1 | // Copyright 2010 the V8 project authors. All rights reserved. |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions are |
4 | // met: |
5 | // |
6 | // * Redistributions of source code must retain the above copyright |
7 | // notice, this list of conditions and the following disclaimer. |
8 | // * Redistributions in binary form must reproduce the above |
9 | // copyright notice, this list of conditions and the following |
10 | // disclaimer in the documentation and/or other materials provided |
11 | // with the distribution. |
12 | // * Neither the name of Google Inc. nor the names of its |
13 | // contributors may be used to endorse or promote products derived |
14 | // from this software without specific prior written permission. |
15 | // |
16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | |
28 | #include "config.h" |
29 | |
30 | #include <climits> |
31 | #include <locale> |
32 | #include <cmath> |
33 | |
34 | #include <wtf/dtoa/double-conversion.h> |
35 | |
36 | #include <wtf/dtoa/bignum-dtoa.h> |
37 | #include <wtf/dtoa/fast-dtoa.h> |
38 | #include <wtf/dtoa/fixed-dtoa.h> |
39 | #include <wtf/dtoa/ieee.h> |
40 | #include <wtf/dtoa/strtod.h> |
41 | #include <wtf/dtoa/utils.h> |
42 | |
43 | #include <wtf/ASCIICType.h> |
44 | |
45 | namespace WTF { |
46 | namespace double_conversion { |
47 | |
48 | const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() { |
49 | int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; |
50 | static DoubleToStringConverter converter(flags, |
51 | "Infinity" , |
52 | "NaN" , |
53 | 'e', |
54 | -6, 21, |
55 | 6, 0); |
56 | return converter; |
57 | } |
58 | |
59 | |
60 | bool DoubleToStringConverter::HandleSpecialValues( |
61 | double value, |
62 | StringBuilder* result_builder) const { |
63 | Double double_inspect(value); |
64 | if (double_inspect.IsInfinite()) { |
65 | if (infinity_symbol_ == NULL) return false; |
66 | if (value < 0) { |
67 | result_builder->AddCharacter('-'); |
68 | } |
69 | result_builder->AddString(infinity_symbol_); |
70 | return true; |
71 | } |
72 | if (double_inspect.IsNan()) { |
73 | if (nan_symbol_ == NULL) return false; |
74 | result_builder->AddString(nan_symbol_); |
75 | return true; |
76 | } |
77 | return false; |
78 | } |
79 | |
80 | |
81 | void DoubleToStringConverter::CreateExponentialRepresentation( |
82 | const char* decimal_digits, |
83 | int length, |
84 | int exponent, |
85 | StringBuilder* result_builder) const { |
86 | ASSERT(length != 0); |
87 | result_builder->AddCharacter(decimal_digits[0]); |
88 | if (length != 1) { |
89 | result_builder->AddCharacter('.'); |
90 | result_builder->AddSubstring(&decimal_digits[1], length-1); |
91 | } |
92 | result_builder->AddCharacter(exponent_character_); |
93 | if (exponent < 0) { |
94 | result_builder->AddCharacter('-'); |
95 | exponent = -exponent; |
96 | } else { |
97 | if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { |
98 | result_builder->AddCharacter('+'); |
99 | } |
100 | } |
101 | if (exponent == 0) { |
102 | result_builder->AddCharacter('0'); |
103 | return; |
104 | } |
105 | ASSERT(exponent < 1e4); |
106 | const int kMaxExponentLength = 5; |
107 | char buffer[kMaxExponentLength + 1]; |
108 | buffer[kMaxExponentLength] = '\0'; |
109 | int first_char_pos = kMaxExponentLength; |
110 | while (exponent > 0) { |
111 | buffer[--first_char_pos] = '0' + (exponent % 10); |
112 | exponent /= 10; |
113 | } |
114 | result_builder->AddSubstring(&buffer[first_char_pos], |
115 | kMaxExponentLength - first_char_pos); |
116 | } |
117 | |
118 | |
119 | void DoubleToStringConverter::CreateDecimalRepresentation( |
120 | const char* decimal_digits, |
121 | int length, |
122 | int decimal_point, |
123 | int digits_after_point, |
124 | StringBuilder* result_builder) const { |
125 | // Create a representation that is padded with zeros if needed. |
