1 | /* |
2 | * Copyright (C) 2011-2017 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #include <wtf/CommaPrinter.h> |
29 | #include <wtf/FastBitVector.h> |
30 | #include <wtf/GraphNodeWorklist.h> |
31 | |
32 | namespace WTF { |
33 | |
34 | // This is a utility for finding the dominators of a graph. Dominators are almost universally used |
35 | // for control flow graph analysis, so this code will refer to the graph's "nodes" as "blocks". In |
36 | // that regard this code is kind of specialized for the various JSC compilers, but you could use it |
37 | // for non-compiler things if you are OK with referring to your "nodes" as "blocks". |
38 | |
39 | template<typename Graph> |
40 | class Dominators { |
41 | public: |
42 | using List = typename Graph::List; |
43 | |
44 | Dominators(Graph& graph, bool selfCheck = false) |
45 | : m_graph(graph) |
46 | , m_data(graph.template newMap<BlockData>()) |
47 | { |
48 | LengauerTarjan lengauerTarjan(m_graph); |
49 | lengauerTarjan.compute(); |
50 | |
51 | // From here we want to build a spanning tree with both upward and downward links and we want |
52 | // to do a search over this tree to compute pre and post numbers that can be used for dominance |
53 | // tests. |
54 | |
55 | for (unsigned blockIndex = m_graph.numNodes(); blockIndex--;) { |
56 | typename Graph::Node block = m_graph.node(blockIndex); |
57 | if (!block) |
58 | continue; |
59 | |
60 | typename Graph::Node idomBlock = lengauerTarjan.immediateDominator(block); |
61 | m_data[block].idomParent = idomBlock; |
62 | if (idomBlock) |
63 | m_data[idomBlock].idomKids.append(block); |
64 | } |
65 | |
66 | unsigned nextPreNumber = 0; |
67 | unsigned nextPostNumber = 0; |
68 | |
69 | // Plain stack-based worklist because we are guaranteed to see each block exactly once anyway. |
70 | Vector<GraphNodeWithOrder<typename Graph::Node>> worklist; |
71 | worklist.append(GraphNodeWithOrder<typename Graph::Node>(m_graph.root(), GraphVisitOrder::Pre)); |
72 | while (!worklist.isEmpty()) { |
73 | GraphNodeWithOrder<typename Graph::Node> item = worklist.takeLast(); |
74 | switch (item.order) { |
75 | case GraphVisitOrder::Pre: |
76 | m_data[item.node].preNumber = nextPreNumber++; |
77 | worklist.append(GraphNodeWithOrder<typename Graph::Node>(item.node, GraphVisitOrder::Post)); |
78 | for (typename Graph::Node kid : m_data[item.node].idomKids) |
79 | worklist.append(GraphNodeWithOrder<typename Graph::Node>(kid, GraphVisitOrder::Pre)); |
80 | break; |
81 | case GraphVisitOrder::Post: |
82 | m_data[item.node].postNumber = nextPostNumber++; |
83 | break; |
84 | } |
85 | } |
86 | |
87 | if (selfCheck) { |
88 | // Check our dominator calculation: |
89 | // 1) Check that our range-based ancestry test is the same as a naive ancestry test. |
90 | // 2) Check that our notion of who dominates whom is identical to a naive (not |
91 | // Lengauer-Tarjan) dominator calculation. |
92 | |
93 | ValidationContext context(m_graph, *this); |
94 | |
95 | for (unsigned fromBlockIndex = m_graph.numNodes(); fromBlockIndex--;) { |
96 | typename Graph::Node fromBlock = m_graph.node(fromBlockIndex); |
97 | if (!fromBlock || m_data[fromBlock].preNumber == UINT_MAX) |
98 | continue; |
99 | for (unsigned toBlockIndex = m_graph.numNodes(); toBlockIndex--;) { |
100 | typename Graph::Node toBlock = m_graph.node(toBlockIndex); |
101 | if (!toBlock || m_data[toBlock].preNumber == UINT_MAX) |
