1 | /* |
2 | * Copyright (C) 2015-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #if ENABLE(B3_JIT) |
29 | |
30 | #include "FPRInfo.h" |
31 | #include "GPRInfo.h" |
32 | #include "JSCJSValue.h" |
33 | #include "Reg.h" |
34 | #include "RegisterSet.h" |
35 | #include "ValueRecovery.h" |
36 | #include <wtf/PrintStream.h> |
37 | |
38 | namespace JSC { |
39 | |
40 | class AssemblyHelpers; |
41 | |
42 | namespace B3 { |
43 | |
44 | // We use this class to describe value representations at stackmaps. It's used both to force a |
45 | // representation and to get the representation. When the B3 client forces a representation, we say |
46 | // that it's an input. When B3 tells the client what representation it picked, we say that it's an |
47 | // output. |
48 | |
49 | class ValueRep { |
50 | public: |
51 | enum Kind { |
52 | // As an input representation, this means that B3 can pick any representation. As an output |
53 | // representation, this means that we don't know. This will only arise as an output |
54 | // representation for the active arguments of Check/CheckAdd/CheckSub/CheckMul. |
55 | WarmAny, |
56 | |
57 | // Same as WarmAny, but implies that the use is cold. A cold use is not counted as a use for |
58 | // computing the priority of the used temporary. |
59 | ColdAny, |
60 | |
61 | // Same as ColdAny, but also implies that the use occurs after all other effects of the stackmap |
62 | // value. |
63 | LateColdAny, |
64 | |
65 | // As an input representation, this means that B3 should pick some register. It could be a |
66 | // register that this claims to clobber! |
67 | SomeRegister, |
68 | |
69 | // As an input representation, this means that B3 should pick some register but that this |
70 | // register is then cobbered with garbage. This only works for patchpoints. |
71 | SomeRegisterWithClobber, |
72 | |
73 | // As an input representation, this tells us that B3 should pick some register, but implies |
74 | // that the def happens before any of the effects of the stackmap. This is only valid for |
75 | // the result constraint of a Patchpoint. |
76 | SomeEarlyRegister, |
77 | |
78 | // As an input representation, this tells us that B3 should pick some register, but implies |
79 | // the use happens after any defs. This is only works for patchpoints. |
80 | SomeLateRegister, |
81 | |
82 | // As an input representation, this forces a particular register. As an output |
83 | // representation, this tells us what register B3 picked. |
84 | Register, |
85 | |
86 | // As an input representation, this forces a particular register and states that |
87 | // the register is used late. This means that the register is used after the result |
88 | // is defined (i.e, the result will interfere with this as an input). |
89 | // It's not a valid output representation. |
90 | LateRegister, |
91 | |
92 | // As an output representation, this tells us what stack slot B3 picked. It's not a valid |
93 | // input representation. |
94 | Stack, |
95 | |
96 | // As an input representation, this forces the value to end up in the argument area at some |
97 | // offset. |
98 | StackArgument, |
99 | |
100 | // As an output representation, this tells us that B3 constant-folded the value. |
101 | Constant |
102 | }; |
103 | |
104 | ValueRep() |
105 | : m_kind(WarmAny) |
106 | { |
107 | } |
108 | |
109 | explicit ValueRep(Reg reg) |
110 | : m_kind(Register) |
111 | { |
112 | u.reg = reg; |
113 | } |
114 | |
115 | ValueRep(Kind kind) |
116 | : m_kind(kind) |
117 | { |
118 | ASSERT(kind == WarmAny || kind == ColdAny || kind == LateColdAny || kind == SomeRegister || kind == SomeRegisterWithClobber || kind == SomeEarlyRegister || kind == SomeLateRegister); |
119 | } |
120 | |
121 | static ValueRep reg(Reg reg) |
122 | { |
123 | return ValueRep(reg); |
124 | } |
125 | |
126 | static ValueRep lateReg(Reg reg) |
127 | { |
128 | ValueRep result(reg); |
129 | result.m_kind = LateRegister; |
130 | return result; |
131 | } |
132 | |
133 | static ValueRep stack(intptr_t offsetFromFP) |
134 | { |
135 | ValueRep result; |
136 | result.m_kind = Stack; |
137 | result.u.offsetFromFP = offsetFromFP; |
138 | return result; |
139 | } |
140 | |
141 | static ValueRep stackArgument(intptr_t offsetFromSP) |
142 | { |
143 | ValueRep result; |
144 | result.m_kind = StackArgument; |
145 | result.u.offsetFromSP = offsetFromSP; |