126 | if (decimal_point <= 0) { |
127 | // "0.00000decimal_rep" or "0.000decimal_rep00". |
128 | result_builder->AddCharacter('0'); |
129 | if (digits_after_point > 0) { |
130 | result_builder->AddCharacter('.'); |
131 | result_builder->AddPadding('0', -decimal_point); |
132 | ASSERT(length <= digits_after_point - (-decimal_point)); |
133 | result_builder->AddSubstring(decimal_digits, length); |
134 | int remaining_digits = digits_after_point - (-decimal_point) - length; |
135 | result_builder->AddPadding('0', remaining_digits); |
136 | } |
137 | } else if (decimal_point >= length) { |
138 | // "decimal_rep0000.00000" or "decimal_rep.0000". |
139 | result_builder->AddSubstring(decimal_digits, length); |
140 | result_builder->AddPadding('0', decimal_point - length); |
141 | if (digits_after_point > 0) { |
142 | result_builder->AddCharacter('.'); |
143 | result_builder->AddPadding('0', digits_after_point); |
144 | } |
145 | } else { |
146 | // "decima.l_rep000". |
147 | ASSERT(digits_after_point > 0); |
148 | result_builder->AddSubstring(decimal_digits, decimal_point); |
149 | result_builder->AddCharacter('.'); |
150 | ASSERT(length - decimal_point <= digits_after_point); |
151 | result_builder->AddSubstring(&decimal_digits[decimal_point], |
152 | length - decimal_point); |
153 | int remaining_digits = digits_after_point - (length - decimal_point); |
154 | result_builder->AddPadding('0', remaining_digits); |
155 | } |
156 | if (digits_after_point == 0) { |
157 | if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { |
158 | result_builder->AddCharacter('.'); |
159 | } |
160 | if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { |
161 | result_builder->AddCharacter('0'); |
162 | } |
163 | } |
164 | } |
165 | |
166 | |
167 | bool DoubleToStringConverter::ToShortestIeeeNumber( |
168 | double value, |
169 | StringBuilder* result_builder, |
170 | DoubleToStringConverter::DtoaMode mode) const { |
171 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE); |
172 | if (Double(value).IsSpecial()) { |
173 | return HandleSpecialValues(value, result_builder); |
174 | } |
175 | |
176 | int decimal_point; |
177 | bool sign; |
178 | const int kDecimalRepCapacity = kBase10MaximalLength + 1; |
179 | char decimal_rep[kDecimalRepCapacity]; |
180 | int decimal_rep_length; |
181 | |
182 | DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity, |
183 | &sign, &decimal_rep_length, &decimal_point); |
184 | |
185 | bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; |
186 | if (sign && (value != 0.0 || !unique_zero)) { |
187 | result_builder->AddCharacter('-'); |
188 | } |
189 | |
190 | int exponent = decimal_point - 1; |
191 | if ((decimal_in_shortest_low_ <= exponent) && |
192 | (exponent < decimal_in_shortest_high_)) { |
193 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, |
194 | decimal_point, |
195 | Max(0, decimal_rep_length - decimal_point), |
196 | result_builder); |
197 | } else { |
198 | CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, |
199 | result_builder); |
200 | } |
201 | return true; |
202 | } |
203 | |
204 | |
205 | bool DoubleToStringConverter::ToFixed(double value, |
206 | int requested_digits, |
207 | StringBuilder* result_builder) const { |
208 | ASSERT(kMaxFixedDigitsBeforePoint == 21); |
209 | const double kFirstNonFixed = 1e21; |
210 | |
211 | if (Double(value).IsSpecial()) { |
212 | return HandleSpecialValues(value, result_builder); |
213 | } |
214 | |
215 | if (requested_digits > kMaxFixedDigitsAfterPoint) return false; |
216 | if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false; |
217 | |
218 | // Find a sufficiently precise decimal representation of n. |
219 | int decimal_point; |
220 | bool sign; |
221 | // Add space for the '\0' byte. |
222 | const int kDecimalRepCapacity = |
223 | kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; |