102 | continue; |
103 | |
104 | if (dominates(fromBlock, toBlock) != naiveDominates(fromBlock, toBlock)) |
105 | context.reportError(fromBlock, toBlock, "Range-based domination check is broken" ); |
106 | if (dominates(fromBlock, toBlock) != context.naiveDominators.dominates(fromBlock, toBlock)) |
107 | context.reportError(fromBlock, toBlock, "Lengauer-Tarjan domination is broken" ); |
108 | } |
109 | } |
110 | |
111 | context.handleErrors(); |
112 | } |
113 | } |
114 | |
115 | bool strictlyDominates(typename Graph::Node from, typename Graph::Node to) const |
116 | { |
117 | return m_data[to].preNumber > m_data[from].preNumber |
118 | && m_data[to].postNumber < m_data[from].postNumber; |
119 | } |
120 | |
121 | bool dominates(typename Graph::Node from, typename Graph::Node to) const |
122 | { |
123 | return from == to || strictlyDominates(from, to); |
124 | } |
125 | |
126 | // Returns the immediate dominator of this block. Returns null for the root block. |
127 | typename Graph::Node idom(typename Graph::Node block) const |
128 | { |
129 | return m_data[block].idomParent; |
130 | } |
131 | |
132 | template<typename Functor> |
133 | void forAllStrictDominatorsOf(typename Graph::Node to, const Functor& functor) const |
134 | { |
135 | for (typename Graph::Node block = m_data[to].idomParent; block; block = m_data[block].idomParent) |
136 | functor(block); |
137 | } |
138 | |
139 | // Note: This will visit the dominators starting with the 'to' node and moving up the idom tree |
140 | // until it gets to the root. Some clients of this function, like B3::moveConstants(), rely on this |
141 | // order. |
142 | template<typename Functor> |
143 | void forAllDominatorsOf(typename Graph::Node to, const Functor& functor) const |
144 | { |
145 | for (typename Graph::Node block = to; block; block = m_data[block].idomParent) |
146 | functor(block); |
147 | } |
148 | |
149 | template<typename Functor> |
150 | void forAllBlocksStrictlyDominatedBy(typename Graph::Node from, const Functor& functor) const |
151 | { |
152 | Vector<typename Graph::Node, 16> worklist; |
153 | worklist.appendVector(m_data[from].idomKids); |
154 | while (!worklist.isEmpty()) { |
155 | typename Graph::Node block = worklist.takeLast(); |
156 | functor(block); |
157 | worklist.appendVector(m_data[block].idomKids); |
158 | } |
159 | } |
160 | |
161 | template<typename Functor> |
162 | void forAllBlocksDominatedBy(typename Graph::Node from, const Functor& functor) const |
163 | { |
164 | Vector<typename Graph::Node, 16> worklist; |
165 | worklist.append(from); |
166 | while (!worklist.isEmpty()) { |
167 | typename Graph::Node block = worklist.takeLast(); |
168 | functor(block); |
169 | worklist.appendVector(m_data[block].idomKids); |
170 | } |
171 | } |
172 | |
173 | typename Graph::Set strictDominatorsOf(typename Graph::Node to) const |
174 | { |
175 | typename Graph::Set result; |
176 | forAllStrictDominatorsOf( |
177 | to, |
178 | [&] (typename Graph::Node node) { |
179 | result.add(node); |
180 | }); |
181 | return result; |
182 | } |
183 | |
184 | typename Graph::Set dominatorsOf(typename Graph::Node to) const |
185 | { |
186 | typename Graph::Set result; |
187 | forAllDominatorsOf( |
188 | to, |
189 | [&] (typename Graph::Node node) { |
190 | result.add(node); |
191 | }); |
192 | return result; |
193 | } |
194 | |
195 | typename Graph::Set blocksStrictlyDominatedBy(typename Graph::Node from) const |
