1 | // Copyright 2012 the V8 project authors. All rights reserved. |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions are |
4 | // met: |
5 | // |
6 | // * Redistributions of source code must retain the above copyright |
7 | // notice, this list of conditions and the following disclaimer. |
8 | // * Redistributions in binary form must reproduce the above |
9 | // copyright notice, this list of conditions and the following |
10 | // disclaimer in the documentation and/or other materials provided |
11 | // with the distribution. |
12 | // * Neither the name of Google Inc. nor the names of its |
13 | // contributors may be used to endorse or promote products derived |
14 | // from this software without specific prior written permission. |
15 | // |
16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | |
28 | #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ |
29 | #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ |
30 | |
31 | #include <wtf/dtoa/utils.h> |
32 | |
33 | namespace WTF { |
34 | namespace double_conversion { |
35 | |
36 | class DoubleToStringConverter { |
37 | public: |
38 | // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint |
39 | // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the |
40 | // function returns false. |
41 | static const int kMaxFixedDigitsBeforePoint = 21; |
42 | static const int kMaxFixedDigitsAfterPoint = 100; |
43 | |
44 | // When calling ToExponential with a requested_digits |
45 | // parameter > kMaxExponentialDigits then the function returns false. |
46 | static const int kMaxExponentialDigits = 100; |
47 | |
48 | // When calling ToPrecision with a requested_digits |
49 | // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits |
50 | // then the function returns false. |
51 | static const int kMinPrecisionDigits = 1; |
52 | static const int kMaxPrecisionDigits = 100; |
53 | |
54 | enum Flags { |
55 | NO_FLAGS = 0, |
56 | EMIT_POSITIVE_EXPONENT_SIGN = 1, |
57 | EMIT_TRAILING_DECIMAL_POINT = 2, |
58 | EMIT_TRAILING_ZERO_AFTER_POINT = 4, |
59 | UNIQUE_ZERO = 8 |
60 | }; |
61 | |
62 | // Flags should be a bit-or combination of the possible Flags-enum. |
63 | // - NO_FLAGS: no special flags. |
64 | // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent |
65 | // form, emits a '+' for positive exponents. Example: 1.2e+2. |
66 | // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is |
67 | // converted into decimal format then a trailing decimal point is appended. |
68 | // Example: 2345.0 is converted to "2345.". |
69 | // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point |
70 | // emits a trailing '0'-character. This flag requires the |
71 | // EXMIT_TRAILING_DECIMAL_POINT flag. |
72 | // Example: 2345.0 is converted to "2345.0". |
73 | // - UNIQUE_ZERO: "-0.0" is converted to "0.0". |
74 | // |
75 | // Infinity symbol and nan_symbol provide the string representation for these |
76 | // special values. If the string is NULL and the special value is encountered |
77 | // then the conversion functions return false. |
78 | // |
79 | // The exponent_character is used in exponential representations. It is |
80 | // usually 'e' or 'E'. |
81 | // |
82 | // When converting to the shortest representation the converter will |
83 | // represent input numbers in decimal format if they are in the interval |
84 | // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ |
85 | // (lower boundary included, greater boundary excluded). |
86 | // Example: with decimal_in_shortest_low = -6 and |
87 | // decimal_in_shortest_high = 21: |
88 | // ToShortest(0.000001) -> "0.000001" |
89 | // ToShortest(0.0000001) -> "1e-7" |
90 | // ToShortest(111111111111111111111.0) -> "111111111111111110000" |
91 | // ToShortest(100000000000000000000.0) -> "100000000000000000000" |
92 | // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" |
93 | // |
94 | // When converting to precision mode the converter may add |
95 | // max_leading_padding_zeroes before returning the number in exponential |
96 | // format. |
97 | // Example with max_leading_padding_zeroes_in_precision_mode = 6. |