224 | char decimal_rep[kDecimalRepCapacity]; |
225 | int decimal_rep_length; |
226 | DoubleToAscii(value, FIXED, requested_digits, |
227 | decimal_rep, kDecimalRepCapacity, |
228 | &sign, &decimal_rep_length, &decimal_point); |
229 | |
230 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
231 | if (sign && (value != 0.0 || !unique_zero)) { |
232 | result_builder->AddCharacter('-'); |
233 | } |
234 | |
235 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
236 | requested_digits, result_builder); |
237 | return true; |
238 | } |
239 | |
240 | |
241 | bool DoubleToStringConverter::ToExponential( |
242 | double value, |
243 | int requested_digits, |
244 | StringBuilder* result_builder) const { |
245 | if (Double(value).IsSpecial()) { |
246 | return HandleSpecialValues(value, result_builder); |
247 | } |
248 | |
249 | if (requested_digits < -1) return false; |
250 | if (requested_digits > kMaxExponentialDigits) return false; |
251 | |
252 | int decimal_point; |
253 | bool sign; |
254 | // Add space for digit before the decimal point and the '\0' character. |
255 | const int kDecimalRepCapacity = kMaxExponentialDigits + 2; |
256 | ASSERT(kDecimalRepCapacity > kBase10MaximalLength); |
257 | char decimal_rep[kDecimalRepCapacity]; |
258 | int decimal_rep_length; |
259 | |
260 | if (requested_digits == -1) { |
261 | DoubleToAscii(value, SHORTEST, 0, |
262 | decimal_rep, kDecimalRepCapacity, |
263 | &sign, &decimal_rep_length, &decimal_point); |
264 | } else { |
265 | DoubleToAscii(value, PRECISION, requested_digits + 1, |
266 | decimal_rep, kDecimalRepCapacity, |
267 | &sign, &decimal_rep_length, &decimal_point); |
268 | ASSERT(decimal_rep_length <= requested_digits + 1); |
269 | |
270 | if (decimal_rep_length < requested_digits + 1) { |
271 | for (int i = decimal_rep_length; i < requested_digits + 1; ++i) |
272 | decimal_rep[i] = '0'; |
273 | decimal_rep_length = requested_digits + 1; |
274 | decimal_rep[decimal_rep_length] = '\0'; |
275 | } |
276 | } |
277 | |
278 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
279 | if (sign && (value != 0.0 || !unique_zero)) { |
280 | result_builder->AddCharacter('-'); |
281 | } |
282 | |
283 | int exponent = decimal_point - 1; |
284 | CreateExponentialRepresentation(decimal_rep, |
285 | decimal_rep_length, |
286 | exponent, |
287 | result_builder); |
288 | return true; |
289 | } |
290 | |
291 | |
292 | bool DoubleToStringConverter::ToPrecision(double value, |
293 | int precision, |
294 | StringBuilder* result_builder) const { |
295 | if (Double(value).IsSpecial()) { |
296 | return HandleSpecialValues(value, result_builder); |
297 | } |
298 | |
299 | if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) { |
300 | return false; |
301 | } |
302 | |
303 | // Find a sufficiently precise decimal representation of n. |
304 | int decimal_point; |
305 | bool sign; |
306 | // Add one for the terminating null character. |
307 | const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; |
308 | char decimal_rep[kDecimalRepCapacity]; |
309 | int decimal_rep_length; |
310 | |
311 | DoubleToAscii(value, PRECISION, precision, |
312 | decimal_rep, kDecimalRepCapacity, |
313 | &sign, &decimal_rep_length, &decimal_point); |
314 | ASSERT(decimal_rep_length <= precision); |
315 | |
316 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
317 | if (sign && (value != 0.0 || !unique_zero)) { |
318 | result_builder->AddCharacter('-'); |
319 | } |
320 | |
321 | // The exponent if we print the number as x.xxeyyy. That is with the |
322 | // decimal point after the first digit. |
323 | int exponent = decimal_point - 1; |
324 | |
325 | int = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; |
326 | if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || |
327 | (decimal_point - precision + extra_zero > |
328 | max_trailing_padding_zeroes_in_precision_mode_)) { |
