1 | /* |
2 | * Copyright (C) 2011-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "DFGCSEPhase.h" |
28 | |
29 | #if ENABLE(DFG_JIT) |
30 | |
31 | #include "DFGAbstractHeap.h" |
32 | #include "DFGBlockMapInlines.h" |
33 | #include "DFGClobberSet.h" |
34 | #include "DFGClobberize.h" |
35 | #include "DFGDominators.h" |
36 | #include "DFGGraph.h" |
37 | #include "DFGPhase.h" |
38 | #include "JSCInlines.h" |
39 | #include <array> |
40 | |
41 | namespace JSC { namespace DFG { |
42 | |
43 | // This file contains two CSE implementations: local and global. LocalCSE typically runs when we're |
44 | // in DFG mode, i.e. we want to compile quickly. LocalCSE contains a lot of optimizations for |
45 | // compile time. GlobalCSE, on the other hand, is fairly straight-forward. It will find more |
46 | // optimization opportunities by virtue of being global. |
47 | |
48 | namespace { |
49 | |
50 | namespace DFGCSEPhaseInternal { |
51 | static const bool verbose = false; |
52 | } |
53 | |
54 | class ImpureDataSlot { |
55 | WTF_MAKE_NONCOPYABLE(ImpureDataSlot); |
56 | WTF_MAKE_FAST_ALLOCATED; |
57 | public: |
58 | ImpureDataSlot(HeapLocation key, LazyNode value, unsigned hash) |
59 | : key(key), value(value), hash(hash) |
60 | { } |
61 | |
62 | HeapLocation key; |
63 | LazyNode value; |
64 | unsigned hash; |
65 | }; |
66 | |
67 | struct ImpureDataSlotHash : public DefaultHash<std::unique_ptr<ImpureDataSlot>>::Hash { |
68 | static unsigned hash(const std::unique_ptr<ImpureDataSlot>& key) |
69 | { |
70 | return key->hash; |
71 | } |
72 | |
73 | static bool equal(const std::unique_ptr<ImpureDataSlot>& a, const std::unique_ptr<ImpureDataSlot>& b) |
74 | { |
75 | // The ImpureDataSlot are unique per table per HeapLocation. This lets us compare the key |
76 | // by just comparing the pointers of the unique ImpureDataSlots. |
77 | ASSERT(a != b || a->key == b->key); |
78 | return a == b; |
79 | } |
80 | }; |
81 | |
82 | struct ImpureDataTranslator { |
83 | static unsigned hash(const HeapLocation& key) |
84 | { |
85 | return key.hash(); |
86 | } |
87 | |
88 | static bool equal(const std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key) |
89 | { |
90 | if (!slot) |
91 | return false; |
92 | if (HashTraits<std::unique_ptr<ImpureDataSlot>>::isDeletedValue(slot)) |
93 | return false; |
94 | return slot->key == key; |
95 | } |
96 | |
97 | static void translate(std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key, unsigned hashCode) |
98 | { |
99 | new (NotNull, std::addressof(slot)) std::unique_ptr<ImpureDataSlot>(new ImpureDataSlot {key, LazyNode(), hashCode}); |
100 | } |
101 | }; |
102 | |
103 | class ImpureMap { |
104 | WTF_MAKE_FAST_ALLOCATED; |
105 | WTF_MAKE_NONCOPYABLE(ImpureMap); |
106 | public: |
107 | ImpureMap() = default; |
108 | |
109 | ImpureMap(ImpureMap&& other) |
110 | { |
111 | m_abstractHeapStackMap.swap(other.m_abstractHeapStackMap); |
112 | m_fallbackStackMap.swap(other.m_fallbackStackMap); |
113 | m_heapMap.swap(other.m_heapMap); |
114 | #if !defined(NDEBUG) |
115 | m_debugImpureData.swap(other.m_debugImpureData); |
116 | #endif |
117 | } |
118 | |
119 | const ImpureDataSlot* add(const HeapLocation& location, const LazyNode& node) |
120 | { |
121 | const ImpureDataSlot* result = addImpl(location, node); |
122 | |
123 | #if !defined(NDEBUG) |
124 | auto addResult = m_debugImpureData.add(location, node); |
125 | ASSERT(!!result == !addResult.isNewEntry); |
126 | #endif |
127 | return result; |
128 | } |
129 | |
130 | LazyNode get(const HeapLocation& location) const |
131 | { |
132 | LazyNode result = getImpl(location); |
133 | #if !defined(NDEBUG) |
134 | ASSERT(result == m_debugImpureData.get(location)); |
135 | #endif |
136 | return result; |
137 | } |
138 | |
139 | void clobber(AbstractHeap heap) |
140 | { |
141 | switch (heap.kind()) { |
142 | case World: { |
143 | clear(); |
144 | break; |
145 | } |
146 | case SideState: |
147 | break; |
148 | case Stack: { |
149 | ASSERT(!heap.payload().isTop()); |
