObjectInOSR)>::arity < GPRInfo::numberOfArgumentRegisters, "This call assumes that we don't pass arguments on the stack." ); |
350 | jit.setupArguments<decltype(operationPopulateObjectInOSR)>( |
351 | CCallHelpers::TrustedImmPtr(materialization), |
352 | CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)), |
353 | CCallHelpers::TrustedImmPtr(materializationArguments)); |
354 | jit.move(CCallHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0); |
355 | jit.call(GPRInfo::nonArgGPR0, OperationPtrTag); |
356 | } |
357 | |
358 | // Save all state from wherever the exit data tells us it was, into the appropriate place in |
359 | // the scratch buffer. This also does the reboxing. |
360 | |
361 | for (unsigned index = exit.m_descriptor->m_values.size(); index--;) { |
362 | recoverValue(exit.m_descriptor->m_values[index]); |
363 | jit.store64(GPRInfo::regT0, scratch + index); |
364 | } |
365 | |
366 | // Henceforth we make it look like the exiting function was called through a register |
367 | // preservation wrapper. This implies that FP must be nudged down by a certain amount. Then |
368 | // we restore the various things according to either exit.m_descriptor->m_values or by copying from the |
369 | // old frame, and finally we save the various callee-save registers into where the |
370 | // restoration thunk would restore them from. |
371 | |
372 | // Before we start messing with the frame, we need to set aside any registers that the |
373 | // FTL code was preserving. |
374 | for (unsigned i = codeBlock->calleeSaveRegisters()->size(); i--;) { |
375 | RegisterAtOffset entry = codeBlock->calleeSaveRegisters()->at(i); |
376 | jit.load64( |
377 | MacroAssembler::Address(MacroAssembler::framePointerRegister, entry.offset()), |
378 | GPRInfo::regT0); |
379 | jit.store64(GPRInfo::regT0, unwindScratch + i); |
380 | } |
381 | |
382 | CodeBlock* baselineCodeBlock = jit.baselineCodeBlockFor(exit.m_codeOrigin); |
383 | |
384 | // First set up SP so that our data doesn't get clobbered by signals. |
385 | unsigned conservativeStackDelta = |
386 | (exit.m_descriptor->m_values.numberOfLocals() + baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters()) * sizeof(Register) + |
387 | maxFrameExtentForSlowPathCall; |
388 | conservativeStackDelta = WTF::roundUpToMultipleOf( |
389 | stackAlignmentBytes(), conservativeStackDelta); |
390 | jit.addPtr( |
391 | MacroAssembler::TrustedImm32(-conservativeStackDelta), |
392 | MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister); |
393 | jit.checkStackPointerAlignment(); |
394 | |
395 | RegisterSet allFTLCalleeSaves = RegisterSet::ftlCalleeSaveRegisters(); |
396 | const RegisterAtOffsetList* baselineCalleeSaves = baselineCodeBlock->calleeSaveRegisters(); |
397 | RegisterAtOffsetList* vmCalleeSaves = RegisterSet::vmCalleeSaveRegisterOffsets(); |
398 | RegisterSet vmCalleeSavesToSkip = RegisterSet::stackRegisters(); |
399 | if (exit.isExceptionHandler()) { |
400 | jit.loadPtr(&vm->topEntryFrame, GPRInfo::regT1); |
401 | jit.addPtr(CCallHelpers::TrustedImm32(EntryFrame::calleeSaveRegistersBufferOffset()), GPRInfo::regT1); |
402 | } |
403 | |
404 | for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) { |
405 | if (!allFTLCalleeSaves.get(reg)) { |
406 | if (exit.isExceptionHandler()) |
407 | RELEASE_ASSERT(!vmCalleeSaves->find(reg)); |