329 | // Fill buffer to contain 'precision' digits. |
330 | // Usually the buffer is already at the correct length, but 'DoubleToAscii' |
331 | // is allowed to return less characters. |
332 | for (int i = decimal_rep_length; i < precision; ++i) { |
333 | decimal_rep[i] = '0'; |
334 | } |
335 | |
336 | CreateExponentialRepresentation(decimal_rep, |
337 | precision, |
338 | exponent, |
339 | result_builder); |
340 | } else { |
341 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
342 | Max(0, precision - decimal_point), |
343 | result_builder); |
344 | } |
345 | return true; |
346 | } |
347 | |
348 | |
349 | static BignumDtoaMode DtoaToBignumDtoaMode( |
350 | DoubleToStringConverter::DtoaMode dtoa_mode) { |
351 | switch (dtoa_mode) { |
352 | case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST; |
353 | case DoubleToStringConverter::SHORTEST_SINGLE: |
354 | return BIGNUM_DTOA_SHORTEST_SINGLE; |
355 | case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED; |
356 | case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION; |
357 | default: |
358 | UNREACHABLE(); |
359 | } |
360 | } |
361 | |
362 | |
363 | void DoubleToStringConverter::DoubleToAscii(double v, |
364 | DtoaMode mode, |
365 | int requested_digits, |
366 | char* buffer, |
367 | int buffer_length, |
368 | bool* sign, |
369 | int* length, |
370 | int* point) { |
371 | BufferReference<char> bufferReference(buffer, buffer_length); |
372 | ASSERT(!Double(v).IsSpecial()); |
373 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0); |
374 | |
375 | if (Double(v).Sign() < 0) { |
376 | *sign = true; |
377 | v = -v; |
378 | } else { |
379 | *sign = false; |
380 | } |
381 | |
382 | if (mode == PRECISION && requested_digits == 0) { |
383 | bufferReference[0] = '\0'; |
384 | *length = 0; |
385 | return; |
386 | } |
387 | |
388 | if (v == 0) { |
389 | bufferReference[0] = '0'; |
390 | bufferReference[1] = '\0'; |
391 | *length = 1; |
392 | *point = 1; |
393 | return; |
394 | } |
395 | |
396 | bool fast_worked; |
397 | switch (mode) { |
398 | case SHORTEST: |
399 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, bufferReference, length, point); |
400 | break; |
401 | case SHORTEST_SINGLE: |
402 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0, |
403 | bufferReference, length, point); |
404 | break; |
405 | case FIXED: |
406 | fast_worked = FastFixedDtoa(v, requested_digits, bufferReference, length, point); |
407 | break; |
408 | case PRECISION: |
409 | fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, |
410 | bufferReference, length, point); |
411 | break; |
412 | default: |
413 | fast_worked = false; |
414 | UNREACHABLE(); |
415 | } |
416 | if (fast_worked) return; |
417 | |
418 | // If the fast dtoa didn't succeed use the slower bignum version. |
419 | BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); |
420 | BignumDtoa(v, bignum_mode, requested_digits, bufferReference, length, point); |
421 | bufferReference[*length] = '\0'; |
422 | } |
423 | |
424 | // Maximum number of significant digits in decimal representation. |
425 | // The longest possible double in decimal representation is |
426 | // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 |
427 | // (768 digits). If we parse a number whose first digits are equal to a |
428 | // mean of 2 adjacent doubles (that could have up to 769 digits) the result |
429 | // must be rounded to the bigger one unless the tail consists of zeros, so |
430 | // we don't need to preserve all the digits. |
431 | const int kMaxSignificantDigits = 772; |
432 | |
433 | |
434 | static double SignedZero(bool sign) { |
435 | return sign ? -0.0 : 0.0; |
436 | } |
437 | |
438 | |
439 | // Returns true, when the iterator is equal to end. |
440 | template<class Iterator> |
441 | static inline bool Advance(Iterator* it, Iterator& end) { |
442 | ++(*it); |
443 | return *it == end; |