98 | // ToPrecision(0.0000012345, 2) -> "0.0000012" |
99 | // ToPrecision(0.00000012345, 2) -> "1.2e-7" |
100 | // Similarily the converter may add up to |
101 | // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid |
102 | // returning an exponential representation. A zero added by the |
103 | // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. |
104 | // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: |
105 | // ToPrecision(230.0, 2) -> "230" |
106 | // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. |
107 | // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. |
108 | DoubleToStringConverter(int flags, |
109 | const char* infinity_symbol, |
110 | const char* nan_symbol, |
111 | char exponent_character, |
112 | int decimal_in_shortest_low, |
113 | int decimal_in_shortest_high, |
114 | int max_leading_padding_zeroes_in_precision_mode, |
115 | int max_trailing_padding_zeroes_in_precision_mode) |
116 | : flags_(flags), |
117 | infinity_symbol_(infinity_symbol), |
118 | nan_symbol_(nan_symbol), |
119 | exponent_character_(exponent_character), |
120 | decimal_in_shortest_low_(decimal_in_shortest_low), |
121 | decimal_in_shortest_high_(decimal_in_shortest_high), |
122 | max_leading_padding_zeroes_in_precision_mode_( |
123 | max_leading_padding_zeroes_in_precision_mode), |
124 | max_trailing_padding_zeroes_in_precision_mode_( |
125 | max_trailing_padding_zeroes_in_precision_mode) { |
126 | // When 'trailing zero after the point' is set, then 'trailing point' |
127 | // must be set too. |
128 | ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || |
129 | !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); |
130 | } |
131 | |
132 | // Returns a converter following the EcmaScript specification. |
133 | WTF_EXPORT_PRIVATE static const DoubleToStringConverter& EcmaScriptConverter(); |
134 | |
135 | // Computes the shortest string of digits that correctly represent the input |
136 | // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high |
137 | // (see constructor) it then either returns a decimal representation, or an |
138 | // exponential representation. |
139 | // Example with decimal_in_shortest_low = -6, |
140 | // decimal_in_shortest_high = 21, |
141 | // EMIT_POSITIVE_EXPONENT_SIGN activated, and |
142 | // EMIT_TRAILING_DECIMAL_POINT deactived: |
143 | // ToShortest(0.000001) -> "0.000001" |
144 | // ToShortest(0.0000001) -> "1e-7" |
145 | // ToShortest(111111111111111111111.0) -> "111111111111111110000" |
146 | // ToShortest(100000000000000000000.0) -> "100000000000000000000" |
147 | // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" |
148 | // |
149 | // Note: the conversion may round the output if the returned string |
150 | // is accurate enough to uniquely identify the input-number. |
151 | // For example the most precise representation of the double 9e59 equals |
152 | // "899999999999999918767229449717619953810131273674690656206848", but |
153 | // the converter will return the shorter (but still correct) "9e59". |
154 | // |
155 | // Returns true if the conversion succeeds. The conversion always succeeds |
156 | // except when the input value is special and no infinity_symbol or |
157 | // nan_symbol has been given to the constructor. |
158 | bool ToShortest(double value, StringBuilder* result_builder) const { |
159 | return ToShortestIeeeNumber(value, result_builder, SHORTEST); |
160 | } |
161 | |
162 | // Same as ToShortest, but for single-precision floats. |
163 | bool ToShortestSingle(float value, StringBuilder* result_builder) const { |
164 | return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE); |
165 | } |
166 | |
167 | |
168 | // Computes a decimal representation with a fixed number of digits after the |
169 | // decimal point. The last emitted digit is rounded. |
170 | // |
171 | // Examples: |
172 | // ToFixed(3.12, 1) -> "3.1" |
173 | // ToFixed(3.1415, 3) -> "3.142" |
174 | // ToFixed(1234.56789, 4) -> "1234.5679" |
175 | // ToFixed(1.23, 5) -> "1.23000" |
176 | // ToFixed(0.1, 4) -> "0.1000" |
177 | // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" |
