1 | /* |
2 | * Copyright (C) 2010, 2011 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * 2. Redistributions in binary form must reproduce the above copyright |
11 | * notice, this list of conditions and the following disclaimer in the |
12 | * documentation and/or other materials provided with the distribution. |
13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
14 | * its contributors may be used to endorse or promote products derived |
15 | * from this software without specific prior written permission. |
16 | * |
17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | */ |
28 | |
29 | #pragma once |
30 | |
31 | #include <wtf/Assertions.h> |
32 | #include <wtf/Noncopyable.h> |
33 | |
34 | namespace WTF { |
35 | |
36 | // This implements a red-black tree with the following properties: |
37 | // - The allocation of nodes in the tree is entirely up to the user. |
38 | // - If you are in possession of a pointer to a node, you can delete |
39 | // it from the tree. The tree will subsequently no longer have a |
40 | // reference to this node. |
41 | // - The key type must implement operator< and ==. |
42 | |
43 | template<class NodeType, typename KeyType> |
44 | class RedBlackTree { |
45 | WTF_MAKE_NONCOPYABLE(RedBlackTree); |
46 | private: |
47 | enum Color { |
48 | Red = 1, |
49 | Black |
50 | }; |
51 | |
52 | public: |
53 | class Node { |
54 | friend class RedBlackTree; |
55 | |
56 | public: |
57 | const NodeType* successor() const |
58 | { |
59 | const Node* x = this; |
60 | if (x->right()) |
61 | return treeMinimum(x->right()); |
62 | const NodeType* y = x->parent(); |
63 | while (y && x == y->right()) { |
64 | x = y; |
65 | y = y->parent(); |
66 | } |
67 | return y; |
68 | } |
69 | |
70 | const NodeType* predecessor() const |
71 | { |
72 | const Node* x = this; |
73 | if (x->left()) |
74 | return treeMaximum(x->left()); |
75 | const NodeType* y = x->parent(); |
76 | while (y && x == y->left()) { |
77 | x = y; |
78 | y = y->parent(); |
79 | } |
80 | return y; |
81 | } |
82 | |
83 | NodeType* successor() |
84 | { |
85 | return const_cast<NodeType*>(const_cast<const Node*>(this)->successor()); |
86 | } |
87 | |
88 | NodeType* predecessor() |
89 | { |
90 | return const_cast<NodeType*>(const_cast<const Node*>(this)->predecessor()); |
91 | } |
92 | |
93 | private: |
94 | void reset() |
95 | { |
96 | m_left = 0; |
97 | m_right = 0; |
98 | m_parentAndRed = 1; // initialize to red |
99 | } |
100 | |
101 | // NOTE: these methods should pack the parent and red into a single |
102 | // word. But doing so appears to reveal a bug in the compiler. |
103 | NodeType* parent() const |
104 | { |
105 | return reinterpret_cast<NodeType*>(m_parentAndRed & ~static_cast<uintptr_t>(1)); |
106 | } |
107 | |
108 | void setParent(NodeType* newParent) |
109 | { |
110 | m_parentAndRed = reinterpret_cast<uintptr_t>(newParent) | (m_parentAndRed & 1); |
111 | } |
112 | |
113 | NodeType* left() const |
114 | { |
115 | return m_left; |
116 | } |
117 | |
118 | void setLeft(NodeType* node) |
119 | { |
120 | m_left = node; |
121 | } |
122 | |
123 | NodeType* right() const |
124 | { |
125 | return m_right; |
126 | } |
127 | |
128 | void setRight(NodeType* node) |
129 | { |
130 | m_right = node; |
131 | } |
132 | |
133 | Color color() const |
134 | { |
135 | if (m_parentAndRed & 1) |
136 | return Red; |
137 | return Black; |
138 | } |
139 | |
140 | void setColor(Color value) |
141 | { |
142 | if (value == Red) |
143 | m_parentAndRed |= 1; |
144 | else |
145 | m_parentAndRed &= ~static_cast<uintptr_t>(1); |
146 | } |
147 | |
148 | NodeType* m_left; |
149 | NodeType* m_right; |
150 | uintptr_t m_parentAndRed; |
151 | }; |
152 | |
153 | RedBlackTree() |
154 | : m_root(0) |
155 | { |
156 | } |
157 | |
158 | void insert(NodeType* x) |
159 | { |
160 | x->reset(); |
161 | treeInsert(x); |
162 | x->setColor(Red); |
163 | |
164 | while (x != m_root && x->parent()->color() == Red) { |