146 | return result; |
147 | } |
148 | |
149 | static ValueRep constant(int64_t value) |
150 | { |
151 | ValueRep result; |
152 | result.m_kind = Constant; |
153 | result.u.value = value; |
154 | return result; |
155 | } |
156 | |
157 | static ValueRep constantDouble(double value) |
158 | { |
159 | return ValueRep::constant(bitwise_cast<int64_t>(value)); |
160 | } |
161 | |
162 | Kind kind() const { return m_kind; } |
163 | |
164 | bool operator==(const ValueRep& other) const |
165 | { |
166 | if (kind() != other.kind()) |
167 | return false; |
168 | switch (kind()) { |
169 | case LateRegister: |
170 | case Register: |
171 | return u.reg == other.u.reg; |
172 | case Stack: |
173 | return u.offsetFromFP == other.u.offsetFromFP; |
174 | case StackArgument: |
175 | return u.offsetFromSP == other.u.offsetFromSP; |
176 | case Constant: |
177 | return u.value == other.u.value; |
178 | default: |
179 | return true; |
180 | } |
181 | } |
182 | |
183 | bool operator!=(const ValueRep& other) const |
184 | { |
185 | return !(*this == other); |
186 | } |
187 | |
188 | explicit operator bool() const { return kind() != WarmAny; } |
189 | |
190 | bool isAny() const { return kind() == WarmAny || kind() == ColdAny || kind() == LateColdAny; } |
191 | |
192 | bool isReg() const { return kind() == Register || kind() == LateRegister || kind() == SomeLateRegister; } |
193 | |
194 | Reg reg() const |
195 | { |
196 | ASSERT(isReg()); |
197 | return u.reg; |
198 | } |
199 | |
200 | bool isGPR() const { return isReg() && reg().isGPR(); } |
201 | bool isFPR() const { return isReg() && reg().isFPR(); } |
202 | |
203 | GPRReg gpr() const { return reg().gpr(); } |
204 | FPRReg fpr() const { return reg().fpr(); } |
205 | |
206 | bool isStack() const { return kind() == Stack; } |
207 | |
208 | intptr_t offsetFromFP() const |
209 | { |
210 | ASSERT(isStack()); |
211 | return u.offsetFromFP; |
212 | } |
213 | |
214 | bool isStackArgument() const { return kind() == StackArgument; } |
215 | |
216 | intptr_t offsetFromSP() const |
217 | { |
218 | ASSERT(isStackArgument()); |
219 | return u.offsetFromSP; |
220 | } |
221 | |
222 | bool isConstant() const { return kind() == Constant; } |
223 | |
224 | int64_t value() const |
225 | { |
226 | ASSERT(isConstant()); |
227 | return u.value; |
228 | } |
229 | |
230 | double doubleValue() const |
231 | { |
232 | return bitwise_cast<double>(value()); |
233 | } |
234 | |
235 | ValueRep withOffset(intptr_t offset) const |
236 | { |
237 | switch (kind()) { |
238 | case Stack: |
239 | return stack(offsetFromFP() + offset); |
240 | case StackArgument: |
241 | return stackArgument(offsetFromSP() + offset); |
242 | default: |
243 | return *this; |
244 | } |
245 | } |
246 | |
247 | void addUsedRegistersTo(RegisterSet&) const; |
248 | |
249 | RegisterSet usedRegisters() const; |
250 | |
251 | // Get the used registers for a vector of ValueReps. |
252 | template<typename VectorType> |
253 | static RegisterSet usedRegisters(const VectorType& vector) |
254 | { |
255 | RegisterSet result; |
256 | for (const ValueRep& value : vector) |
257 | value.addUsedRegistersTo(result); |
258 | return result; |
259 | } |
260 | |
261 | JS_EXPORT_PRIVATE void dump(PrintStream&) const; |
262 | |
263 | // This has a simple contract: it emits code to restore the value into the given register. This |
264 | // will work even if it requires moving between bits a GPR and a FPR. |
265 | void emitRestore(AssemblyHelpers&, Reg) const; |
266 | |
267 | // Computes the ValueRecovery assuming that the Value* was for a JSValue (i.e. Int64). |
268 | // NOTE: We should avoid putting JSValue-related methods in B3, but this was hard to avoid |
269 | // because some parts of JSC use ValueRecovery like a general "where my bits at" object, almost |
270 | // exactly like ValueRep. |
271 | ValueRecovery recoveryForJSValue() const; |
272 | |
273 | private: |
274 | Kind m_kind; |
275 | union U { |
276 | Reg reg; |
277 | intptr_t offsetFromFP; |
278 | intptr_t offsetFromSP; |
279 | int64_t value; |
280 | |
281 | U() |
282 | { |
283 | memset(static_cast<void*>(this), 0, sizeof(*this)); |
284 | } |
285 | } u; |
286 | }; |
287 | |
288 | } } // namespace JSC::B3 |
289 | |
290 | namespace WTF { |
291 | |
292 | void printInternal(PrintStream&, JSC::B3::ValueRep::Kind); |
293 | |
294 | } // namespace WTF |
295 | |
296 | #endif // ENABLE(B3_JIT) |
297 | |