178 | // ToFixed(0.1, 30) -> "0.100000000000000005551115123126" |
179 | // ToFixed(0.1, 17) -> "0.10000000000000001" |
180 | // |
181 | // If requested_digits equals 0, then the tail of the result depends on |
182 | // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. |
183 | // Examples, for requested_digits == 0, |
184 | // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be |
185 | // - false and false: then 123.45 -> 123 |
186 | // 0.678 -> 1 |
187 | // - true and false: then 123.45 -> 123. |
188 | // 0.678 -> 1. |
189 | // - true and true: then 123.45 -> 123.0 |
190 | // 0.678 -> 1.0 |
191 | // |
192 | // Returns true if the conversion succeeds. The conversion always succeeds |
193 | // except for the following cases: |
194 | // - the input value is special and no infinity_symbol or nan_symbol has |
195 | // been provided to the constructor, |
196 | // - 'value' > 10^kMaxFixedDigitsBeforePoint, or |
197 | // - 'requested_digits' > kMaxFixedDigitsAfterPoint. |
198 | // The last two conditions imply that the result will never contain more than |
199 | // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters |
200 | // (one additional character for the sign, and one for the decimal point). |
201 | bool ToFixed(double value, |
202 | int requested_digits, |
203 | StringBuilder* result_builder) const; |
204 | |
205 | // Computes a representation in exponential format with requested_digits |
206 | // after the decimal point. The last emitted digit is rounded. |
207 | // If requested_digits equals -1, then the shortest exponential representation |
208 | // is computed. |
209 | // |
210 | // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and |
211 | // exponent_character set to 'e'. |
212 | // ToExponential(3.12, 1) -> "3.1e0" |
213 | // ToExponential(5.0, 3) -> "5.000e0" |
214 | // ToExponential(0.001, 2) -> "1.00e-3" |
215 | // ToExponential(3.1415, -1) -> "3.1415e0" |
216 | // ToExponential(3.1415, 4) -> "3.1415e0" |
217 | // ToExponential(3.1415, 3) -> "3.142e0" |
218 | // ToExponential(123456789000000, 3) -> "1.235e14" |
219 | // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" |
220 | // ToExponential(1000000000000000019884624838656.0, 32) -> |
221 | // "1.00000000000000001988462483865600e30" |
222 | // ToExponential(1234, 0) -> "1e3" |
223 | // |
224 | // Returns true if the conversion succeeds. The conversion always succeeds |
225 | // except for the following cases: |
226 | // - the input value is special and no infinity_symbol or nan_symbol has |
227 | // been provided to the constructor, |
228 | // - 'requested_digits' > kMaxExponentialDigits. |
229 | // The last condition implies that the result will never contain more than |
230 | // kMaxExponentialDigits + 8 characters (the sign, the digit before the |
231 | // decimal point, the decimal point, the exponent character, the |
232 | // exponent's sign, and at most 3 exponent digits). |
233 | WTF_EXPORT_PRIVATE bool ToExponential(double value, |
234 | int requested_digits, |
235 | StringBuilder* result_builder) const; |
236 | |
237 | // Computes 'precision' leading digits of the given 'value' and returns them |
238 | // either in exponential or decimal format, depending on |
239 | // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the |
240 | // constructor). |
241 | // The last computed digit is rounded. |
242 | // |
243 | // Example with max_leading_padding_zeroes_in_precision_mode = 6. |
244 | // ToPrecision(0.0000012345, 2) -> "0.0000012" |
245 | // ToPrecision(0.00000012345, 2) -> "1.2e-7" |
246 | // Similarily the converter may add up to |
247 | // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid |
248 | // returning an exponential representation. A zero added by the |
249 | // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. |
250 | // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: |
251 | // ToPrecision(230.0, 2) -> "230" |
252 | // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. |
253 | // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. |
254 | // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no |