444 | } |
445 | |
446 | template <typename FloatingPointType> |
447 | inline FloatingPointType StringToFloatingPointType(BufferReference<const char> buffer, int exponent); |
448 | |
449 | template <> |
450 | inline double StringToFloatingPointType<double>(BufferReference<const char> buffer, int exponent) { |
451 | return Strtod(buffer, exponent); |
452 | } |
453 | |
454 | template <> |
455 | inline float StringToFloatingPointType<float>(BufferReference<const char> buffer, int exponent) { |
456 | return Strtof(buffer, exponent); |
457 | } |
458 | |
459 | template <typename FloatingPointType, class Iterator> |
460 | static FloatingPointType StringToIeee( |
461 | Iterator input, |
462 | size_t length, |
463 | size_t* processed_characters_count) { |
464 | static_assert(std::is_floating_point<FloatingPointType>::value, "Only floating point types are allowed." ); |
465 | |
466 | Iterator current = input; |
467 | Iterator end = input + length; |
468 | |
469 | *processed_characters_count = 0; |
470 | |
471 | // To make sure that iterator dereferencing is valid the following |
472 | // convention is used: |
473 | // 1. Each '++current' statement is followed by check for equality to 'end'. |
474 | // 3. If 'current' becomes equal to 'end' the function returns or goes to |
475 | // 'parsing_done'. |
476 | // 4. 'current' is not dereferenced after the 'parsing_done' label. |
477 | // 5. Code before 'parsing_done' may rely on 'current != end'. |
478 | |
479 | if (current == end) return 0.0; |
480 | |
481 | // The longest form of simplified number is: "-<significant digits>.1eXXX\0". |
482 | const int kBufferSize = kMaxSignificantDigits + 10; |
483 | char buffer[kBufferSize]; // NOLINT: size is known at compile time. |
484 | int buffer_pos = 0; |
485 | |
486 | // Exponent will be adjusted if insignificant digits of the integer part |
487 | // or insignificant leading zeros of the fractional part are dropped. |
488 | int exponent = 0; |
489 | int significant_digits = 0; |
490 | int insignificant_digits = 0; |
491 | bool nonzero_digit_dropped = false; |
492 | |
493 | bool sign = false; |
494 | |
495 | if (*current == '+' || *current == '-') { |
496 | sign = (*current == '-'); |
497 | ++current; |
498 | if (current == end) return 0.0; |
499 | } |
500 | |
501 | bool leading_zero = false; |
502 | if (*current == '0') { |
503 | if (Advance(¤t, end)) { |
504 | *processed_characters_count = static_cast<size_t>(current - input); |
505 | return SignedZero(sign); |
506 | } |
507 | |
508 | leading_zero = true; |
509 | |
510 | // Ignore leading zeros in the integer part. |
511 | while (*current == '0') { |
512 | if (Advance(¤t, end)) { |
513 | *processed_characters_count = static_cast<size_t>(current - input); |
514 | return SignedZero(sign); |
515 | } |
516 | } |
517 | } |
518 | |
519 | // Copy significant digits of the integer part (if any) to the buffer. |
520 | while (isASCIIDigit(*current)) { |
521 | if (significant_digits < kMaxSignificantDigits) { |
522 | ASSERT(buffer_pos < kBufferSize); |
523 | buffer[buffer_pos++] = static_cast<char>(*current); |
524 | significant_digits++; |
525 | } else { |
526 | insignificant_digits++; // Move the digit into the exponential part. |
527 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
528 | } |
529 | if (Advance(¤t, end)) goto parsing_done; |
530 | } |
531 | |
532 | if (*current == '.') { |
533 | if (Advance(¤t, end)) { |
534 | if (significant_digits == 0 && !leading_zero) { |
535 | return 0.0; |
536 | } else { |
537 | goto parsing_done; |
538 | } |
539 | } |
540 | |
541 | if (significant_digits == 0) { |
542 | // Integer part consists of 0 or is absent. Significant digits start after |
543 | // leading zeros (if any). |
544 | while (*current == '0') { |
545 | if (Advance(¤t, end)) { |
546 | *processed_characters_count = static_cast<size_t>(current - input); |