150 | ASSERT(heap.payload().value() == heap.payload().value32()); |
151 | m_abstractHeapStackMap.remove(heap.payload().value32()); |
152 | clobber(m_fallbackStackMap, heap); |
153 | break; |
154 | } |
155 | default: |
156 | clobber(m_heapMap, heap); |
157 | break; |
158 | } |
159 | #if !defined(NDEBUG) |
160 | m_debugImpureData.removeIf([heap](const HashMap<HeapLocation, LazyNode>::KeyValuePairType& pair) -> bool { |
161 | return heap.overlaps(pair.key.heap()); |
162 | }); |
163 | ASSERT(m_debugImpureData.size() |
164 | == (m_heapMap.size() |
165 | + m_abstractHeapStackMap.size() |
166 | + m_fallbackStackMap.size())); |
167 | |
168 | const bool verifyClobber = false; |
169 | if (verifyClobber) { |
170 | for (auto& pair : m_debugImpureData) |
171 | ASSERT(!!get(pair.key)); |
172 | } |
173 | #endif |
174 | } |
175 | |
176 | void clear() |
177 | { |
178 | m_abstractHeapStackMap.clear(); |
179 | m_fallbackStackMap.clear(); |
180 | m_heapMap.clear(); |
181 | #if !defined(NDEBUG) |
182 | m_debugImpureData.clear(); |
183 | #endif |
184 | } |
185 | |
186 | private: |
187 | typedef HashSet<std::unique_ptr<ImpureDataSlot>, ImpureDataSlotHash> Map; |
188 | |
189 | const ImpureDataSlot* addImpl(const HeapLocation& location, const LazyNode& node) |
190 | { |
191 | switch (location.heap().kind()) { |
192 | case World: |
193 | case SideState: |
194 | RELEASE_ASSERT_NOT_REACHED(); |
195 | case Stack: { |
196 | AbstractHeap abstractHeap = location.heap(); |
197 | if (abstractHeap.payload().isTop()) |
198 | return add(m_fallbackStackMap, location, node); |
199 | ASSERT(abstractHeap.payload().value() == abstractHeap.payload().value32()); |
200 | auto addResult = m_abstractHeapStackMap.add(abstractHeap.payload().value32(), nullptr); |
201 | if (addResult.isNewEntry) { |
202 | addResult.iterator->value.reset(new ImpureDataSlot {location, node, 0}); |
203 | return nullptr; |
204 | } |
205 | if (addResult.iterator->value->key == location) |
206 | return addResult.iterator->value.get(); |
207 | return add(m_fallbackStackMap, location, node); |
208 | } |
209 | default: |
210 | return add(m_heapMap, location, node); |
211 | } |
212 | return nullptr; |
213 | } |
214 | |
215 | LazyNode getImpl(const HeapLocation& location) const |
216 | { |
217 | switch (location.heap().kind()) { |
218 | case World: |
219 | case SideState: |
220 | RELEASE_ASSERT_NOT_REACHED(); |
221 | case Stack: { |
222 | ASSERT(location.heap().payload().value() == location.heap().payload().value32()); |
223 | auto iterator = m_abstractHeapStackMap.find(location.heap().payload().value32()); |
224 | if (iterator != m_abstractHeapStackMap.end() |
225 | && iterator->value->key == location) |
226 | return iterator->value->value; |
227 | return get(m_fallbackStackMap, location); |
228 | } |
229 | default: |
230 | return get(m_heapMap, location); |
231 | } |
232 | return LazyNode(); |
233 | } |
234 | |
235 | static const ImpureDataSlot* add(Map& map, const HeapLocation& location, const LazyNode& node) |
236 | { |
237 | auto result = map.add<ImpureDataTranslator>(location); |
238 | if (result.isNewEntry) { |
239 | (*result.iterator)->value = node; |
240 | return nullptr; |
241 | } |
242 | return result.iterator->get(); |
243 | } |
244 | |
245 | static LazyNode get(const Map& map, const HeapLocation& location) |
246 | { |
247 | auto iterator = map.find<ImpureDataTranslator>(location); |
248 | if (iterator != map.end()) |
249 | return (*iterator)->value; |
250 | return LazyNode(); |
251 | } |
252 | |
253 | static void clobber(Map& map, AbstractHeap heap) |
254 | { |
255 | map.removeIf([heap](const std::unique_ptr<ImpureDataSlot>& slot) -> bool { |
256 | return heap.overlaps(slot->key.heap()); |
257 | }); |
258 | } |
259 | |
260 | // The majority of Impure Stack Slots are unique per value. |
261 | // This is very useful for fast clobber(), we can just remove the slot addressed by AbstractHeap |
262 | // in O(1). |
263 | // |
264 | // When there are conflict, any additional HeapLocation is added in the fallback map. |