196 | { |
197 | typename Graph::Set result; |
198 | forAllBlocksStrictlyDominatedBy( |
199 | from, |
200 | [&] (typename Graph::Node node) { |
201 | result.add(node); |
202 | }); |
203 | return result; |
204 | } |
205 | |
206 | typename Graph::Set blocksDominatedBy(typename Graph::Node from) const |
207 | { |
208 | typename Graph::Set result; |
209 | forAllBlocksDominatedBy( |
210 | from, |
211 | [&] (typename Graph::Node node) { |
212 | result.add(node); |
213 | }); |
214 | return result; |
215 | } |
216 | |
217 | template<typename Functor> |
218 | void forAllBlocksInDominanceFrontierOf( |
219 | typename Graph::Node from, const Functor& functor) const |
220 | { |
221 | typename Graph::Set set; |
222 | forAllBlocksInDominanceFrontierOfImpl( |
223 | from, |
224 | [&] (typename Graph::Node block) { |
225 | if (set.add(block)) |
226 | functor(block); |
227 | }); |
228 | } |
229 | |
230 | typename Graph::Set dominanceFrontierOf(typename Graph::Node from) const |
231 | { |
232 | typename Graph::Set result; |
233 | forAllBlocksInDominanceFrontierOf( |
234 | from, |
235 | [&] (typename Graph::Node node) { |
236 | result.add(node); |
237 | }); |
238 | return result; |
239 | } |
240 | |
241 | template<typename Functor> |
242 | void forAllBlocksInIteratedDominanceFrontierOf(const List& from, const Functor& functor) |
243 | { |
244 | forAllBlocksInPrunedIteratedDominanceFrontierOf( |
245 | from, |
246 | [&] (typename Graph::Node block) -> bool { |
247 | functor(block); |
248 | return true; |
249 | }); |
250 | } |
251 | |
252 | // This is a close relative of forAllBlocksInIteratedDominanceFrontierOf(), which allows the |
253 | // given functor to return false to indicate that we don't wish to consider the given block. |
254 | // Useful for computing pruned SSA form. |
255 | template<typename Functor> |
256 | void forAllBlocksInPrunedIteratedDominanceFrontierOf( |
257 | const List& from, const Functor& functor) |
258 | { |
259 | typename Graph::Set set; |
260 | forAllBlocksInIteratedDominanceFrontierOfImpl( |
261 | from, |
262 | [&] (typename Graph::Node block) -> bool { |
263 | if (!set.add(block)) |
264 | return false; |
265 | return functor(block); |
266 | }); |
267 | } |
268 | |
269 | typename Graph::Set iteratedDominanceFrontierOf(const List& from) const |
270 | { |
271 | typename Graph::Set result; |
272 | forAllBlocksInIteratedDominanceFrontierOfImpl( |
273 | from, |
274 | [&] (typename Graph::Node node) -> bool { |
275 | return result.add(node); |
276 | }); |
277 | return result; |
278 | } |
279 | |
280 | void dump(PrintStream& out) const |
281 | { |
282 | for (unsigned blockIndex = 0; blockIndex < m_data.size(); ++blockIndex) { |
283 | if (m_data[blockIndex].preNumber == UINT_MAX) |
284 | continue; |
285 | |
286 | out.print(" Block #" , blockIndex, ": idom = " , m_graph.dump(m_data[blockIndex].idomParent), ", idomKids = [" ); |
287 | CommaPrinter comma; |
288 | for (unsigned i = 0; i < m_data[blockIndex].idomKids.size(); ++i) |
289 | out.print(comma, m_graph.dump(m_data[blockIndex].idomKids[i])); |
290 | out.print("], pre/post = " , m_data[blockIndex].preNumber, "/" , m_data[blockIndex].postNumber, "\n" ); |
291 | } |
292 | } |
293 | |
294 | private: |
295 | // This implements Lengauer and Tarjan's "A Fast Algorithm for Finding Dominators in a Flowgraph" |
296 | // (TOPLAS 1979). It uses the "simple" implementation of LINK and EVAL, which yields an O(n log n) |
