1/*
2 * Copyright (C) 2008-2019 Apple Inc. All rights reserved.
3 * Copyright (C) 2008 Cameron Zwarich <[email protected]>
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of Apple Inc. ("Apple") nor the names of
15 * its contributors may be used to endorse or promote products derived
16 * from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
22 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#pragma once
31
32#include "ArrayProfile.h"
33#include "ByValInfo.h"
34#include "BytecodeConventions.h"
35#include "CallLinkInfo.h"
36#include "CodeBlockHash.h"
37#include "CodeOrigin.h"
38#include "CodeType.h"
39#include "CompilationResult.h"
40#include "ConcurrentJSLock.h"
41#include "DFGCommon.h"
42#include "DirectEvalCodeCache.h"
43#include "EvalExecutable.h"
44#include "ExecutionCounter.h"
45#include "ExpressionRangeInfo.h"
46#include "FunctionExecutable.h"
47#include "HandlerInfo.h"
48#include "ICStatusMap.h"
49#include "Instruction.h"
50#include "InstructionStream.h"
51#include "JITCode.h"
52#include "JITCodeMap.h"
53#include "JITMathICForwards.h"
54#include "JSCast.h"
55#include "JSGlobalObject.h"
56#include "JumpTable.h"
57#include "LLIntCallLinkInfo.h"
58#include "LazyOperandValueProfile.h"
59#include "MetadataTable.h"
60#include "ModuleProgramExecutable.h"
61#include "ObjectAllocationProfile.h"
62#include "Options.h"
63#include "Printer.h"
64#include "ProfilerJettisonReason.h"
65#include "ProgramExecutable.h"
66#include "PutPropertySlot.h"
67#include "ValueProfile.h"
68#include "VirtualRegister.h"
69#include "Watchpoint.h"
70#include <wtf/Bag.h>
71#include <wtf/FastMalloc.h>
72#include <wtf/RefCountedArray.h>
73#include <wtf/RefPtr.h>
74#include <wtf/SegmentedVector.h>
75#include <wtf/Vector.h>
76#include <wtf/text/WTFString.h>
77
78namespace JSC {
79
80#if ENABLE(DFG_JIT)
81namespace DFG {
82struct OSRExitState;
83} // namespace DFG
84#endif
85
86class UnaryArithProfile;
87class BinaryArithProfile;
88class BytecodeLivenessAnalysis;
89class CodeBlockSet;
90class ExecutableToCodeBlockEdge;
91class JSModuleEnvironment;
92class LLIntOffsetsExtractor;
93class LLIntPrototypeLoadAdaptiveStructureWatchpoint;
94class MetadataTable;
95class PCToCodeOriginMap;
96class RegisterAtOffsetList;
97class StructureStubInfo;
98
99enum class AccessType : int8_t;
100
101struct OpCatch;
102
103enum ReoptimizationMode { DontCountReoptimization, CountReoptimization };
104
105class CodeBlock : public JSCell {
106 typedef JSCell Base;
107 friend class BytecodeLivenessAnalysis;
108 friend class JIT;
109 friend class LLIntOffsetsExtractor;
110
111public:
112
113 enum CopyParsedBlockTag { CopyParsedBlock };
114
115 static constexpr unsigned StructureFlags = Base::StructureFlags | StructureIsImmortal;
116 static constexpr bool needsDestruction = true;
117
118 template<typename, SubspaceAccess>
119 static IsoSubspace* subspaceFor(VM&) { return nullptr; }
120 // GC strongly assumes CodeBlock is not a PreciseAllocation for now.
121 static constexpr uint8_t numberOfLowerTierCells = 0;
122
123 DECLARE_INFO;
124
125protected:
126 CodeBlock(VM&, Structure*, CopyParsedBlockTag, CodeBlock& other);
127 CodeBlock(VM&, Structure*, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock*, JSScope*);
128
129 void finishCreation(VM&, CopyParsedBlockTag, CodeBlock& other);
130 bool finishCreation(VM&, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock*, JSScope*);
131
132 void finishCreationCommon(VM&);
133
134 WriteBarrier<JSGlobalObject> m_globalObject;
135
136public:
137 JS_EXPORT_PRIVATE ~CodeBlock();
138
139 UnlinkedCodeBlock* unlinkedCodeBlock() const { return m_unlinkedCode.get(); }
140
141 CString inferredName() const;
142 CodeBlockHash hash() const;
143 bool hasHash() const;
144 bool isSafeToComputeHash() const;
145 CString hashAsStringIfPossible() const;
146 CString sourceCodeForTools() const; // Not quite the actual source we parsed; this will do things like prefix the source for a function with a reified signature.
147 CString sourceCodeOnOneLine() const; // As sourceCodeForTools(), but replaces all whitespace runs with a single space.
148 void dumpAssumingJITType(PrintStream&, JITType) const;
149 JS_EXPORT_PRIVATE void dump(PrintStream&) const;
150
151 MetadataTable* metadataTable() const { return m_metadata.get(); }
152
153 int numParameters() const { return m_numParameters; }
154 void setNumParameters(int newValue);
155
156 int numberOfArgumentsToSkip() const { return m_numberOfArgumentsToSkip; }
157
158 int numCalleeLocals() const { return m_numCalleeLocals; }
159
160 int numVars() const { return m_numVars; }
161
162 int* addressOfNumParameters() { return &m_numParameters; }
163 static ptrdiff_t offsetOfNumParameters() { return OBJECT_OFFSETOF(CodeBlock, m_numParameters); }
164
165 CodeBlock* alternative() const { return static_cast<CodeBlock*>(m_alternative.get()); }
166 void setAlternative(VM&, CodeBlock*);
167
168 template <typename Functor> void forEachRelatedCodeBlock(Functor&& functor)
169 {
170 Functor f(std::forward<Functor>(functor));
171 Vector<CodeBlock*, 4> codeBlocks;
172 codeBlocks.append(this);
173
174 while (!codeBlocks.isEmpty()) {
175 CodeBlock* currentCodeBlock = codeBlocks.takeLast();
176 f(currentCodeBlock);
177
178 if (CodeBlock* alternative = currentCodeBlock->alternative())
179 codeBlocks.append(alternative);
180 if (CodeBlock* osrEntryBlock = currentCodeBlock->specialOSREntryBlockOrNull())
181 codeBlocks.append(osrEntryBlock);
182 }
183 }
184
185 CodeSpecializationKind specializationKind() const
186 {
187 return specializationFromIsConstruct(isConstructor());
188 }
189
190 CodeBlock* alternativeForJettison();
191 JS_EXPORT_PRIVATE CodeBlock* baselineAlternative();
192
193 // FIXME: Get rid of this.