265 | // This works well because fallbackStackMap remains tiny. |
266 | // |
267 | // One cannot assume a unique ImpureData is in m_abstractHeapStackMap. It may have been |
268 | // a duplicate in the past and now only live in m_fallbackStackMap. |
269 | // |
270 | // Obviously, TOP always goes into m_fallbackStackMap since it does not have a unique value. |
271 | HashMap<int32_t, std::unique_ptr<ImpureDataSlot>, DefaultHash<int32_t>::Hash, WTF::SignedWithZeroKeyHashTraits<int32_t>> m_abstractHeapStackMap; |
272 | Map m_fallbackStackMap; |
273 | |
274 | Map m_heapMap; |
275 | |
276 | #if !defined(NDEBUG) |
277 | HashMap<HeapLocation, LazyNode> m_debugImpureData; |
278 | #endif |
279 | }; |
280 | |
281 | class LocalCSEPhase : public Phase { |
282 | public: |
283 | LocalCSEPhase(Graph& graph) |
284 | : Phase(graph, "local common subexpression elimination" ) |
285 | , m_smallBlock(graph) |
286 | , m_largeBlock(graph) |
287 | { |
288 | } |
289 | |
290 | bool run() |
291 | { |
292 | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); |
293 | ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == LoadStore); |
294 | |
295 | bool changed = false; |
296 | |
297 | m_graph.clearReplacements(); |
298 | |
299 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
300 | BasicBlock* block = m_graph.block(blockIndex); |
301 | if (!block) |
302 | continue; |
303 | |
304 | if (block->size() <= SmallMaps::capacity) |
305 | changed |= m_smallBlock.run(block); |
306 | else |
307 | changed |= m_largeBlock.run(block); |
308 | } |
309 | |
310 | return changed; |
311 | } |
312 | |
313 | private: |
314 | class SmallMaps { |
315 | public: |
316 | // This permits SmallMaps to be used for blocks that have up to 100 nodes. In practice, |
317 | // fewer than half of the nodes in a block have pure defs, and even fewer have impure defs. |
318 | // Thus, a capacity limit of 100 probably means that somewhere around ~40 things may end up |
319 | // in one of these "small" list-based maps. That number still seems largeish, except that |
320 | // the overhead of HashMaps can be quite high currently: clearing them, or even removing |
321 | // enough things from them, deletes (or resizes) their backing store eagerly. Hence |
322 | // HashMaps induce a lot of malloc traffic. |
323 | static const unsigned capacity = 100; |
324 | |
325 | SmallMaps() |
326 | : m_pureLength(0) |
327 | , m_impureLength(0) |
328 | { |
329 | } |
330 | |
331 | void clear() |
332 | { |
333 | m_pureLength = 0; |
334 | m_impureLength = 0; |
335 | } |
336 | |
337 | void write(AbstractHeap heap) |
338 | { |
339 | if (heap.kind() == SideState) |
340 | return; |
341 | |
342 | for (unsigned i = 0; i < m_impureLength; ++i) { |
343 | if (heap.overlaps(m_impureMap[i].key.heap())) |
344 | m_impureMap[i--] = m_impureMap[--m_impureLength]; |
345 | } |
346 | } |
347 | |
348 | Node* addPure(PureValue value, Node* node) |
349 | { |
350 | for (unsigned i = m_pureLength; i--;) { |
351 | if (m_pureMap[i].key == value) |
352 | return m_pureMap[i].value; |
353 | } |
354 | |
355 | ASSERT(m_pureLength < capacity); |
356 | m_pureMap[m_pureLength++] = WTF::KeyValuePair<PureValue, Node*>(value, node); |
357 | return nullptr; |
358 | } |
359 | |
360 | LazyNode findReplacement(HeapLocation location) |
361 | { |
362 | for (unsigned i = m_impureLength; i--;) { |
363 | if (m_impureMap[i].key == location) |
364 | return m_impureMap[i].value; |
365 | } |
366 | return nullptr; |
367 | } |
368 | |
369 | LazyNode addImpure(HeapLocation location, LazyNode node) |
370 | { |
371 | // FIXME: If we are using small maps, we must not def() derived values. |
372 | // For now the only derived values we def() are constant-based. |
373 | if (location.index() && !location.index().isNode()) |
374 | return nullptr; |
375 | if (LazyNode result = findReplacement(location)) |
376 | return result; |
377 | ASSERT(m_impureLength < capacity); |
378 | m_impureMap[m_impureLength++] = WTF::KeyValuePair<HeapLocation, LazyNode>(location, node); |