297 | // solution. The full paper is linked below; this code attempts to closely follow the algorithm as |
298 | // it is presented in the paper; in particular sections 3 and 4 as well as appendix B. |
299 | // https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20fast%20algorithm%20for%20finding.pdf |
300 | // |
301 | // This code is very subtle. The Lengauer-Tarjan algorithm is incredibly deep to begin with. The |
302 | // goal of this code is to follow the code in the paper, however our implementation must deviate |
303 | // from the paper when it comes to recursion. The authors had used recursion to implement DFS, and |
304 | // also to implement the "simple" EVAL. We convert both of those into worklist-based solutions. |
305 | // Finally, once the algorithm gives us immediate dominators, we implement dominance tests by |
306 | // walking the dominator tree and computing pre and post numbers. We then use the range inclusion |
307 | // check trick that was first discovered by Paul F. Dietz in 1982 in "Maintaining order in a linked |
308 | // list" (see http://dl.acm.org/citation.cfm?id=802184). |
309 | |
310 | class LengauerTarjan { |
311 | public: |
312 | LengauerTarjan(Graph& graph) |
313 | : m_graph(graph) |
314 | , m_data(graph.template newMap<BlockData>()) |
315 | { |
316 | for (unsigned blockIndex = m_graph.numNodes(); blockIndex--;) { |
317 | typename Graph::Node block = m_graph.node(blockIndex); |
318 | if (!block) |
319 | continue; |
320 | m_data[block].label = block; |
321 | } |
322 | } |
323 | |
324 | void compute() |
325 | { |
326 | computeDepthFirstPreNumbering(); // Step 1. |
327 | computeSemiDominatorsAndImplicitImmediateDominators(); // Steps 2 and 3. |
328 | computeExplicitImmediateDominators(); // Step 4. |
329 | } |
330 | |
331 | typename Graph::Node immediateDominator(typename Graph::Node block) |
332 | { |
333 | return m_data[block].dom; |
334 | } |
335 | |
336 | private: |
337 | void computeDepthFirstPreNumbering() |
338 | { |
339 | // Use a block worklist that also tracks the index inside the successor list. This is |
340 | // necessary for ensuring that we don't attempt to visit a successor until the previous |
341 | // successors that we had visited are fully processed. This ends up being revealed in the |
342 | // output of this method because the first time we see an edge to a block, we set the |
343 | // block's parent. So, if we have: |
344 | // |
345 | // A -> B |
346 | // A -> C |
347 | // B -> C |
348 | // |
349 | // And we're processing A, then we want to ensure that if we see A->B first (and hence set |
350 | // B's prenumber before we set C's) then we also end up setting C's parent to B by virtue |
351 | // of not noticing A->C until we're done processing B. |
352 | |
353 | ExtendedGraphNodeWorklist<typename Graph::Node, unsigned, typename Graph::Set> worklist; |
354 | worklist.push(m_graph.root(), 0); |
355 | |
356 | while (GraphNodeWith<typename Graph::Node, unsigned> item = worklist.pop()) { |
357 | typename Graph::Node block = item.node; |
358 | unsigned successorIndex = item.data; |
359 | |
360 | // We initially push with successorIndex = 0 regardless of whether or not we have any |
361 | // successors. This is so that we can assign our prenumber. Subsequently we get pushed |
362 | // with higher successorIndex values, but only if they are in range. |