194 // https://bugs.webkit.org/show_bug.cgi?id=123677
195 CodeBlock* baselineVersion();
196
197 static size_t estimatedSize(JSCell*, VM&);
198 static void visitChildren(JSCell*, SlotVisitor&);
199 static void destroy(JSCell*);
200 void visitChildren(SlotVisitor&);
201 void finalizeUnconditionally(VM&);
202
203 void notifyLexicalBindingUpdate();
204
205 void dumpSource();
206 void dumpSource(PrintStream&);
207
208 void dumpBytecode();
209 void dumpBytecode(PrintStream&);
210 void dumpBytecode(PrintStream& out, const InstructionStream::Ref& it, const ICStatusMap& = ICStatusMap());
211 void dumpBytecode(PrintStream& out, unsigned bytecodeOffset, const ICStatusMap& = ICStatusMap());
212
213 void dumpExceptionHandlers(PrintStream&);
214 void printStructures(PrintStream&, const Instruction*);
215 void printStructure(PrintStream&, const char* name, const Instruction*, int operand);
216
217 void dumpMathICStats();
218
219 bool isStrictMode() const { return m_unlinkedCode->isStrictMode(); }
220 bool isConstructor() const { return m_unlinkedCode->isConstructor(); }
221 ECMAMode ecmaMode() const { return isStrictMode() ? StrictMode : NotStrictMode; }
222 CodeType codeType() const { return m_unlinkedCode->codeType(); }
223
224 JSParserScriptMode scriptMode() const { return m_unlinkedCode->scriptMode(); }
225
226 bool hasInstalledVMTrapBreakpoints() const;
227 bool installVMTrapBreakpoints();
228
229 inline bool isKnownNotImmediate(int index)
230 {
231 if (index == thisRegister().offset() && !isStrictMode())
232 return true;
233
234 if (isConstantRegisterIndex(index))
235 return getConstant(index).isCell();
236
237 return false;
238 }
239
240 ALWAYS_INLINE bool isTemporaryRegisterIndex(int index)
241 {
242 return index >= m_numVars;
243 }
244
245 HandlerInfo* handlerForBytecodeIndex(BytecodeIndex, RequiredHandler = RequiredHandler::AnyHandler);
246 HandlerInfo* handlerForIndex(unsigned, RequiredHandler = RequiredHandler::AnyHandler);
247 void removeExceptionHandlerForCallSite(DisposableCallSiteIndex);
248 unsigned lineNumberForBytecodeIndex(BytecodeIndex);
249 unsigned columnNumberForBytecodeIndex(BytecodeIndex);
250 void expressionRangeForBytecodeIndex(BytecodeIndex, int& divot,
251 int& startOffset, int& endOffset, unsigned& line, unsigned& column) const;
252
253 Optional<BytecodeIndex> bytecodeIndexFromCallSiteIndex(CallSiteIndex);
254
255 void getICStatusMap(const ConcurrentJSLocker&, ICStatusMap& result);
256 void getICStatusMap(ICStatusMap& result);
257
258#if ENABLE(JIT)
259 struct JITData {
260 WTF_MAKE_STRUCT_FAST_ALLOCATED;
261
262 Bag<StructureStubInfo> m_stubInfos;
263 Bag<JITAddIC> m_addICs;
264 Bag<JITMulIC> m_mulICs;
265 Bag<JITNegIC> m_negICs;
266 Bag<JITSubIC> m_subICs;
267 Bag<ByValInfo> m_byValInfos;
268 Bag<CallLinkInfo> m_callLinkInfos;
269 SentinelLinkedList<CallLinkInfo, PackedRawSentinelNode<CallLinkInfo>> m_incomingCalls;
270 SentinelLinkedList<PolymorphicCallNode, PackedRawSentinelNode<PolymorphicCallNode>> m_incomingPolymorphicCalls;
271 SegmentedVector<RareCaseProfile, 8> m_rareCaseProfiles;
272 std::unique_ptr<PCToCodeOriginMap> m_pcToCodeOriginMap;
273 std::unique_ptr<RegisterAtOffsetList> m_calleeSaveRegisters;
274 JITCodeMap m_jitCodeMap;
275 };
276
277 JITData& ensureJITData(const ConcurrentJSLocker& locker)
278 {
279 if (LIKELY(m_jitData))
280 return *m_jitData;
281 return ensureJITDataSlow(locker);
282 }
283 JITData& ensureJITDataSlow(const ConcurrentJSLocker&);
284
285 JITAddIC* addJITAddIC(BinaryArithProfile*);
286 JITMulIC* addJITMulIC(BinaryArithProfile*);
287 JITNegIC* addJITNegIC(UnaryArithProfile*);
288 JITSubIC* addJITSubIC(BinaryArithProfile*);
289
290 template <typename Generator, typename = typename std::enable_if<std::is_same<Generator, JITAddGenerator>::value>::type>
291 JITAddIC* addMathIC(BinaryArithProfile* profile) { return addJITAddIC(profile); }
292
293 template <typename Generator, typename = typename std::enable_if<std::is_same<Generator, JITMulGenerator>::value>::type>
294 JITMulIC* addMathIC(BinaryArithProfile* profile) { return addJITMulIC(profile); }
295
296 template <typename Generator, typename = typename std::enable_if<std::is_same<Generator, JITNegGenerator>::value>::type>
297 JITNegIC* addMathIC(UnaryArithProfile* profile) { return addJITNegIC(profile); }
298
299 template <typename Generator, typename = typename std::enable_if<std::is_same<Generator, JITSubGenerator>::value>::type>
300 JITSubIC* addMathIC(BinaryArithProfile* profile) { return addJITSubIC(profile); }
301
302 StructureStubInfo* addStubInfo(AccessType);
303
304 // O(n) operation. Use getStubInfoMap() unless you really only intend to get one
305 // stub info.