379 | return nullptr; |
380 | } |
381 | |
382 | private: |
383 | WTF::KeyValuePair<PureValue, Node*> m_pureMap[capacity]; |
384 | WTF::KeyValuePair<HeapLocation, LazyNode> m_impureMap[capacity]; |
385 | unsigned m_pureLength; |
386 | unsigned m_impureLength; |
387 | }; |
388 | |
389 | class LargeMaps { |
390 | public: |
391 | LargeMaps() |
392 | { |
393 | } |
394 | |
395 | void clear() |
396 | { |
397 | m_pureMap.clear(); |
398 | m_impureMap.clear(); |
399 | } |
400 | |
401 | void write(AbstractHeap heap) |
402 | { |
403 | m_impureMap.clobber(heap); |
404 | } |
405 | |
406 | Node* addPure(PureValue value, Node* node) |
407 | { |
408 | auto result = m_pureMap.add(value, node); |
409 | if (result.isNewEntry) |
410 | return nullptr; |
411 | return result.iterator->value; |
412 | } |
413 | |
414 | LazyNode findReplacement(HeapLocation location) |
415 | { |
416 | return m_impureMap.get(location); |
417 | } |
418 | |
419 | LazyNode addImpure(const HeapLocation& location, const LazyNode& node) |
420 | { |
421 | if (const ImpureDataSlot* slot = m_impureMap.add(location, node)) |
422 | return slot->value; |
423 | return LazyNode(); |
424 | } |
425 | |
426 | private: |
427 | HashMap<PureValue, Node*> m_pureMap; |
428 | ImpureMap m_impureMap; |
429 | }; |
430 | |
431 | template<typename Maps> |
432 | class BlockCSE { |
433 | public: |
434 | BlockCSE(Graph& graph) |
435 | : m_graph(graph) |
436 | , m_insertionSet(graph) |
437 | { |
438 | } |
439 | |
440 | bool run(BasicBlock* block) |
441 | { |
442 | m_maps.clear(); |
443 | m_changed = false; |
444 | m_block = block; |
445 | |
446 | for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { |
447 | m_node = block->at(nodeIndex); |
448 | m_graph.performSubstitution(m_node); |
449 | |
450 | if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) { |
451 | m_node->replaceWith(m_graph, m_node->child1().node()); |
452 | m_changed = true; |
453 | } else { |
454 | // This rule only makes sense for local CSE, since in SSA form we have already |
455 | // factored the bounds check out of the PutByVal. It's kind of gross, but we |
456 | // still have reason to believe that PutByValAlias is a good optimization and |
457 | // that it's better to do it with a single node rather than separating out the |
458 | // CheckInBounds. |
459 | if (m_node->op() == PutByVal || m_node->op() == PutByValDirect) { |
460 | HeapLocation heap; |
461 | |
462 | Node* base = m_graph.varArgChild(m_node, 0).node(); |
463 | Node* index = m_graph.varArgChild(m_node, 1).node(); |
464 | LocationKind indexedPropertyLoc = indexedPropertyLocForResultType(m_node->result()); |
465 | |
466 | ArrayMode mode = m_node->arrayMode(); |
467 | switch (mode.type()) { |
468 | case Array::Int32: |
469 | if (!mode.isInBounds()) |
470 | break; |
471 | heap = HeapLocation(indexedPropertyLoc, IndexedInt32Properties, base, index); |
472 | break; |
473 | |
474 | case Array::Double: { |
475 | if (!mode.isInBounds()) |
476 | break; |
477 | LocationKind kind = mode.isSaneChain() ? IndexedPropertyDoubleSaneChainLoc : IndexedPropertyDoubleLoc; |
478 | heap = HeapLocation(kind, IndexedDoubleProperties, base, index); |
479 | break; |
480 | } |
481 | |
482 | case Array::Contiguous: |
483 | if (!mode.isInBounds()) |
484 | break; |
485 | heap = HeapLocation(indexedPropertyLoc, IndexedContiguousProperties, base, index); |
486 | break; |
487 | |
488 | case Array::Int8Array: |
489 | case Array::Int16Array: |
490 | case Array::Int32Array: |
491 | case Array::Uint8Array: |
492 | case Array::Uint8ClampedArray: |
493 | case Array::Uint16Array: |
494 | case Array::Uint32Array: |
495 | case Array::Float32Array: |
496 | case Array::Float64Array: |
497 | if (!mode.isInBounds()) |
498 | break; |
499 | heap = HeapLocation( |
500 | indexedPropertyLoc, TypedArrayProperties, base, index); |
501 | break; |
502 | |
503 | default: |
504 | break; |
505 | } |
506 | |
507 | if (!!heap && m_maps.findReplacement(heap)) |
508 | m_node->setOp(PutByValAlias); |
509 | } |
510 | |