363 | ASSERT(!successorIndex || successorIndex < m_graph.successors(block).size()); |
364 | |
365 | if (!successorIndex) { |
366 | m_data[block].semiNumber = m_blockByPreNumber.size(); |
367 | m_blockByPreNumber.append(block); |
368 | } |
369 | |
370 | if (successorIndex < m_graph.successors(block).size()) { |
371 | unsigned nextSuccessorIndex = successorIndex + 1; |
372 | if (nextSuccessorIndex < m_graph.successors(block).size()) |
373 | worklist.forcePush(block, nextSuccessorIndex); |
374 | |
375 | typename Graph::Node successorBlock = m_graph.successors(block)[successorIndex]; |
376 | if (worklist.push(successorBlock, 0)) |
377 | m_data[successorBlock].parent = block; |
378 | } |
379 | } |
380 | } |
381 | |
382 | void computeSemiDominatorsAndImplicitImmediateDominators() |
383 | { |
384 | for (unsigned currentPreNumber = m_blockByPreNumber.size(); currentPreNumber-- > 1;) { |
385 | typename Graph::Node block = m_blockByPreNumber[currentPreNumber]; |
386 | BlockData& blockData = m_data[block]; |
387 | |
388 | // Step 2: |
389 | for (typename Graph::Node predecessorBlock : m_graph.predecessors(block)) { |
390 | typename Graph::Node intermediateBlock = eval(predecessorBlock); |
391 | blockData.semiNumber = std::min( |
392 | m_data[intermediateBlock].semiNumber, blockData.semiNumber); |
393 | } |
394 | unsigned bucketPreNumber = blockData.semiNumber; |
395 | ASSERT(bucketPreNumber <= currentPreNumber); |
396 | m_data[m_blockByPreNumber[bucketPreNumber]].bucket.append(block); |
397 | link(blockData.parent, block); |
398 | |
399 | // Step 3: |
400 | for (typename Graph::Node semiDominee : m_data[blockData.parent].bucket) { |
401 | typename Graph::Node possibleDominator = eval(semiDominee); |
402 | BlockData& semiDomineeData = m_data[semiDominee]; |
403 | ASSERT(m_blockByPreNumber[semiDomineeData.semiNumber] == blockData.parent); |
404 | BlockData& possibleDominatorData = m_data[possibleDominator]; |
405 | if (possibleDominatorData.semiNumber < semiDomineeData.semiNumber) |
406 | semiDomineeData.dom = possibleDominator; |
407 | else |
408 | semiDomineeData.dom = blockData.parent; |
409 | } |
410 | m_data[blockData.parent].bucket.clear(); |
411 | } |
412 | } |
413 | |
414 | void computeExplicitImmediateDominators() |
415 | { |
416 | for (unsigned currentPreNumber = 1; currentPreNumber < m_blockByPreNumber.size(); ++currentPreNumber) { |
417 | typename Graph::Node block = m_blockByPreNumber[currentPreNumber]; |
418 | BlockData& blockData = m_data[block]; |
419 | |
420 | if (blockData.dom != m_blockByPreNumber[blockData.semiNumber]) |
421 | blockData.dom = m_data[blockData.dom].dom; |
422 | } |
423 | } |
424 | |
425 | void link(typename Graph::Node from, typename Graph::Node to) |
426 | { |
427 | m_data[to].ancestor = from; |
428 | } |
429 | |
430 | typename Graph::Node eval(typename Graph::Node block) |
431 | { |
432 | if (!m_data[block].ancestor) |
433 | return block; |
434 | |
435 | compress(block); |
436 | return m_data[block].label; |
437 | } |
438 | |
439 | void compress(typename Graph::Node initialBlock) |
440 | { |
441 | // This was meant to be a recursive function, but we don't like recursion because we don't |
442 | // want to blow the stack. The original function will call compress() recursively on the |
443 | // ancestor of anything that has an ancestor. So, we populate our worklist with the |
444 | // recursive ancestors of initialBlock. Then we process the list starting from the block |