306 StructureStubInfo* findStubInfo(CodeOrigin);
307
308 ByValInfo* addByValInfo();
309
310 CallLinkInfo* addCallLinkInfo();
311
312 // This is a slow function call used primarily for compiling OSR exits in the case
313 // that there had been inlining. Chances are if you want to use this, you're really
314 // looking for a CallLinkInfoMap to amortize the cost of calling this.
315 CallLinkInfo* getCallLinkInfoForBytecodeIndex(BytecodeIndex);
316
317 void setJITCodeMap(JITCodeMap&& jitCodeMap)
318 {
319 ConcurrentJSLocker locker(m_lock);
320 ensureJITData(locker).m_jitCodeMap = WTFMove(jitCodeMap);
321 }
322 const JITCodeMap& jitCodeMap()
323 {
324 ConcurrentJSLocker locker(m_lock);
325 return ensureJITData(locker).m_jitCodeMap;
326 }
327
328 void setPCToCodeOriginMap(std::unique_ptr<PCToCodeOriginMap>&&);
329 Optional<CodeOrigin> findPC(void* pc);
330
331 void setCalleeSaveRegisters(RegisterSet);
332 void setCalleeSaveRegisters(std::unique_ptr<RegisterAtOffsetList>);
333
334 RareCaseProfile* addRareCaseProfile(BytecodeIndex);
335 RareCaseProfile* rareCaseProfileForBytecodeIndex(const ConcurrentJSLocker&, BytecodeIndex);
336 unsigned rareCaseProfileCountForBytecodeIndex(const ConcurrentJSLocker&, BytecodeIndex);
337
338 bool likelyToTakeSlowCase(BytecodeIndex bytecodeIndex)
339 {
340 if (!hasBaselineJITProfiling())
341 return false;
342 ConcurrentJSLocker locker(m_lock);
343 unsigned value = rareCaseProfileCountForBytecodeIndex(locker, bytecodeIndex);
344 return value >= Options::likelyToTakeSlowCaseMinimumCount();
345 }
346
347 bool couldTakeSlowCase(BytecodeIndex bytecodeIndex)
348 {
349 if (!hasBaselineJITProfiling())
350 return false;
351 ConcurrentJSLocker locker(m_lock);
352 unsigned value = rareCaseProfileCountForBytecodeIndex(locker, bytecodeIndex);
353 return value >= Options::couldTakeSlowCaseMinimumCount();
354 }
355
356 // We call this when we want to reattempt compiling something with the baseline JIT. Ideally
357 // the baseline JIT would not add data to CodeBlock, but instead it would put its data into
358 // a newly created JITCode, which could be thrown away if we bail on JIT compilation. Then we
359 // would be able to get rid of this silly function.
360 // FIXME: https://bugs.webkit.org/show_bug.cgi?id=159061
361 void resetJITData();
362#endif // ENABLE(JIT)
363
364 void unlinkIncomingCalls();
365
366#if ENABLE(JIT)
367 void linkIncomingCall(CallFrame* callerFrame, CallLinkInfo*);
368 void linkIncomingPolymorphicCall(CallFrame* callerFrame, PolymorphicCallNode*);
369#endif // ENABLE(JIT)
370
371 void linkIncomingCall(CallFrame* callerFrame, LLIntCallLinkInfo*);
372
373 const Instruction* outOfLineJumpTarget(const Instruction* pc);
374 int outOfLineJumpOffset(const Instruction* pc);
375 int outOfLineJumpOffset(const InstructionStream::Ref& instruction)
376 {
377 return outOfLineJumpOffset(instruction.ptr());
378 }
379
380 inline unsigned bytecodeOffset(const Instruction* returnAddress)
381 {
382 const auto* instructionsBegin = instructions().at(0).ptr();
383 const auto* instructionsEnd = reinterpret_cast<const Instruction*>(reinterpret_cast<uintptr_t>(instructionsBegin) + instructions().size());
384 RELEASE_ASSERT(returnAddress >= instructionsBegin && returnAddress < instructionsEnd);
385 return returnAddress - instructionsBegin;
386 }
387
388 inline BytecodeIndex bytecodeIndex(const Instruction* returnAddress)
389 {
390 return BytecodeIndex(bytecodeOffset(returnAddress));
391 }
392
393 const InstructionStream& instructions() const { return m_unlinkedCode->instructions(); }
394
395 size_t predictedMachineCodeSize();
396
397 unsigned instructionsSize() const { return instructions().size(); }
398 unsigned bytecodeCost() const { return m_bytecodeCost; }
399
400 // Exactly equivalent to codeBlock->ownerExecutable()->newReplacementCodeBlockFor(codeBlock->specializationKind())
401 CodeBlock* newReplacement();
402
403 void setJITCode(Ref<JITCode>&& code)
404 {
405 ASSERT(heap()->isDeferred());
406 if (!code->isShared())
407 heap()->reportExtraMemoryAllocated(code->size());
408
409 ConcurrentJSLocker locker(m_lock);
410 WTF::storeStoreFence(); // This is probably not needed because the lock will also do something similar, but it's good to be paranoid.