511 | clobberize(m_graph, m_node, *this); |
512 | } |
513 | } |
514 | |
515 | m_insertionSet.execute(block); |
516 | |
517 | return m_changed; |
518 | } |
519 | |
520 | void read(AbstractHeap) { } |
521 | |
522 | void write(AbstractHeap heap) |
523 | { |
524 | m_maps.write(heap); |
525 | } |
526 | |
527 | void def(PureValue value) |
528 | { |
529 | Node* match = m_maps.addPure(value, m_node); |
530 | if (!match) |
531 | return; |
532 | |
533 | m_node->replaceWith(m_graph, match); |
534 | m_changed = true; |
535 | } |
536 | |
537 | void def(const HeapLocation& location, const LazyNode& value) |
538 | { |
539 | LazyNode match = m_maps.addImpure(location, value); |
540 | if (!match) |
541 | return; |
542 | |
543 | if (m_node->op() == GetLocal) { |
544 | // Usually the CPS rethreading phase does this. But it's OK for us to mess with |
545 | // locals so long as: |
546 | // |
547 | // - We dethread the graph. Any changes we make may invalidate the assumptions of |
548 | // our CPS form, particularly if this GetLocal is linked to the variablesAtTail. |
549 | // |
550 | // - We don't introduce a Phantom for the child of the GetLocal. This wouldn't be |
551 | // totally wrong but it would pessimize the code. Just because there is a |
552 | // GetLocal doesn't mean that the child was live. Simply rerouting the all uses |
553 | // of this GetLocal will preserve the live-at-exit information just fine. |
554 | // |
555 | // We accomplish the latter by just clearing the child; then the Phantom that we |
556 | // introduce won't have children and so it will eventually just be deleted. |
557 | |
558 | m_node->child1() = Edge(); |
559 | m_graph.dethread(); |
560 | } |
561 | |
562 | if (value.isNode() && value.asNode() == m_node) { |
563 | match.ensureIsNode(m_insertionSet, m_block, 0)->owner = m_block; |
564 | ASSERT(match.isNode()); |
565 | m_node->replaceWith(m_graph, match.asNode()); |
566 | m_changed = true; |
567 | } |
568 | } |
569 | |
570 | private: |
571 | Graph& m_graph; |
572 | |
573 | bool m_changed; |
574 | Node* m_node; |
575 | BasicBlock* m_block; |
576 | |
577 | Maps m_maps; |
578 | |
579 | InsertionSet m_insertionSet; |
580 | }; |
581 | |
582 | BlockCSE<SmallMaps> m_smallBlock; |
583 | BlockCSE<LargeMaps> m_largeBlock; |
584 | }; |
585 | |
586 | class GlobalCSEPhase : public Phase { |
587 | public: |
588 | GlobalCSEPhase(Graph& graph) |
589 | : Phase(graph, "global common subexpression elimination" ) |
590 | , m_impureDataMap(graph) |
591 | , m_insertionSet(graph) |
592 | { |
593 | } |
594 | |
595 | bool run() |
596 | { |
597 | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); |
598 | ASSERT(m_graph.m_form == SSA); |
599 | |
600 | m_graph.initializeNodeOwners(); |
601 | m_graph.ensureSSADominators(); |
602 | |
603 | m_preOrder = m_graph.blocksInPreOrder(); |
604 | |
605 | // First figure out what gets clobbered by blocks. Node that this uses the preOrder list |
606 | // for convenience only. |
607 | for (unsigned i = m_preOrder.size(); i--;) { |
608 | m_block = m_preOrder[i]; |
609 | m_impureData = &m_impureDataMap[m_block]; |
610 | for (unsigned nodeIndex = m_block->size(); nodeIndex--;) |
611 | addWrites(m_graph, m_block->at(nodeIndex), m_impureData->writes); |
612 | } |
613 | |
614 | // Based on my experience doing this before, what follows might have to be made iterative. |
615 | // Right now it doesn't have to be iterative because everything is dominator-bsed. But when |
616 | // validation is enabled, we check if iterating would find new CSE opportunities. |
617 | |
618 | bool changed = iterate(); |
619 | |
620 | // FIXME: It should be possible to assert that CSE will not find any new opportunities if you |
621 | // run it a second time. Unfortunately, we cannot assert this right now. Note that if we did |
622 | // this, we'd have to first reset all of our state. |
623 | // https://bugs.webkit.org/show_bug.cgi?id=145853 |
624 | |
625 | return changed; |
626 | } |
627 | |
628 | bool iterate() |
629 | { |