408 | continue; |
409 | } |
410 | unsigned unwindIndex = codeBlock->calleeSaveRegisters()->indexOf(reg); |
411 | const RegisterAtOffset* baselineRegisterOffset = baselineCalleeSaves->find(reg); |
412 | RegisterAtOffset* vmCalleeSave = nullptr; |
413 | if (exit.isExceptionHandler()) |
414 | vmCalleeSave = vmCalleeSaves->find(reg); |
415 | |
416 | if (reg.isGPR()) { |
417 | GPRReg regToLoad = baselineRegisterOffset ? GPRInfo::regT0 : reg.gpr(); |
418 | RELEASE_ASSERT(regToLoad != GPRInfo::regT1); |
419 | |
420 | if (unwindIndex == UINT_MAX) { |
421 | // The FTL compilation didn't preserve this register. This means that it also |
422 | // didn't use the register. So its value at the beginning of OSR exit should be |
423 | // preserved by the thunk. Luckily, we saved all registers into the register |
424 | // scratch buffer, so we can restore them from there. |
425 | jit.load64(registerScratch + offsetOfReg(reg), regToLoad); |
426 | } else { |
427 | // The FTL compilation preserved the register. Its new value is therefore |
428 | // irrelevant, but we can get the value that was preserved by using the unwind |
429 | // data. We've already copied all unwind-able preserved registers into the unwind |
430 | // scratch buffer, so we can get it from there. |
431 | jit.load64(unwindScratch + unwindIndex, regToLoad); |
432 | } |
433 | |
434 | if (baselineRegisterOffset) |
435 | jit.store64(regToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset())); |
436 | if (vmCalleeSave && !vmCalleeSavesToSkip.get(vmCalleeSave->reg())) |
437 | jit.store64(regToLoad, MacroAssembler::Address(GPRInfo::regT1, vmCalleeSave->offset())); |
438 | } else { |
439 | FPRReg fpRegToLoad = baselineRegisterOffset ? FPRInfo::fpRegT0 : reg.fpr(); |
440 | |
441 | if (unwindIndex == UINT_MAX) |
442 | jit.loadDouble(MacroAssembler::TrustedImmPtr(registerScratch + offsetOfReg(reg)), fpRegToLoad); |
443 | else |
444 | jit.loadDouble(MacroAssembler::TrustedImmPtr(unwindScratch + unwindIndex), fpRegToLoad); |
445 | |
446 | if (baselineRegisterOffset) |
447 | jit.storeDouble(fpRegToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset())); |
448 | if (vmCalleeSave && !vmCalleeSavesToSkip.get(vmCalleeSave->reg())) |
449 | jit.storeDouble(fpRegToLoad, MacroAssembler::Address(GPRInfo::regT1, vmCalleeSave->offset())); |
450 | } |
451 | } |
452 | |
453 | if (exit.isExceptionHandler()) { |
454 | RegisterAtOffset* vmCalleeSave = vmCalleeSaves->find(GPRInfo::tagTypeNumberRegister); |
455 | jit.store64(GPRInfo::tagTypeNumberRegister, MacroAssembler::Address(GPRInfo::regT1, vmCalleeSave->offset())); |
456 | |
457 | vmCalleeSave = vmCalleeSaves->find(GPRInfo::tagMaskRegister); |
458 | jit.store64(GPRInfo::tagMaskRegister, MacroAssembler::Address(GPRInfo::regT1, vmCalleeSave->offset())); |
459 | } |
460 | |
461 | size_t baselineVirtualRegistersForCalleeSaves = baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters(); |
462 | |
463 | // Now get state out of the scratch buffer and place it back into the stack. The values are |
464 | // already reboxed so we just move them. |
465 | for (unsigned index = exit.m_descriptor->m_values.size(); index--;) { |
466 | VirtualRegister reg = exit.m_descriptor->m_values.virtualRegisterForIndex(index); |
467 | |