255 | // EMIT_TRAILING_ZERO_AFTER_POINT: |
256 | // ToPrecision(123450.0, 6) -> "123450" |
257 | // ToPrecision(123450.0, 5) -> "123450" |
258 | // ToPrecision(123450.0, 4) -> "123500" |
259 | // ToPrecision(123450.0, 3) -> "123000" |
260 | // ToPrecision(123450.0, 2) -> "1.2e5" |
261 | // |
262 | // Returns true if the conversion succeeds. The conversion always succeeds |
263 | // except for the following cases: |
264 | // - the input value is special and no infinity_symbol or nan_symbol has |
265 | // been provided to the constructor, |
266 | // - precision < kMinPericisionDigits |
267 | // - precision > kMaxPrecisionDigits |
268 | // The last condition implies that the result will never contain more than |
269 | // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the |
270 | // exponent character, the exponent's sign, and at most 3 exponent digits). |
271 | bool ToPrecision(double value, |
272 | int precision, |
273 | StringBuilder* result_builder) const; |
274 | |
275 | enum DtoaMode { |
276 | // Produce the shortest correct representation. |
277 | // For example the output of 0.299999999999999988897 is (the less accurate |
278 | // but correct) 0.3. |
279 | SHORTEST, |
280 | // Same as SHORTEST, but for single-precision floats. |
281 | SHORTEST_SINGLE, |
282 | // Produce a fixed number of digits after the decimal point. |
283 | // For instance fixed(0.1, 4) becomes 0.1000 |
284 | // If the input number is big, the output will be big. |
285 | FIXED, |
286 | // Fixed number of digits (independent of the decimal point). |
287 | PRECISION |
288 | }; |
289 | |
290 | // The maximal number of digits that are needed to emit a double in base 10. |
291 | // A higher precision can be achieved by using more digits, but the shortest |
292 | // accurate representation of any double will never use more digits than |
293 | // kBase10MaximalLength. |
294 | // Note that DoubleToAscii null-terminates its input. So the given buffer |
295 | // should be at least kBase10MaximalLength + 1 characters long. |
296 | static const int kBase10MaximalLength = 17; |
297 | |
298 | // Converts the given double 'v' to digit characters. 'v' must not be NaN, |
299 | // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also |
300 | // applies to 'v' after it has been casted to a single-precision float. That |
301 | // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or |
302 | // -Infinity. |
303 | // |
304 | // The result should be interpreted as buffer * 10^(point-length). |
305 | // |
306 | // The digits are written to the buffer in the platform's charset, which is |
307 | // often UTF-8 (with ASCII-range digits) but may be another charset, such |
308 | // as EBCDIC. |
309 | // |
310 | // The output depends on the given mode: |
311 | // - SHORTEST: produce the least amount of digits for which the internal |
312 | // identity requirement is still satisfied. If the digits are printed |
313 | // (together with the correct exponent) then reading this number will give |
314 | // 'v' again. The buffer will choose the representation that is closest to |
315 | // 'v'. If there are two at the same distance, than the one farther away |
316 | // from 0 is chosen (halfway cases - ending with 5 - are rounded up). |
317 | // In this mode the 'requested_digits' parameter is ignored. |
318 | // - SHORTEST_SINGLE: same as SHORTEST but with single-precision. |
319 | // - FIXED: produces digits necessary to print a given number with |
320 | // 'requested_digits' digits after the decimal point. The produced digits |
321 | // might be too short in which case the caller has to fill the remainder |
322 | // with '0's. |
323 | // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. |
324 | // Halfway cases are rounded towards +/-Infinity (away from 0). The call |
325 | // toFixed(0.15, 2) thus returns buffer="2", point=0. |
326 | // The returned buffer may contain digits that would be truncated from the |
327 | // shortest representation of the input. |
328 | // - PRECISION: produces 'requested_digits' where the first digit is not '0'. |