445 | // that is furthest up the ancestor chain. |
446 | |
447 | typename Graph::Node ancestor = m_data[initialBlock].ancestor; |
448 | ASSERT(ancestor); |
449 | if (!m_data[ancestor].ancestor) |
450 | return; |
451 | |
452 | Vector<typename Graph::Node, 16> stack; |
453 | for (typename Graph::Node block = initialBlock; block; block = m_data[block].ancestor) |
454 | stack.append(block); |
455 | |
456 | // We only care about blocks that have an ancestor that has an ancestor. The last two |
457 | // elements in the stack won't satisfy this property. |
458 | ASSERT(stack.size() >= 2); |
459 | ASSERT(!m_data[stack[stack.size() - 1]].ancestor); |
460 | ASSERT(!m_data[m_data[stack[stack.size() - 2]].ancestor].ancestor); |
461 | |
462 | for (unsigned i = stack.size() - 2; i--;) { |
463 | typename Graph::Node block = stack[i]; |
464 | typename Graph::Node& labelOfBlock = m_data[block].label; |
465 | typename Graph::Node& ancestorOfBlock = m_data[block].ancestor; |
466 | ASSERT(ancestorOfBlock); |
467 | ASSERT(m_data[ancestorOfBlock].ancestor); |
468 | |
469 | typename Graph::Node labelOfAncestorOfBlock = m_data[ancestorOfBlock].label; |
470 | |
471 | if (m_data[labelOfAncestorOfBlock].semiNumber < m_data[labelOfBlock].semiNumber) |
472 | labelOfBlock = labelOfAncestorOfBlock; |
473 | ancestorOfBlock = m_data[ancestorOfBlock].ancestor; |
474 | } |
475 | } |
476 | |
477 | struct BlockData { |
478 | BlockData() |
479 | : parent(nullptr) |
480 | , preNumber(UINT_MAX) |
481 | , semiNumber(UINT_MAX) |
482 | , ancestor(nullptr) |
483 | , label(nullptr) |
484 | , dom(nullptr) |
485 | { |
486 | } |
487 | |
488 | typename Graph::Node parent; |
489 | unsigned preNumber; |
490 | unsigned semiNumber; |
491 | typename Graph::Node ancestor; |
492 | typename Graph::Node label; |
493 | Vector<typename Graph::Node> bucket; |
494 | typename Graph::Node dom; |
495 | }; |
496 | |
497 | Graph& m_graph; |
498 | typename Graph::template Map<BlockData> m_data; |
499 | Vector<typename Graph::Node> m_blockByPreNumber; |
500 | }; |
501 | |
502 | class NaiveDominators { |
503 | public: |
504 | NaiveDominators(Graph& graph) |
505 | : m_graph(graph) |
506 | { |
507 | // This implements a naive dominator solver. |
508 | |
509 | ASSERT(!graph.predecessors(graph.root()).size()); |
510 | |
511 | unsigned numBlocks = graph.numNodes(); |
512 | |
513 | // Allocate storage for the dense dominance matrix. |
514 | m_results.grow(numBlocks); |
515 | for (unsigned i = numBlocks; i--;) |
516 | m_results[i].resize(numBlocks); |
517 | m_scratch.resize(numBlocks); |
518 | |
519 | // We know that the entry block is only dominated by itself. |
520 | m_results[0].clearAll(); |
521 | m_results[0][0] = true; |
522 | |
523 | // Find all of the valid blocks. |
524 | m_scratch.clearAll(); |
525 | for (unsigned i = numBlocks; i--;) { |
526 | if (!graph.node(i)) |
527 | continue; |
528 | m_scratch[i] = true; |
529 | } |
530 | |
531 | // Mark all nodes as dominated by everything. |
532 | for (unsigned i = numBlocks; i-- > 1;) { |
533 | if (!graph.node(i) || !graph.predecessors(graph.node(i)).size()) |
534 | m_results[i].clearAll(); |
535 | else |
536 | m_results[i] = m_scratch; |
537 | } |
538 | |
539 | // Iteratively eliminate nodes that are not dominator. |
540 | bool changed; |
541 | do { |
542 | changed = false; |
543 | // Prune dominators in all non entry blocks: forward scan. |