547 | return SignedZero(sign); |
548 | } |
549 | exponent--; // Move this 0 into the exponent. |
550 | } |
551 | } |
552 | |
553 | // There is a fractional part. |
554 | // We don't emit a '.', but adjust the exponent instead. |
555 | while (isASCIIDigit(*current)) { |
556 | if (significant_digits < kMaxSignificantDigits) { |
557 | ASSERT(buffer_pos < kBufferSize); |
558 | buffer[buffer_pos++] = static_cast<char>(*current); |
559 | significant_digits++; |
560 | exponent--; |
561 | } else { |
562 | // Ignore insignificant digits in the fractional part. |
563 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
564 | } |
565 | if (Advance(¤t, end)) goto parsing_done; |
566 | } |
567 | } |
568 | |
569 | if (!leading_zero && exponent == 0 && significant_digits == 0) { |
570 | // If leading_zeros is true then the string contains zeros. |
571 | // If exponent < 0 then string was [+-]\.0*... |
572 | // If significant_digits != 0 the string is not equal to 0. |
573 | // Otherwise there are no digits in the string. |
574 | return 0.0; |
575 | } |
576 | |
577 | // Parse exponential part. |
578 | if (*current == 'e' || *current == 'E') { |
579 | ++current; |
580 | if (current == end) { |
581 | --current; |
582 | goto parsing_done; |
583 | } |
584 | char exponen_sign = 0; |
585 | if (*current == '+' || *current == '-') { |
586 | exponen_sign = static_cast<char>(*current); |
587 | ++current; |
588 | if (current == end) { |
589 | current -= 2; |
590 | goto parsing_done; |
591 | } |
592 | } |
593 | |
594 | if (*current < '0' || *current > '9') { |
595 | if (exponen_sign) |
596 | --current; |
597 | --current; |
598 | goto parsing_done; |
599 | } |
600 | |
601 | const int max_exponent = INT_MAX / 2; |
602 | ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
603 | int num = 0; |
604 | do { |
605 | // Check overflow. |
606 | int digit = *current - '0'; |
607 | if (num >= max_exponent / 10 |
608 | && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
609 | num = max_exponent; |
610 | } else { |
611 | num = num * 10 + digit; |
612 | } |
613 | ++current; |
614 | } while (current != end && isASCIIDigit(*current)); |
615 | |
616 | exponent += (exponen_sign == '-' ? -num : num); |
617 | } |
618 | |
619 | parsing_done: |
620 | exponent += insignificant_digits; |
621 | |
622 | if (nonzero_digit_dropped) { |
623 | buffer[buffer_pos++] = '1'; |
624 | exponent--; |
625 | } |
626 | |
627 | ASSERT(buffer_pos < kBufferSize); |
628 | buffer[buffer_pos] = '\0'; |
629 | |
630 | auto converted = StringToFloatingPointType<FloatingPointType>(BufferReference<const char>(buffer, buffer_pos), exponent); |
631 | *processed_characters_count = static_cast<size_t>(current - input); |
632 | return sign? -converted: converted; |
633 | } |
634 | |
635 | double StringToDoubleConverter::StringToDouble( |
636 | const char* buffer, |
637 | size_t length, |
638 | size_t* processed_characters_count) { |
639 | return StringToIeee<double>(buffer, length, processed_characters_count); |
640 | } |
641 | |
642 | |
643 | double StringToDoubleConverter::StringToDouble( |
644 | const uc16* buffer, |
645 | size_t length, |
646 | size_t* processed_characters_count) { |
647 | return StringToIeee<double>(buffer, length, processed_characters_count); |
648 | } |
649 | |
650 | |
651 | float StringToDoubleConverter::StringToFloat( |
652 | const char* buffer, |
653 | size_t length, |
654 | size_t* processed_characters_count) { |
655 | return StringToIeee<float>(buffer, length, processed_characters_count); |
656 | } |
657 | |
658 | |
659 | float StringToDoubleConverter::StringToFloat( |
660 | const uc16* buffer, |
661 | size_t length, |
662 | size_t* processed_characters_count) { |
663 | return StringToIeee<float>(buffer, length, processed_characters_count); |
664 | } |
665 | |
666 | } // namespace double_conversion |
667 | } // namespace WTF |
668 | |