329 | // Even though the length of produced digits usually equals |
330 | // 'requested_digits', the function is allowed to return fewer digits, in |
331 | // which case the caller has to fill the missing digits with '0's. |
332 | // Halfway cases are again rounded away from 0. |
333 | // DoubleToAscii expects the given buffer to be big enough to hold all |
334 | // digits and a terminating null-character. In SHORTEST-mode it expects a |
335 | // buffer of at least kBase10MaximalLength + 1. In all other modes the |
336 | // requested_digits parameter and the padding-zeroes limit the size of the |
337 | // output. Don't forget the decimal point, the exponent character and the |
338 | // terminating null-character when computing the maximal output size. |
339 | // The given length is only used in debug mode to ensure the buffer is big |
340 | // enough. |
341 | static void DoubleToAscii(double v, |
342 | DtoaMode mode, |
343 | int requested_digits, |
344 | char* buffer, |
345 | int buffer_length, |
346 | bool* sign, |
347 | int* length, |
348 | int* point); |
349 | |
350 | private: |
351 | // Implementation for ToShortest and ToShortestSingle. |
352 | bool ToShortestIeeeNumber(double value, |
353 | StringBuilder* result_builder, |
354 | DtoaMode mode) const; |
355 | |
356 | // If the value is a special value (NaN or Infinity) constructs the |
357 | // corresponding string using the configured infinity/nan-symbol. |
358 | // If either of them is NULL or the value is not special then the |
359 | // function returns false. |
360 | bool HandleSpecialValues(double value, StringBuilder* result_builder) const; |
361 | // Constructs an exponential representation (i.e. 1.234e56). |
362 | // The given exponent assumes a decimal point after the first decimal digit. |
363 | void CreateExponentialRepresentation(const char* decimal_digits, |
364 | int length, |
365 | int exponent, |
366 | StringBuilder* result_builder) const; |
367 | // Creates a decimal representation (i.e 1234.5678). |
368 | void CreateDecimalRepresentation(const char* decimal_digits, |
369 | int length, |
370 | int decimal_point, |
371 | int digits_after_point, |
372 | StringBuilder* result_builder) const; |
373 | |
374 | const int flags_; |
375 | const char* const infinity_symbol_; |
376 | const char* const nan_symbol_; |
377 | const char exponent_character_; |
378 | const int decimal_in_shortest_low_; |
379 | const int decimal_in_shortest_high_; |
380 | const int max_leading_padding_zeroes_in_precision_mode_; |
381 | const int max_trailing_padding_zeroes_in_precision_mode_; |
382 | |
383 | DC_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); |
384 | }; |
385 | |
386 | |
387 | class StringToDoubleConverter { |
388 | public: |
389 | // Performs the conversion. |
390 | // The output parameter 'processed_characters_count' is set to the number |
391 | // of characters that have been processed to read the number. |
392 | WTF_EXPORT_PRIVATE static double StringToDouble(const char* buffer, |
393 | size_t length, |
394 | size_t* processed_characters_count); |
395 | |
396 | // Same as StringToDouble above but for 16 bit characters. |
397 | WTF_EXPORT_PRIVATE static double StringToDouble(const uc16* buffer, |
398 | size_t length, |
399 | size_t* processed_characters_count); |
400 | |
401 | // Same as StringToDouble but reads a float. |
402 | // Note that this is not equivalent to static_cast<float>(StringToDouble(...)) |
403 | // due to potential double-rounding. |
404 | WTF_EXPORT_PRIVATE static float StringToFloat(const char* buffer, |
405 | size_t length, |
406 | size_t* processed_characters_count); |
407 | |
408 | // Same as StringToFloat above but for 16 bit characters. |
409 | WTF_EXPORT_PRIVATE static float StringToFloat(const uc16* buffer, |
410 | size_t length, |
411 | size_t* processed_characters_count); |
412 | |
413 | private: |
414 | DC_DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter); |
415 | }; |
416 | |
417 | } // namespace double_conversion |
418 | } // namespace WTF |
419 | |
420 | #endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ |
421 | |