411 m_jitCode = WTFMove(code);
412 }
413
414 RefPtr<JITCode> jitCode() { return m_jitCode; }
415 static ptrdiff_t jitCodeOffset() { return OBJECT_OFFSETOF(CodeBlock, m_jitCode); }
416 JITType jitType() const
417 {
418 JITCode* jitCode = m_jitCode.get();
419 WTF::loadLoadFence();
420 JITType result = JITCode::jitTypeFor(jitCode);
421 WTF::loadLoadFence(); // This probably isn't needed. Oh well, paranoia is good.
422 return result;
423 }
424
425 bool hasBaselineJITProfiling() const
426 {
427 return jitType() == JITType::BaselineJIT;
428 }
429
430#if ENABLE(JIT)
431 CodeBlock* replacement();
432
433 DFG::CapabilityLevel computeCapabilityLevel();
434 DFG::CapabilityLevel capabilityLevel();
435 DFG::CapabilityLevel capabilityLevelState() { return static_cast<DFG::CapabilityLevel>(m_capabilityLevelState); }
436
437 bool hasOptimizedReplacement(JITType typeToReplace);
438 bool hasOptimizedReplacement(); // the typeToReplace is my JITType
439#endif
440
441 void jettison(Profiler::JettisonReason, ReoptimizationMode = DontCountReoptimization, const FireDetail* = nullptr);
442
443 ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); }
444
445 ExecutableToCodeBlockEdge* ownerEdge() const { return m_ownerEdge.get(); }
446
447 VM& vm() const { return *m_vm; }
448
449 VirtualRegister thisRegister() const { return m_unlinkedCode->thisRegister(); }
450
451 bool usesEval() const { return m_unlinkedCode->usesEval(); }
452
453 void setScopeRegister(VirtualRegister scopeRegister)
454 {
455 ASSERT(scopeRegister.isLocal() || !scopeRegister.isValid());
456 m_scopeRegister = scopeRegister;
457 }
458
459 VirtualRegister scopeRegister() const
460 {
461 return m_scopeRegister;
462 }
463
464 PutPropertySlot::Context putByIdContext() const
465 {
466 if (codeType() == EvalCode)
467 return PutPropertySlot::PutByIdEval;
468 return PutPropertySlot::PutById;
469 }
470
471 const SourceCode& source() const { return m_ownerExecutable->source(); }
472 unsigned sourceOffset() const { return m_ownerExecutable->source().startOffset(); }
473 unsigned firstLineColumnOffset() const { return m_ownerExecutable->startColumn(); }
474
475 size_t numberOfJumpTargets() const { return m_unlinkedCode->numberOfJumpTargets(); }
476 unsigned jumpTarget(int index) const { return m_unlinkedCode->jumpTarget(index); }
477
478 String nameForRegister(VirtualRegister);
479
480 unsigned numberOfArgumentValueProfiles()
481 {
482 ASSERT(m_numParameters >= 0);
483 ASSERT(m_argumentValueProfiles.size() == static_cast<unsigned>(m_numParameters) || !vm().canUseJIT());
484 return m_argumentValueProfiles.size();
485 }
486
487 ValueProfile& valueProfileForArgument(unsigned argumentIndex)
488 {
489 ASSERT(vm().canUseJIT()); // This is only called from the various JIT compilers or places that first check numberOfArgumentValueProfiles before calling this.
490 ValueProfile& result = m_argumentValueProfiles[argumentIndex];
491 return result;
492 }
493
494 ValueProfile& valueProfileForBytecodeIndex(BytecodeIndex);
495 SpeculatedType valueProfilePredictionForBytecodeIndex(const ConcurrentJSLocker&, BytecodeIndex);
496
497 template<typename Functor> void forEachValueProfile(const Functor&);
498 template<typename Functor> void forEachArrayProfile(const Functor&);
499 template<typename Functor> void forEachArrayAllocationProfile(const Functor&);
500 template<typename Functor> void forEachObjectAllocationProfile(const Functor&);
501 template<typename Functor> void forEachLLIntCallLinkInfo(const Functor&);
502
503 BinaryArithProfile* binaryArithProfileForBytecodeIndex(BytecodeIndex);
504 UnaryArithProfile* unaryArithProfileForBytecodeIndex(BytecodeIndex);
505 BinaryArithProfile* binaryArithProfileForPC(const Instruction*);
506 UnaryArithProfile* unaryArithProfileForPC(const Instruction*);
507
508 bool couldTakeSpecialArithFastCase(BytecodeIndex bytecodeOffset);
509
510 ArrayProfile* getArrayProfile(const ConcurrentJSLocker&, BytecodeIndex);
511 ArrayProfile* getArrayProfile(BytecodeIndex);
512
513 // Exception handling support
514
515 size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; }
516 HandlerInfo& exceptionHandler(int index) { RELEASE_ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; }
517
518 bool hasExpressionInfo() { return m_unlinkedCode->hasExpressionInfo(); }
519
520#if ENABLE(DFG_JIT)
521 Vector<CodeOrigin, 0, UnsafeVectorOverflow>& codeOrigins();
522
523 // Having code origins implies that there has been some inlining.