630 | if (DFGCSEPhaseInternal::verbose) |
631 | dataLog("Performing iteration.\n" ); |
632 | |
633 | m_changed = false; |
634 | m_graph.clearReplacements(); |
635 | |
636 | for (unsigned i = 0; i < m_preOrder.size(); ++i) { |
637 | m_block = m_preOrder[i]; |
638 | m_impureData = &m_impureDataMap[m_block]; |
639 | m_writesSoFar.clear(); |
640 | |
641 | if (DFGCSEPhaseInternal::verbose) |
642 | dataLog("Processing block " , *m_block, ":\n" ); |
643 | |
644 | for (unsigned nodeIndex = 0; nodeIndex < m_block->size(); ++nodeIndex) { |
645 | m_nodeIndex = nodeIndex; |
646 | m_node = m_block->at(nodeIndex); |
647 | if (DFGCSEPhaseInternal::verbose) |
648 | dataLog(" Looking at node " , m_node, ":\n" ); |
649 | |
650 | m_graph.performSubstitution(m_node); |
651 | |
652 | if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) { |
653 | m_node->replaceWith(m_graph, m_node->child1().node()); |
654 | m_changed = true; |
655 | } else |
656 | clobberize(m_graph, m_node, *this); |
657 | } |
658 | |
659 | m_insertionSet.execute(m_block); |
660 | |
661 | m_impureData->didVisit = true; |
662 | } |
663 | |
664 | return m_changed; |
665 | } |
666 | |
667 | void read(AbstractHeap) { } |
668 | |
669 | void write(AbstractHeap heap) |
670 | { |
671 | m_impureData->availableAtTail.clobber(heap); |
672 | m_writesSoFar.add(heap); |
673 | } |
674 | |
675 | void def(PureValue value) |
676 | { |
677 | // With pure values we do not have to worry about the possibility of some control flow path |
678 | // clobbering the value. So, we just search for all of the like values that have been |
679 | // computed. We pick one that is in a block that dominates ours. Note that this means that |
680 | // a PureValue will map to a list of nodes, since there may be many places in the control |
681 | // flow graph that compute a value but only one of them that dominates us. We may build up |
682 | // a large list of nodes that compute some value in the case of gnarly control flow. This |
683 | // is probably OK. |
684 | |
685 | auto result = m_pureValues.add(value, Vector<Node*>()); |
686 | if (result.isNewEntry) { |
687 | result.iterator->value.append(m_node); |
688 | return; |
689 | } |
690 | |
691 | for (unsigned i = result.iterator->value.size(); i--;) { |
692 | Node* candidate = result.iterator->value[i]; |
693 | if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) { |
694 | m_node->replaceWith(m_graph, candidate); |
695 | m_changed = true; |
696 | return; |
697 | } |
698 | } |
699 | |
700 | result.iterator->value.append(m_node); |
701 | } |
702 | |
703 | LazyNode findReplacement(HeapLocation location) |
704 | { |
705 | // At this instant, our "availableAtTail" reflects the set of things that are available in |
706 | // this block so far. We check this map to find block-local CSE opportunities before doing |
707 | // a global search. |
708 | LazyNode match = m_impureData->availableAtTail.get(location); |
709 | if (!!match) { |
710 | if (DFGCSEPhaseInternal::verbose) |
711 | dataLog(" Found local match: " , match, "\n" ); |
712 | return match; |
713 | } |
714 | |
715 | // If it's not available at this point in the block, and at some prior point in the block |
716 | // we have clobbered this heap location, then there is no point in doing a global search. |
717 | if (m_writesSoFar.overlaps(location.heap())) { |
718 | if (DFGCSEPhaseInternal::verbose) |
719 | dataLog(" Not looking globally because of local clobber: " , m_writesSoFar, "\n" ); |
720 | return nullptr; |
721 | } |
722 | |
723 | // This perfoms a backward search over the control flow graph to find some possible |
724 | // non-local def() that matches our heap location. Such a match is only valid if there does |
725 | // not exist any path from that def() to our block that contains a write() that overlaps |
726 | // our heap. This algorithm looks for both of these things (the matching def and the |
727 | // overlapping writes) in one backwards DFS pass. |
728 | // |
729 | // This starts by looking at the starting block's predecessors, and then it continues along |