544 | for (unsigned i = 1; i < numBlocks; ++i) |
545 | changed |= pruneDominators(i); |
546 | |
547 | if (!changed) |
548 | break; |
549 | |
550 | // Prune dominators in all non entry blocks: backward scan. |
551 | changed = false; |
552 | for (unsigned i = numBlocks; i-- > 1;) |
553 | changed |= pruneDominators(i); |
554 | } while (changed); |
555 | } |
556 | |
557 | bool dominates(unsigned from, unsigned to) const |
558 | { |
559 | return m_results[to][from]; |
560 | } |
561 | |
562 | bool dominates(typename Graph::Node from, typename Graph::Node to) const |
563 | { |
564 | return dominates(m_graph.index(from), m_graph.index(to)); |
565 | } |
566 | |
567 | void dump(PrintStream& out) const |
568 | { |
569 | for (unsigned blockIndex = 0; blockIndex < m_graph.numNodes(); ++blockIndex) { |
570 | typename Graph::Node block = m_graph.node(blockIndex); |
571 | if (!block) |
572 | continue; |
573 | out.print(" Block " , m_graph.dump(block), ":" ); |
574 | for (unsigned otherIndex = 0; otherIndex < m_graph.numNodes(); ++otherIndex) { |
575 | if (!dominates(m_graph.index(block), otherIndex)) |
576 | continue; |
577 | out.print(" " , m_graph.dump(m_graph.node(otherIndex))); |
578 | } |
579 | out.print("\n" ); |
580 | } |
581 | } |
582 | |
583 | private: |
584 | bool pruneDominators(unsigned idx) |
585 | { |
586 | typename Graph::Node block = m_graph.node(idx); |
587 | |
588 | if (!block || !m_graph.predecessors(block).size()) |
589 | return false; |
590 | |
591 | // Find the intersection of dom(preds). |
592 | m_scratch = m_results[m_graph.index(m_graph.predecessors(block)[0])]; |
593 | for (unsigned j = m_graph.predecessors(block).size(); j-- > 1;) |
594 | m_scratch &= m_results[m_graph.index(m_graph.predecessors(block)[j])]; |
595 | |
596 | // The block is also dominated by itself. |
597 | m_scratch[idx] = true; |
598 | |
599 | return m_results[idx].setAndCheck(m_scratch); |
600 | } |
601 | |
602 | Graph& m_graph; |
603 | Vector<FastBitVector> m_results; // For each block, the bitvector of blocks that dominate it. |
604 | FastBitVector m_scratch; // A temporary bitvector with bit for each block. We recycle this to save new/deletes. |
605 | }; |
606 | |
607 | struct ValidationContext { |
608 | ValidationContext(Graph& graph, Dominators& dominators) |
609 | : graph(graph) |
610 | , dominators(dominators) |
611 | , naiveDominators(graph) |
612 | { |
613 | } |
614 | |
615 | void reportError(typename Graph::Node from, typename Graph::Node to, const char* message) |
616 | { |
617 | Error error; |
618 | error.from = from; |
619 | error.to = to; |
620 | error.message = message; |
621 | errors.append(error); |
622 | } |
623 | |
624 | void handleErrors() |
625 | { |
626 | if (errors.isEmpty()) |
627 | return; |
628 | |
629 | dataLog("DFG DOMINATOR VALIDATION FAILED:\n" ); |
630 | dataLog("\n" ); |
631 | dataLog("For block domination relationships:\n" ); |
632 | for (unsigned i = 0; i < errors.size(); ++i) { |
633 | dataLog( |
634 | " " , graph.dump(errors[i].from), " -> " , graph.dump(errors[i].to), |
635 | " (" , errors[i].message, ")\n" ); |
636 | } |
637 | dataLog("\n" ); |
638 | dataLog("Control flow graph:\n" ); |
639 | for (unsigned blockIndex = 0; blockIndex < graph.numNodes(); ++blockIndex) { |
640 | typename Graph::Node block = graph.node(blockIndex); |
641 | if (!block) |
642 | continue; |
643 | dataLog(" Block " , graph.dump(graph.node(blockIndex)), ": successors = [" ); |