524 bool hasCodeOrigins()
525 {
526 return JITCode::isOptimizingJIT(jitType());
527 }
528
529 bool canGetCodeOrigin(CallSiteIndex index)
530 {
531 if (!hasCodeOrigins())
532 return false;
533 return index.bits() < codeOrigins().size();
534 }
535
536 CodeOrigin codeOrigin(CallSiteIndex index)
537 {
538 return codeOrigins()[index.bits()];
539 }
540
541 CompressedLazyOperandValueProfileHolder& lazyOperandValueProfiles(const ConcurrentJSLocker&)
542 {
543 return m_lazyOperandValueProfiles;
544 }
545#endif // ENABLE(DFG_JIT)
546
547 // Constant Pool
548#if ENABLE(DFG_JIT)
549 size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers() + numberOfDFGIdentifiers(); }
550 size_t numberOfDFGIdentifiers() const;
551 const Identifier& identifier(int index) const;
552#else
553 size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers(); }
554 const Identifier& identifier(int index) const { return m_unlinkedCode->identifier(index); }
555#endif
556
557 Vector<WriteBarrier<Unknown>>& constants() { return m_constantRegisters; }
558 Vector<SourceCodeRepresentation>& constantsSourceCodeRepresentation() { return m_constantsSourceCodeRepresentation; }
559 unsigned addConstant(const ConcurrentJSLocker&, JSValue v)
560 {
561 unsigned result = m_constantRegisters.size();
562 m_constantRegisters.append(WriteBarrier<Unknown>());
563 m_constantRegisters.last().set(*m_vm, this, v);
564 m_constantsSourceCodeRepresentation.append(SourceCodeRepresentation::Other);
565 return result;
566 }
567
568 unsigned addConstantLazily(const ConcurrentJSLocker&)
569 {
570 unsigned result = m_constantRegisters.size();
571 m_constantRegisters.append(WriteBarrier<Unknown>());
572 m_constantsSourceCodeRepresentation.append(SourceCodeRepresentation::Other);
573 return result;
574 }
575
576 const Vector<WriteBarrier<Unknown>>& constantRegisters() { return m_constantRegisters; }
577 WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
578 static ALWAYS_INLINE bool isConstantRegisterIndex(int index) { return index >= FirstConstantRegisterIndex; }
579 ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); }
580 ALWAYS_INLINE SourceCodeRepresentation constantSourceCodeRepresentation(int index) const { return m_constantsSourceCodeRepresentation[index - FirstConstantRegisterIndex]; }
581
582 FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); }
583 int numberOfFunctionDecls() { return m_functionDecls.size(); }
584 FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); }
585
586 const BitVector& bitVector(size_t i) { return m_unlinkedCode->bitVector(i); }
587
588 Heap* heap() const { return &m_vm->heap; }
589 JSGlobalObject* globalObject() { return m_globalObject.get(); }
590
591 JSGlobalObject* globalObjectFor(CodeOrigin);
592
593 BytecodeLivenessAnalysis& livenessAnalysis()
594 {
595 return m_unlinkedCode->livenessAnalysis(this);
596 }
597
598 void validate();
599
600 // Jump Tables
601
602 size_t numberOfSwitchJumpTables() const { return m_rareData ? m_rareData->m_switchJumpTables.size() : 0; }
603 SimpleJumpTable& addSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_switchJumpTables.append(SimpleJumpTable()); return m_rareData->m_switchJumpTables.last(); }
604 SimpleJumpTable& switchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_switchJumpTables[tableIndex]; }
605 void clearSwitchJumpTables()
606 {
607 if (!m_rareData)
608 return;
609 m_rareData->m_switchJumpTables.clear();
610 }
611#if ENABLE(DFG_JIT)
612 void addSwitchJumpTableFromProfiledCodeBlock(SimpleJumpTable& profiled)
613 {
614 createRareDataIfNecessary();
615 m_rareData->m_switchJumpTables.append(profiled.cloneNonJITPart());
616 }
617#endif
618
619 size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; }
620 StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); }
621 StringJumpTable& stringSwitchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; }
622
623 DirectEvalCodeCache& directEvalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_directEvalCodeCache; }
624
625 enum ShrinkMode {
626 // Shrink prior to generating machine code that may point directly into vectors.
627 EarlyShrink,
628
629 // Shrink after generating machine code, and after possibly creating new vectors
630 // and appending to others. At this time it is not safe to shrink certain vectors
631 // because we would have generated machine code that references them directly.
632 LateShrink
633 };
634 void shrinkToFit(ShrinkMode);
635
636 // Functions for controlling when JITting kicks in, in a mixed mode
637 // execution world.
638
639 bool checkIfJITThresholdReached()
640 {
641 return m_llintExecuteCounter.checkIfThresholdCrossedAndSet(this);
642 }
643
644 void dontJITAnytimeSoon()
645 {
646 m_llintExecuteCounter.deferIndefinitely();
647 }
648
649 int32_t thresholdForJIT(int32_t threshold);
650 void jitAfterWarmUp();
651 void jitSoon();
652
653 const BaselineExecutionCounter& llintExecuteCounter() const
654 {
655 return m_llintExecuteCounter;
656 }
657
658 typedef HashMap<std::tuple<StructureID, unsigned>, Vector<LLIntPrototypeLoadAdaptiveStructureWatchpoint>> StructureWatchpointMap;
659 StructureWatchpointMap& llintGetByIdWatchpointMap() { return m_llintGetByIdWatchpointMap; }
660
661 // Functions for controlling when tiered compilation kicks in. This
662 // controls both when the optimizing compiler is invoked and when OSR
663 // entry happens. Two triggers exist: the loop trigger and the return
664 // trigger. In either case, when an addition to m_jitExecuteCounter
665 // causes it to become non-negative, the optimizing compiler is
666 // invoked. This includes a fast check to see if this CodeBlock has
667 // already been optimized (i.e. replacement() returns a CodeBlock
668 // that was optimized with a higher tier JIT than this one). In the
669 // case of the loop trigger, if the optimized compilation succeeds
670 // (or has already succeeded in the past) then OSR is attempted to
671 // redirect program flow into the optimized code.
672
673 // These functions are called from within the optimization triggers,
674 // and are used as a single point at which we define the heuristics
675 // for how much warm-up is mandated before the next optimization
676 // trigger files. All CodeBlocks start out with optimizeAfterWarmUp(),
677 // as this is called from the CodeBlock constructor.
678
679 // When we observe a lot of speculation failures, we trigger a
680 // reoptimization. But each time, we increase the optimization trigger
681 // to avoid thrashing.