730 | // their predecessors. As soon as this finds a possible def() - one that defines the heap |
731 | // location we want while dominating our starting block - it assumes that this one must be |
732 | // the match. It then lets the DFS over predecessors complete, but it doesn't add the |
733 | // def()'s predecessors; this ensures that any blocks we visit thereafter are on some path |
734 | // from the def() to us. As soon as the DFG finds a write() that overlaps the location's |
735 | // heap, it stops, assuming that there is no possible match. Note that the write() case may |
736 | // trigger before we find a def(), or after. Either way, the write() case causes this |
737 | // function to immediately return nullptr. |
738 | // |
739 | // If the write() is found before we find the def(), then we know that any def() we would |
740 | // find would have a path to us that trips over the write() and hence becomes invalid. This |
741 | // is just a direct outcome of us looking for a def() that dominates us. Given a block A |
742 | // that dominates block B - so that A is the one that would have the def() and B is our |
743 | // starting block - we know that any other block must either be on the path from A to B, or |
744 | // it must be on a path from the root to A, but not both. So, if we haven't found A yet but |
745 | // we already have found a block C that has a write(), then C must be on some path from A |
746 | // to B, which means that A's def() is invalid for our purposes. Hence, before we find the |
747 | // def(), stopping on write() is the right thing to do. |
748 | // |
749 | // Stopping on write() is also the right thing to do after we find the def(). After we find |
750 | // the def(), we don't add that block's predecessors to the search worklist. That means |
751 | // that henceforth the only blocks we will see in the search are blocks on the path from |
752 | // the def() to us. If any such block has a write() that clobbers our heap then we should |
753 | // give up. |
754 | // |
755 | // Hence this graph search algorithm ends up being deceptively simple: any overlapping |
756 | // write() causes us to immediately return nullptr, and a matching def() means that we just |
757 | // record it and neglect to visit its precessors. |
758 | |
759 | Vector<BasicBlock*, 8> worklist; |
760 | Vector<BasicBlock*, 8> seenList; |
761 | BitVector seen; |
762 | |
763 | for (unsigned i = m_block->predecessors.size(); i--;) { |
764 | BasicBlock* predecessor = m_block->predecessors[i]; |
765 | if (!seen.get(predecessor->index)) { |
766 | worklist.append(predecessor); |
767 | seen.set(predecessor->index); |
768 | } |
769 | } |
770 | |
771 | while (!worklist.isEmpty()) { |
772 | BasicBlock* block = worklist.takeLast(); |
773 | seenList.append(block); |
774 | |
775 | if (DFGCSEPhaseInternal::verbose) |
776 | dataLog(" Searching in block " , *block, "\n" ); |
777 | ImpureBlockData& data = m_impureDataMap[block]; |
778 | |
779 | // We require strict domination because this would only see things in our own block if |
780 | // they came *after* our position in the block. Clearly, while our block dominates |
781 | // itself, the things in the block after us don't dominate us. |
782 | if (m_graph.m_ssaDominators->strictlyDominates(block, m_block)) { |
783 | if (DFGCSEPhaseInternal::verbose) |
784 | dataLog(" It strictly dominates.\n" ); |
785 | DFG_ASSERT(m_graph, m_node, data.didVisit); |
786 | DFG_ASSERT(m_graph, m_node, !match); |
787 | match = data.availableAtTail.get(location); |
788 | if (DFGCSEPhaseInternal::verbose) |
789 | dataLog(" Availability: " , match, "\n" ); |
790 | if (!!match) { |
791 | // Don't examine the predecessors of a match. At this point we just want to |
792 | // establish that other blocks on the path from here to there don't clobber |
793 | // the location we're interested in. |
794 | continue; |
795 | } |
796 | } |
797 | |
798 | if (DFGCSEPhaseInternal::verbose) |