644 | CommaPrinter comma; |
645 | for (auto successor : graph.successors(block)) |
646 | dataLog(comma, graph.dump(successor)); |
647 | dataLog("], predecessors = [" ); |
648 | comma = CommaPrinter(); |
649 | for (auto predecessor : graph.predecessors(block)) |
650 | dataLog(comma, graph.dump(predecessor)); |
651 | dataLog("]\n" ); |
652 | } |
653 | dataLog("\n" ); |
654 | dataLog("Lengauer-Tarjan Dominators:\n" ); |
655 | dataLog(dominators); |
656 | dataLog("\n" ); |
657 | dataLog("Naive Dominators:\n" ); |
658 | naiveDominators.dump(WTF::dataFile()); |
659 | dataLog("\n" ); |
660 | dataLog("Graph at time of failure:\n" ); |
661 | dataLog(graph); |
662 | dataLog("\n" ); |
663 | dataLog("DFG DOMINATOR VALIDATION FAILIED!\n" ); |
664 | CRASH(); |
665 | } |
666 | |
667 | Graph& graph; |
668 | Dominators& dominators; |
669 | NaiveDominators naiveDominators; |
670 | |
671 | struct Error { |
672 | typename Graph::Node from; |
673 | typename Graph::Node to; |
674 | const char* message; |
675 | }; |
676 | |
677 | Vector<Error> errors; |
678 | }; |
679 | |
680 | bool naiveDominates(typename Graph::Node from, typename Graph::Node to) const |
681 | { |
682 | for (typename Graph::Node block = to; block; block = m_data[block].idomParent) { |
683 | if (block == from) |
684 | return true; |
685 | } |
686 | return false; |
687 | } |
688 | |
689 | template<typename Functor> |
690 | void forAllBlocksInDominanceFrontierOfImpl( |
691 | typename Graph::Node from, const Functor& functor) const |
692 | { |
693 | // Paraphrasing from http://en.wikipedia.org/wiki/Dominator_(graph_theory): |
694 | // "The dominance frontier of a block 'from' is the set of all blocks 'to' such that |
695 | // 'from' dominates an immediate predecessor of 'to', but 'from' does not strictly |
696 | // dominate 'to'." |
697 | // |
698 | // A useful corner case to remember: a block may be in its own dominance frontier if it has |
699 | // a loop edge to itself, since it dominates itself and so it dominates its own immediate |
700 | // predecessor, and a block never strictly dominates itself. |
701 | |
702 | forAllBlocksDominatedBy( |
703 | from, |
704 | [&] (typename Graph::Node block) { |
705 | for (typename Graph::Node to : m_graph.successors(block)) { |
706 | if (!strictlyDominates(from, to)) |
707 | functor(to); |
708 | } |
709 | }); |
710 | } |
711 | |
712 | template<typename Functor> |
713 | void forAllBlocksInIteratedDominanceFrontierOfImpl( |
714 | const List& from, const Functor& functor) const |
715 | { |
716 | List worklist = from; |
717 | while (!worklist.isEmpty()) { |
718 | typename Graph::Node block = worklist.takeLast(); |
719 | forAllBlocksInDominanceFrontierOfImpl( |
720 | block, |
721 | [&] (typename Graph::Node otherBlock) { |
722 | if (functor(otherBlock)) |
723 | worklist.append(otherBlock); |
724 | }); |
725 | } |
726 | } |
727 | |
728 | struct BlockData { |
729 | BlockData() |
730 | : idomParent(nullptr) |
731 | , preNumber(UINT_MAX) |
732 | , postNumber(UINT_MAX) |
733 | { |
734 | } |
735 | |
736 | Vector<typename Graph::Node> idomKids; |
737 | typename Graph::Node idomParent; |
738 | |
739 | unsigned preNumber; |
740 | unsigned postNumber; |
741 | }; |
742 | |
743 | Graph& m_graph; |
744 | typename Graph::template Map<BlockData> m_data; |
745 | }; |
746 | |
747 | } // namespace WTF |
748 | |
749 | using WTF::Dominators; |
750 | |