682 JS_EXPORT_PRIVATE unsigned reoptimizationRetryCounter() const;
683 void countReoptimization();
684
685#if !ENABLE(C_LOOP)
686 const RegisterAtOffsetList* calleeSaveRegisters() const;
687
688 static unsigned numberOfLLIntBaselineCalleeSaveRegisters() { return RegisterSet::llintBaselineCalleeSaveRegisters().numberOfSetRegisters(); }
689 static size_t llintBaselineCalleeSaveSpaceAsVirtualRegisters();
690 size_t calleeSaveSpaceAsVirtualRegisters();
691#else
692 static unsigned numberOfLLIntBaselineCalleeSaveRegisters() { return 0; }
693 static size_t llintBaselineCalleeSaveSpaceAsVirtualRegisters() { return 1; };
694 size_t calleeSaveSpaceAsVirtualRegisters() { return 0; }
695#endif
696
697#if ENABLE(JIT)
698 unsigned numberOfDFGCompiles();
699
700 int32_t codeTypeThresholdMultiplier() const;
701
702 int32_t adjustedCounterValue(int32_t desiredThreshold);
703
704 int32_t* addressOfJITExecuteCounter()
705 {
706 return &m_jitExecuteCounter.m_counter;
707 }
708
709 static ptrdiff_t offsetOfJITExecuteCounter() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_counter); }
710 static ptrdiff_t offsetOfJITExecutionActiveThreshold() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_activeThreshold); }
711 static ptrdiff_t offsetOfJITExecutionTotalCount() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_totalCount); }
712
713 const BaselineExecutionCounter& jitExecuteCounter() const { return m_jitExecuteCounter; }
714
715 unsigned optimizationDelayCounter() const { return m_optimizationDelayCounter; }
716
717 // Check if the optimization threshold has been reached, and if not,
718 // adjust the heuristics accordingly. Returns true if the threshold has
719 // been reached.
720 bool checkIfOptimizationThresholdReached();
721
722 // Call this to force the next optimization trigger to fire. This is
723 // rarely wise, since optimization triggers are typically more
724 // expensive than executing baseline code.
725 void optimizeNextInvocation();
726
727 // Call this to prevent optimization from happening again. Note that
728 // optimization will still happen after roughly 2^29 invocations,
729 // so this is really meant to delay that as much as possible. This
730 // is called if optimization failed, and we expect it to fail in
731 // the future as well.
732 void dontOptimizeAnytimeSoon();
733
734 // Call this to reinitialize the counter to its starting state,
735 // forcing a warm-up to happen before the next optimization trigger
736 // fires. This is called in the CodeBlock constructor. It also
737 // makes sense to call this if an OSR exit occurred. Note that
738 // OSR exit code is code generated, so the value of the execute
739 // counter that this corresponds to is also available directly.
740 void optimizeAfterWarmUp();
741
742 // Call this to force an optimization trigger to fire only after
743 // a lot of warm-up.
744 void optimizeAfterLongWarmUp();
745
746 // Call this to cause an optimization trigger to fire soon, but
747 // not necessarily the next one. This makes sense if optimization
748 // succeeds. Successful optimization means that all calls are
749 // relinked to the optimized code, so this only affects call
750 // frames that are still executing this CodeBlock. The value here
751 // is tuned to strike a balance between the cost of OSR entry
752 // (which is too high to warrant making every loop back edge to
753 // trigger OSR immediately) and the cost of executing baseline
754 // code (which is high enough that we don't necessarily want to
755 // have a full warm-up). The intuition for calling this instead of
756 // optimizeNextInvocation() is for the case of recursive functions
757 // with loops. Consider that there may be N call frames of some
758 // recursive function, for a reasonably large value of N. The top
759 // one triggers optimization, and then returns, and then all of
760 // the others return. We don't want optimization to be triggered on
761 // each return, as that would be superfluous. It only makes sense
762 // to trigger optimization if one of those functions becomes hot
763 // in the baseline code.
764 void optimizeSoon();
765
766 void forceOptimizationSlowPathConcurrently();
767
768 void setOptimizationThresholdBasedOnCompilationResult(CompilationResult);
769
770 uint32_t osrExitCounter() const { return m_osrExitCounter; }
771
772 void countOSRExit() { m_osrExitCounter++; }
773
774 enum class OptimizeAction { None, ReoptimizeNow };
775#if ENABLE(DFG_JIT)
776 OptimizeAction updateOSRExitCounterAndCheckIfNeedToReoptimize(DFG::OSRExitState&);
777#endif
778
779 static ptrdiff_t offsetOfOSRExitCounter() { return OBJECT_OFFSETOF(CodeBlock, m_osrExitCounter); }
780
781 uint32_t adjustedExitCountThreshold(uint32_t desiredThreshold);
782 uint32_t exitCountThresholdForReoptimization();
783 uint32_t exitCountThresholdForReoptimizationFromLoop();
784 bool shouldReoptimizeNow();
785 bool shouldReoptimizeFromLoopNow();
786
787#else // No JIT
788 void optimizeAfterWarmUp() { }
789 unsigned numberOfDFGCompiles() { return 0; }
790#endif
791
792 bool shouldOptimizeNow();
793 void updateAllValueProfilePredictions();
794 void updateAllArrayPredictions();
795 void updateAllPredictions();
796
797 unsigned frameRegisterCount();
798 int stackPointerOffset();
799
800 bool hasOpDebugForLineAndColumn(unsigned line, Optional<unsigned> column);
801
802 bool hasDebuggerRequests() const { return m_debuggerRequests; }
803 void* debuggerRequestsAddress() { return &m_debuggerRequests; }
804
805 void addBreakpoint(unsigned numBreakpoints);
806 void removeBreakpoint(unsigned numBreakpoints)
807 {
808 ASSERT(m_numBreakpoints >= numBreakpoints);
809 m_numBreakpoints -= numBreakpoints;
810 }
811
812 enum SteppingMode {
813 SteppingModeDisabled,
814 SteppingModeEnabled
815 };
816 void setSteppingMode(SteppingMode);
817
818 void clearDebuggerRequests()
819 {
820 m_steppingMode = SteppingModeDisabled;
821 m_numBreakpoints = 0;
822 }
823
824 bool wasCompiledWithDebuggingOpcodes() const { return m_unlinkedCode->wasCompiledWithDebuggingOpcodes(); }
825
826 // This is intentionally public; it's the responsibility of anyone doing any
827 // of the following to hold the lock:
828 //
829 // - Modifying any inline cache in this code block.