799 | dataLog(" Dealing with write set " , data.writes, "\n" ); |
800 | if (data.writes.overlaps(location.heap())) { |
801 | if (DFGCSEPhaseInternal::verbose) |
802 | dataLog(" Clobbered.\n" ); |
803 | return nullptr; |
804 | } |
805 | |
806 | for (unsigned i = block->predecessors.size(); i--;) { |
807 | BasicBlock* predecessor = block->predecessors[i]; |
808 | if (!seen.get(predecessor->index)) { |
809 | worklist.append(predecessor); |
810 | seen.set(predecessor->index); |
811 | } |
812 | } |
813 | } |
814 | |
815 | if (!match) |
816 | return nullptr; |
817 | |
818 | // Cache the results for next time. We cache them both for this block and for all of our |
819 | // predecessors, since even though we've already visited our predecessors, our predecessors |
820 | // probably have successors other than us. |
821 | // FIXME: Consider caching failed searches as well, when match is null. It's not clear that |
822 | // the reduction in compile time would warrant the increase in complexity, though. |
823 | // https://bugs.webkit.org/show_bug.cgi?id=134876 |
824 | for (BasicBlock* block : seenList) |
825 | m_impureDataMap[block].availableAtTail.add(location, match); |
826 | m_impureData->availableAtTail.add(location, match); |
827 | |
828 | return match; |
829 | } |
830 | |
831 | void def(HeapLocation location, LazyNode value) |
832 | { |
833 | if (DFGCSEPhaseInternal::verbose) |
834 | dataLog(" Got heap location def: " , location, " -> " , value, "\n" ); |
835 | |
836 | LazyNode match = findReplacement(location); |
837 | |
838 | if (DFGCSEPhaseInternal::verbose) |
839 | dataLog(" Got match: " , match, "\n" ); |
840 | |
841 | if (!match) { |
842 | if (DFGCSEPhaseInternal::verbose) |
843 | dataLog(" Adding at-tail mapping: " , location, " -> " , value, "\n" ); |
844 | auto result = m_impureData->availableAtTail.add(location, value); |
845 | ASSERT_UNUSED(result, !result); |
846 | return; |
847 | } |
848 | |
849 | if (value.isNode() && value.asNode() == m_node) { |
850 | if (!match.isNode()) { |
851 | // We need to properly record the constant in order to use an existing one if applicable. |
852 | // This ensures that re-running GCSE will not find new optimizations. |
853 | match.ensureIsNode(m_insertionSet, m_block, m_nodeIndex)->owner = m_block; |
854 | auto result = m_pureValues.add(PureValue(match.asNode(), match->constant()), Vector<Node*>()); |
855 | bool replaced = false; |
856 | if (!result.isNewEntry) { |
857 | for (unsigned i = result.iterator->value.size(); i--;) { |
858 | Node* candidate = result.iterator->value[i]; |
859 | if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) { |
860 | ASSERT(candidate); |
861 | match->replaceWith(m_graph, candidate); |
862 | match.setNode(candidate); |
863 | replaced = true; |
864 | break; |
865 | } |
866 | } |
867 | } |
868 | if (!replaced) |
869 | result.iterator->value.append(match.asNode()); |
870 | } |
871 | ASSERT(match.asNode()); |
872 | m_node->replaceWith(m_graph, match.asNode()); |
873 | m_changed = true; |
874 | } |
875 | } |
876 | |
877 | struct ImpureBlockData { |
878 | ImpureBlockData() |
879 | : didVisit(false) |
880 | { |
881 | } |
882 | |
883 | ClobberSet writes; |
884 | ImpureMap availableAtTail; |
885 | bool didVisit; |
886 | }; |
887 | |
888 | Vector<BasicBlock*> m_preOrder; |
889 | |
890 | PureMultiMap m_pureValues; |
891 | BlockMap<ImpureBlockData> m_impureDataMap; |
892 | |
893 | BasicBlock* m_block; |
894 | Node* m_node; |
895 | unsigned m_nodeIndex; |
896 | ImpureBlockData* m_impureData; |
897 | ClobberSet m_writesSoFar; |
898 | InsertionSet m_insertionSet; |
899 | |
900 | bool m_changed; |
901 | }; |
902 | |
903 | } // anonymous namespace |
904 | |
905 | bool performLocalCSE(Graph& graph) |
906 | { |
907 | return runPhase<LocalCSEPhase>(graph); |
908 | } |
909 | |
910 | bool performGlobalCSE(Graph& graph) |
911 | { |
912 | return runPhase<GlobalCSEPhase>(graph); |
913 | } |
914 | |
915 | } } // namespace JSC::DFG |
916 | |
917 | #endif // ENABLE(DFG_JIT) |
918 | |