1 | /* |
2 | * Copyright (C) 2013-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #if ENABLE(DFG_JIT) |
29 | |
30 | #include "DFGAbstractValue.h" |
31 | #include "DFGGraph.h" |
32 | #include "DFGNode.h" |
33 | #include "DFGNodeFlowProjection.h" |
34 | #include "DFGPhiChildren.h" |
35 | |
36 | namespace JSC { namespace DFG { |
37 | |
38 | template<typename AbstractStateType> |
39 | class AbstractInterpreter { |
40 | WTF_MAKE_FAST_ALLOCATED; |
41 | public: |
42 | AbstractInterpreter(Graph&, AbstractStateType&); |
43 | ~AbstractInterpreter(); |
44 | |
45 | ALWAYS_INLINE AbstractValue& forNode(NodeFlowProjection node) |
46 | { |
47 | return m_state.forNode(node); |
48 | } |
49 | |
50 | ALWAYS_INLINE AbstractValue& forNode(Edge edge) |
51 | { |
52 | return forNode(edge.node()); |
53 | } |
54 | |
55 | ALWAYS_INLINE void clearForNode(NodeFlowProjection node) |
56 | { |
57 | m_state.clearForNode(node); |
58 | } |
59 | |
60 | ALWAYS_INLINE void clearForNode(Edge edge) |
61 | { |
62 | clearForNode(edge.node()); |
63 | } |
64 | |
65 | template<typename... Arguments> |
66 | ALWAYS_INLINE void setForNode(NodeFlowProjection node, Arguments&&... arguments) |
67 | { |
68 | m_state.setForNode(node, std::forward<Arguments>(arguments)...); |
69 | } |
70 | |
71 | template<typename... Arguments> |
72 | ALWAYS_INLINE void setForNode(Edge edge, Arguments&&... arguments) |
73 | { |
74 | setForNode(edge.node(), std::forward<Arguments>(arguments)...); |
75 | } |
76 | |
77 | template<typename... Arguments> |
78 | ALWAYS_INLINE void setTypeForNode(NodeFlowProjection node, Arguments&&... arguments) |
79 | { |
80 | m_state.setTypeForNode(node, std::forward<Arguments>(arguments)...); |
81 | } |
82 | |
83 | template<typename... Arguments> |
84 | ALWAYS_INLINE void setTypeForNode(Edge edge, Arguments&&... arguments) |
85 | { |
86 | setTypeForNode(edge.node(), std::forward<Arguments>(arguments)...); |
87 | } |
88 | |
89 | template<typename... Arguments> |
90 | ALWAYS_INLINE void setNonCellTypeForNode(NodeFlowProjection node, Arguments&&... arguments) |
91 | { |
92 | m_state.setNonCellTypeForNode(node, std::forward<Arguments>(arguments)...); |
93 | } |
94 | |
95 | template<typename... Arguments> |
96 | ALWAYS_INLINE void setNonCellTypeForNode(Edge edge, Arguments&&... arguments) |
97 | { |
98 | setNonCellTypeForNode(edge.node(), std::forward<Arguments>(arguments)...); |
99 | } |
100 | |
101 | ALWAYS_INLINE void makeBytecodeTopForNode(NodeFlowProjection node) |
102 | { |
103 | m_state.makeBytecodeTopForNode(node); |
104 | } |
105 | |
106 | ALWAYS_INLINE void makeBytecodeTopForNode(Edge edge) |
107 | { |
108 | makeBytecodeTopForNode(edge.node()); |
109 | } |
110 | |
111 | ALWAYS_INLINE void makeHeapTopForNode(NodeFlowProjection node) |
112 | { |
113 | m_state.makeHeapTopForNode(node); |
114 | } |
115 | |
116 | ALWAYS_INLINE void makeHeapTopForNode(Edge edge) |
117 | { |
118 | makeHeapTopForNode(edge.node()); |
119 | } |
120 | |
121 | bool needsTypeCheck(Node* node, SpeculatedType typesPassedThrough) |
122 | { |
123 | return !forNode(node).isType(typesPassedThrough); |
124 | } |
125 | |
126 | bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough) |
127 | { |
128 | return needsTypeCheck(edge.node(), typesPassedThrough); |
129 | } |
130 | |
131 | bool needsTypeCheck(Edge edge) |
132 | { |
133 | return needsTypeCheck(edge, typeFilterFor(edge.useKind())); |
134 | } |
135 | |
136 | // Abstractly executes the given node. The new abstract state is stored into an |
137 | // abstract stack stored in *this. Loads of local variables (that span |
138 | // basic blocks) interrogate the basic block's notion of the state at the head. |
139 | // Stores to local variables are handled in endBasicBlock(). This returns true |
140 | // if execution should continue past this node. Notably, it will return true |
141 | // for block terminals, so long as those terminals are not Return or Unreachable. |
142 | // |
143 | // This is guaranteed to be equivalent to doing: |
144 | // |
145 | // state.startExecuting() |
146 | // state.executeEdges(node); |
147 | // result = state.executeEffects(index); |
148 | bool execute(unsigned indexInBlock); |
149 | bool execute(Node*); |
150 | |
151 | // Indicate the start of execution of a node. It resets any state in the node |