830 //
831 // - Quering any inline cache in this code block, from a thread other than
832 // the main thread.
833 //
834 // Additionally, it's only legal to modify the inline cache on the main
835 // thread. This means that the main thread can query the inline cache without
836 // locking. This is crucial since executing the inline cache is effectively
837 // "querying" it.
838 //
839 // Another exception to the rules is that the GC can do whatever it wants
840 // without holding any locks, because the GC is guaranteed to wait until any
841 // concurrent compilation threads finish what they're doing.
842 mutable ConcurrentJSLock m_lock;
843
844 bool m_shouldAlwaysBeInlined; // Not a bitfield because the JIT wants to store to it.
845
846#if ENABLE(JIT)
847 unsigned m_capabilityLevelState : 2; // DFG::CapabilityLevel
848#endif
849
850 bool m_allTransitionsHaveBeenMarked : 1; // Initialized and used on every GC.
851
852 bool m_didFailJITCompilation : 1;
853 bool m_didFailFTLCompilation : 1;
854 bool m_hasBeenCompiledWithFTL : 1;
855
856 // Internal methods for use by validation code. It would be private if it wasn't
857 // for the fact that we use it from anonymous namespaces.
858 void beginValidationDidFail();
859 NO_RETURN_DUE_TO_CRASH void endValidationDidFail();
860
861 struct RareData {
862 WTF_MAKE_FAST_ALLOCATED;
863 public:
864 Vector<HandlerInfo> m_exceptionHandlers;
865
866 // Jump Tables
867 Vector<SimpleJumpTable> m_switchJumpTables;
868 Vector<StringJumpTable> m_stringSwitchJumpTables;
869
870 Vector<std::unique_ptr<ValueProfileAndOperandBuffer>> m_catchProfiles;
871
872 DirectEvalCodeCache m_directEvalCodeCache;
873 };
874
875 void clearExceptionHandlers()
876 {
877 if (m_rareData)
878 m_rareData->m_exceptionHandlers.clear();
879 }
880
881 void appendExceptionHandler(const HandlerInfo& handler)
882 {
883 createRareDataIfNecessary(); // We may be handling the exception of an inlined call frame.
884 m_rareData->m_exceptionHandlers.append(handler);
885 }
886
887 DisposableCallSiteIndex newExceptionHandlingCallSiteIndex(CallSiteIndex originalCallSite);
888
889 void ensureCatchLivenessIsComputedForBytecodeIndex(BytecodeIndex);
890
891 bool hasTailCalls() const { return m_unlinkedCode->hasTailCalls(); }
892
893 template<typename Metadata>
894 Metadata& metadata(OpcodeID opcodeID, unsigned metadataID)
895 {
896 ASSERT(m_metadata);
897 return bitwise_cast<Metadata*>(m_metadata->get(opcodeID))[metadataID];
898 }
899
900 size_t metadataSizeInBytes()
901 {
902 return m_unlinkedCode->metadataSizeInBytes();
903 }
904
905 MetadataTable* metadataTable() { return m_metadata.get(); }
906 const void* instructionsRawPointer() { return m_instructionsRawPointer; }
907
908protected:
909 void finalizeLLIntInlineCaches();
910#if ENABLE(JIT)
911 void finalizeBaselineJITInlineCaches();
912#endif
913#if ENABLE(DFG_JIT)
914 void tallyFrequentExitSites();
915#else
916 void tallyFrequentExitSites() { }
917#endif
918
919private:
920 friend class CodeBlockSet;
921 friend class ExecutableToCodeBlockEdge;
922
923 BytecodeLivenessAnalysis& livenessAnalysisSlow();
924
925 CodeBlock* specialOSREntryBlockOrNull();
926
927 void noticeIncomingCall(CallFrame* callerFrame);
928
929 double optimizationThresholdScalingFactor();
930
931 void updateAllValueProfilePredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles);
932
933 void setConstantIdentifierSetRegisters(VM&, const Vector<ConstantIdentifierSetEntry>& constants);
934
935 void setConstantRegisters(const Vector<WriteBarrier<Unknown>>& constants, const Vector<SourceCodeRepresentation>& constantsSourceCodeRepresentation, ScriptExecutable* topLevelExecutable);
936
937 void replaceConstant(int index, JSValue value)
938 {
939 ASSERT(isConstantRegisterIndex(index) && static_cast<size_t>(index - FirstConstantRegisterIndex) < m_constantRegisters.size());
940 m_constantRegisters[index - FirstConstantRegisterIndex].set(*m_vm, this, value);
941 }
942
943 bool shouldVisitStrongly(const ConcurrentJSLocker&);
944 bool shouldJettisonDueToWeakReference(VM&);
945 bool shouldJettisonDueToOldAge(const ConcurrentJSLocker&);
946
947 void propagateTransitions(const ConcurrentJSLocker&, SlotVisitor&);
948 void determineLiveness(const ConcurrentJSLocker&, SlotVisitor&);
949
950 void stronglyVisitStrongReferences(const ConcurrentJSLocker&, SlotVisitor&);
951 void stronglyVisitWeakReferences(const ConcurrentJSLocker&, SlotVisitor&);
952 void visitOSRExitTargets(const ConcurrentJSLocker&, SlotVisitor&);
953
954 unsigned numberOfNonArgumentValueProfiles() { return m_numberOfNonArgumentValueProfiles; }
955 unsigned totalNumberOfValueProfiles() { return numberOfArgumentValueProfiles() + numberOfNonArgumentValueProfiles(); }
956 ValueProfile* tryGetValueProfileForBytecodeIndex(BytecodeIndex);
957
958 Seconds timeSinceCreation()
959 {
960 return MonotonicTime::now() - m_creationTime;
961 }
962
963 void createRareDataIfNecessary()
964 {
965 if (!m_rareData) {
966 auto rareData = makeUnique<RareData>();