468 | if (reg.isLocal() && reg.toLocal() < static_cast<int>(baselineVirtualRegistersForCalleeSaves)) |
469 | continue; |
470 | |
471 | jit.load64(scratch + index, GPRInfo::regT0); |
472 | jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(reg)); |
473 | } |
474 | |
475 | handleExitCounts(jit, exit); |
476 | reifyInlinedCallFrames(jit, exit); |
477 | adjustAndJumpToTarget(*vm, jit, exit); |
478 | |
479 | LinkBuffer patchBuffer(jit, codeBlock); |
480 | exit.m_code = FINALIZE_CODE_IF( |
481 | shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(), |
482 | patchBuffer, OSRExitPtrTag, |
483 | "FTL OSR exit #%u (%s, %s) from %s, with operands = %s" , |
484 | exitID, toCString(exit.m_codeOrigin).data(), |
485 | exitKindToString(exit.m_kind), toCString(*codeBlock).data(), |
486 | toCString(ignoringContext<DumpContext>(exit.m_descriptor->m_values)).data() |
487 | ); |
488 | } |
489 | |
490 | extern "C" void* compileFTLOSRExit(ExecState* exec, unsigned exitID) |
491 | { |
492 | if (shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit()) |
493 | dataLog("Compiling OSR exit with exitID = " , exitID, "\n" ); |
494 | |
495 | VM& vm = exec->vm(); |
496 | |
497 | if (validateDFGDoesGC) { |
498 | // We're about to exit optimized code. So, there's no longer any optimized |
499 | // code running that expects no GC. |
500 | vm.heap.setExpectDoesGC(true); |
501 | } |
502 | |
503 | if (vm.callFrameForCatch) |
504 | RELEASE_ASSERT(vm.callFrameForCatch == exec); |
505 | |
506 | CodeBlock* codeBlock = exec->codeBlock(); |
507 | |
508 | ASSERT(codeBlock); |
509 | ASSERT(codeBlock->jitType() == JITType::FTLJIT); |
510 | |
511 | // It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't |
512 | // really be profitable. |
513 | DeferGCForAWhile deferGC(vm.heap); |
514 | |
515 | JITCode* jitCode = codeBlock->jitCode()->ftl(); |
516 | OSRExit& exit = jitCode->osrExit[exitID]; |
517 | |
518 | if (shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit()) { |
519 | dataLog(" Owning block: " , pointerDump(codeBlock), "\n" ); |
520 | dataLog(" Origin: " , exit.m_codeOrigin, "\n" ); |
521 | if (exit.m_codeOriginForExitProfile != exit.m_codeOrigin) |
522 | dataLog(" Origin for exit profile: " , exit.m_codeOriginForExitProfile, "\n" ); |
523 | dataLog(" Current call site index: " , exec->callSiteIndex().bits(), "\n" ); |
524 | dataLog(" Exit is exception handler: " , exit.isExceptionHandler(), "\n" ); |
525 | dataLog(" Is unwind handler: " , exit.isGenericUnwindHandler(), "\n" ); |
526 | dataLog(" Exit values: " , exit.m_descriptor->m_values, "\n" ); |
527 | dataLog(" Value reps: " , listDump(exit.m_valueReps), "\n" ); |
528 | if (!exit.m_descriptor->m_materializations.isEmpty()) { |
529 | dataLog(" Materializations:\n" ); |
530 | for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) |
531 | dataLog(" " , pointerDump(materialization), "\n" ); |
532 | } |
533 | } |
534 | |
535 | prepareCodeOriginForOSRExit(exec, exit.m_codeOrigin); |
536 | |
537 | compileStub(exitID, jitCode, exit, &vm, codeBlock); |
538 | |
539 | MacroAssembler::repatchJump( |
540 | exit.codeLocationForRepatch(codeBlock), CodeLocationLabel<OSRExitPtrTag>(exit.m_code.code())); |
541 | |
542 | return exit.m_code.code().executableAddress(); |
543 | } |
544 | |
545 | } } // namespace JSC::FTL |
546 | |
547 | #endif // ENABLE(FTL_JIT) |
548 | |
549 | |