152 | // that is progressively built up by executeEdges() and executeEffects(). |
153 | void startExecuting(); |
154 | |
155 | // Abstractly execute the edges of the given node. This runs filterEdgeByUse() |
156 | // on all edges of the node. You can skip this step, if you have already used |
157 | // filterEdgeByUse() (or some equivalent) on each edge. |
158 | void executeEdges(Node*); |
159 | |
160 | void executeKnownEdgeTypes(Node*); |
161 | |
162 | ALWAYS_INLINE void filterEdgeByUse(Edge& edge) |
163 | { |
164 | UseKind useKind = edge.useKind(); |
165 | if (useKind == UntypedUse) |
166 | return; |
167 | filterByType(edge, typeFilterFor(useKind)); |
168 | } |
169 | |
170 | // Abstractly execute the effects of the given node. This changes the abstract |
171 | // state assuming that edges have already been filtered. |
172 | bool executeEffects(unsigned indexInBlock); |
173 | bool executeEffects(unsigned clobberLimit, Node*); |
174 | |
175 | void dump(PrintStream& out) const; |
176 | void dump(PrintStream& out); |
177 | |
178 | template<typename T> |
179 | FiltrationResult filter(T node, const RegisteredStructureSet& set, SpeculatedType admittedTypes = SpecNone) |
180 | { |
181 | return filter(forNode(node), set, admittedTypes); |
182 | } |
183 | |
184 | template<typename T> |
185 | FiltrationResult filterArrayModes(T node, ArrayModes arrayModes) |
186 | { |
187 | return filterArrayModes(forNode(node), arrayModes); |
188 | } |
189 | |
190 | template<typename T> |
191 | FiltrationResult filter(T node, SpeculatedType type) |
192 | { |
193 | return filter(forNode(node), type); |
194 | } |
195 | |
196 | template<typename T> |
197 | FiltrationResult filterByValue(T node, FrozenValue value) |
198 | { |
199 | return filterByValue(forNode(node), value); |
200 | } |
201 | |
202 | template<typename T> |
203 | FiltrationResult filterClassInfo(T node, const ClassInfo* classInfo) |
204 | { |
205 | return filterClassInfo(forNode(node), classInfo); |
206 | } |
207 | |
208 | FiltrationResult filter(AbstractValue&, const RegisteredStructureSet&, SpeculatedType admittedTypes = SpecNone); |
209 | FiltrationResult filterArrayModes(AbstractValue&, ArrayModes); |
210 | FiltrationResult filter(AbstractValue&, SpeculatedType); |
211 | FiltrationResult filterByValue(AbstractValue&, FrozenValue); |
212 | FiltrationResult filterClassInfo(AbstractValue&, const ClassInfo*); |
213 | |
214 | PhiChildren* phiChildren() { return m_phiChildren.get(); } |
215 | |
216 | void filterICStatus(Node*); |
217 | |
218 | private: |
219 | void clobberWorld(); |
220 | void didFoldClobberWorld(); |
221 | |
222 | bool handleConstantBinaryBitwiseOp(Node*); |
223 | |
224 | template<typename Functor> |
225 | void forAllValues(unsigned indexInBlock, Functor&); |
226 | |
227 | void clobberStructures(); |
228 | void didFoldClobberStructures(); |
229 | |
230 | void observeTransition(unsigned indexInBlock, RegisteredStructure from, RegisteredStructure to); |
231 | void observeTransitions(unsigned indexInBlock, const TransitionVector&); |
232 | |
233 | enum BooleanResult { |
234 | UnknownBooleanResult, |
235 | DefinitelyFalse, |
236 | DefinitelyTrue |
237 | }; |
238 | BooleanResult booleanResult(Node*, AbstractValue&); |
239 | |
240 | void setBuiltInConstant(Node* node, FrozenValue value) |
241 | { |
242 | AbstractValue& abstractValue = forNode(node); |
243 | abstractValue.set(m_graph, value, m_state.structureClobberState()); |
244 | abstractValue.fixTypeForRepresentation(m_graph, node); |
245 | } |
246 | |
247 | void setConstant(Node* node, FrozenValue value) |
248 | { |
249 | setBuiltInConstant(node, value); |
250 | m_state.setShouldTryConstantFolding(true); |
251 | } |
252 | |
253 | ALWAYS_INLINE void filterByType(Edge& edge, SpeculatedType type); |
254 | |
255 | void verifyEdge(Node*, Edge); |
256 | void verifyEdges(Node*); |
257 | void executeDoubleUnaryOpEffects(Node*, double(*equivalentFunction)(double)); |
258 | |
259 | bool handleConstantDivOp(Node*); |
260 | |
261 | CodeBlock* m_codeBlock; |
262 | Graph& m_graph; |
263 | VM& m_vm; |
264 | AbstractStateType& m_state; |
265 | std::unique_ptr<PhiChildren> m_phiChildren; |
266 | }; |
267 | |
268 | } } // namespace JSC::DFG |
269 | |
270 | #endif // ENABLE(DFG_JIT) |
271 | |