967 WTF::storeStoreFence(); // m_catchProfiles can be touched from compiler threads.
968 m_rareData = WTFMove(rareData);
969 }
970 }
971
972 void insertBasicBlockBoundariesForControlFlowProfiler();
973 void ensureCatchLivenessIsComputedForBytecodeIndexSlow(const OpCatch&, BytecodeIndex);
974
975 int m_numCalleeLocals;
976 int m_numVars;
977 int m_numParameters;
978 int m_numberOfArgumentsToSkip { 0 };
979 unsigned m_numberOfNonArgumentValueProfiles { 0 };
980 union {
981 unsigned m_debuggerRequests;
982 struct {
983 unsigned m_hasDebuggerStatement : 1;
984 unsigned m_steppingMode : 1;
985 unsigned m_numBreakpoints : 30;
986 };
987 };
988 unsigned m_bytecodeCost { 0 };
989 VirtualRegister m_scopeRegister;
990 mutable CodeBlockHash m_hash;
991
992 WriteBarrier<UnlinkedCodeBlock> m_unlinkedCode;
993 WriteBarrier<ScriptExecutable> m_ownerExecutable;
994 WriteBarrier<ExecutableToCodeBlockEdge> m_ownerEdge;
995 // m_vm must be a pointer (instead of a reference) because the JSCLLIntOffsetsExtractor
996 // cannot handle it being a reference.
997 VM* m_vm;
998
999 const void* m_instructionsRawPointer { nullptr };
1000 SentinelLinkedList<LLIntCallLinkInfo, PackedRawSentinelNode<LLIntCallLinkInfo>> m_incomingLLIntCalls;
1001 StructureWatchpointMap m_llintGetByIdWatchpointMap;
1002 RefPtr<JITCode> m_jitCode;
1003#if ENABLE(JIT)
1004 std::unique_ptr<JITData> m_jitData;
1005#endif
1006#if ENABLE(DFG_JIT)
1007 // This is relevant to non-DFG code blocks that serve as the profiled code block
1008 // for DFG code blocks.
1009 CompressedLazyOperandValueProfileHolder m_lazyOperandValueProfiles;
1010#endif
1011 RefCountedArray<ValueProfile> m_argumentValueProfiles;
1012
1013 // Constant Pool
1014 COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown);
1015 // TODO: This could just be a pointer to m_unlinkedCodeBlock's data, but the DFG mutates
1016 // it, so we're stuck with it for now.
1017 Vector<WriteBarrier<Unknown>> m_constantRegisters;
1018 Vector<SourceCodeRepresentation> m_constantsSourceCodeRepresentation;
1019 RefCountedArray<WriteBarrier<FunctionExecutable>> m_functionDecls;
1020 RefCountedArray<WriteBarrier<FunctionExecutable>> m_functionExprs;
1021
1022 WriteBarrier<CodeBlock> m_alternative;
1023
1024 BaselineExecutionCounter m_llintExecuteCounter;
1025
1026 BaselineExecutionCounter m_jitExecuteCounter;
1027 uint32_t m_osrExitCounter;
1028
1029 uint16_t m_optimizationDelayCounter;
1030 uint16_t m_reoptimizationRetryCounter;
1031
1032 RefPtr<MetadataTable> m_metadata;
1033
1034 MonotonicTime m_creationTime;
1035 double m_previousCounter { 0 };
1036
1037 std::unique_ptr<RareData> m_rareData;
1038};
1039
1040template <typename ExecutableType>
1041Exception* ScriptExecutable::prepareForExecution(VM& vm, JSFunction* function, JSScope* scope, CodeSpecializationKind kind, CodeBlock*& resultCodeBlock)
1042{
1043 if (hasJITCodeFor(kind)) {
1044 if (std::is_same<ExecutableType, EvalExecutable>::value)
1045 resultCodeBlock = jsCast<CodeBlock*>(jsCast<EvalExecutable*>(this)->codeBlock());
1046 else if (std::is_same<ExecutableType, ProgramExecutable>::value)
1047 resultCodeBlock = jsCast<CodeBlock*>(jsCast<ProgramExecutable*>(this)->codeBlock());
1048 else if (std::is_same<ExecutableType, ModuleProgramExecutable>::value)
1049 resultCodeBlock = jsCast<CodeBlock*>(jsCast<ModuleProgramExecutable*>(this)->codeBlock());
1050 else if (std::is_same<ExecutableType, FunctionExecutable>::value)
1051 resultCodeBlock = jsCast<CodeBlock*>(jsCast<FunctionExecutable*>(this)->codeBlockFor(kind));
1052 else
1053 RELEASE_ASSERT_NOT_REACHED();
1054 return nullptr;
1055 }
1056 return prepareForExecutionImpl(vm, function, scope, kind, resultCodeBlock);
1057}
1058
1059#define CODEBLOCK_LOG_EVENT(codeBlock, summary, details) \
1060 do { \
1061 if (codeBlock) \
1062 (codeBlock->vm().logEvent(codeBlock, summary, [&] () { return toCString details; })); \
1063 } while (0)
1064
1065
1066void setPrinter(Printer::PrintRecord&, CodeBlock*);
1067
1068} // namespace JSC
1069
1070namespace WTF {
1071
1072JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::CodeBlock*);
1073
1074} // namespace WTF
1075