165 | if (x->parent() == x->parent()->parent()->left()) { |
166 | NodeType* y = x->parent()->parent()->right(); |
167 | if (y && y->color() == Red) { |
168 | // Case 1 |
169 | x->parent()->setColor(Black); |
170 | y->setColor(Black); |
171 | x->parent()->parent()->setColor(Red); |
172 | x = x->parent()->parent(); |
173 | } else { |
174 | if (x == x->parent()->right()) { |
175 | // Case 2 |
176 | x = x->parent(); |
177 | leftRotate(x); |
178 | } |
179 | // Case 3 |
180 | x->parent()->setColor(Black); |
181 | x->parent()->parent()->setColor(Red); |
182 | rightRotate(x->parent()->parent()); |
183 | } |
184 | } else { |
185 | // Same as "then" clause with "right" and "left" exchanged. |
186 | NodeType* y = x->parent()->parent()->left(); |
187 | if (y && y->color() == Red) { |
188 | // Case 1 |
189 | x->parent()->setColor(Black); |
190 | y->setColor(Black); |
191 | x->parent()->parent()->setColor(Red); |
192 | x = x->parent()->parent(); |
193 | } else { |
194 | if (x == x->parent()->left()) { |
195 | // Case 2 |
196 | x = x->parent(); |
197 | rightRotate(x); |
198 | } |
199 | // Case 3 |
200 | x->parent()->setColor(Black); |
201 | x->parent()->parent()->setColor(Red); |
202 | leftRotate(x->parent()->parent()); |
203 | } |
204 | } |
205 | } |
206 | |
207 | m_root->setColor(Black); |
208 | } |
209 | |
210 | NodeType* remove(NodeType* z) |
211 | { |
212 | ASSERT(z); |
213 | ASSERT(z->parent() || z == m_root); |
214 | |
215 | // Y is the node to be unlinked from the tree. |
216 | NodeType* y; |
217 | if (!z->left() || !z->right()) |
218 | y = z; |
219 | else |
220 | y = z->successor(); |
221 | |
222 | // Y is guaranteed to be non-null at this point. |
223 | NodeType* x; |
224 | if (y->left()) |
225 | x = y->left(); |
226 | else |
227 | x = y->right(); |
228 | |
229 | // X is the child of y which might potentially replace y in |
230 | // the tree. X might be null at this point. |
231 | NodeType* xParent; |
232 | if (x) { |
233 | x->setParent(y->parent()); |
234 | xParent = x->parent(); |
235 | } else |
236 | xParent = y->parent(); |
237 | if (!y->parent()) |
238 | m_root = x; |
239 | else { |
240 | if (y == y->parent()->left()) |
241 | y->parent()->setLeft(x); |
242 | else |
243 | y->parent()->setRight(x); |
244 | } |
245 | |
246 | if (y != z) { |
247 | if (y->color() == Black) |
248 | removeFixup(x, xParent); |
249 | |
250 | y->setParent(z->parent()); |
251 | y->setColor(z->color()); |
252 | y->setLeft(z->left()); |
253 | y->setRight(z->right()); |
254 | |
255 | if (z->left()) |
256 | z->left()->setParent(y); |
257 | if (z->right()) |
258 | z->right()->setParent(y); |
259 | if (z->parent()) { |
260 | if (z->parent()->left() == z) |
261 | z->parent()->setLeft(y); |
262 | else |
263 | z->parent()->setRight(y); |
264 | } else { |
265 | ASSERT(m_root == z); |
266 | m_root = y; |
267 | } |
268 | } else if (y->color() == Black) |
269 | removeFixup(x, xParent); |
270 | |
271 | return z; |
272 | } |
273 | |
274 | NodeType* remove(const KeyType& key) |
275 | { |
276 | NodeType* result = findExact(key); |
277 | if (!result) |
278 | return 0; |
279 | return remove(result); |
280 | } |
281 | |
282 | NodeType* findExact(const KeyType& key) const |
283 | { |
284 | for (NodeType* current = m_root; current;) { |
285 | if (current->key() == key) |
286 | return current; |
287 | if (key < current->key()) |
288 | current = current->left(); |
289 | else |
290 | current = current->right(); |
291 | } |
292 | return 0; |
293 | } |
294 | |
295 | NodeType* findLeastGreaterThanOrEqual(const KeyType& key) const |
296 | { |
297 | NodeType* best = 0; |
298 | for (NodeType* current = m_root; current;) { |
299 | if (current->key() == key) |
300 | return current; |
301 | if (current->key() < key) |
302 | current = current->right(); |
303 | else { |
304 | best = current; |
305 | current = current->left(); |
306 | } |
307 | } |
308 | return best; |
309 | } |
310 | |
311 | NodeType* findGreatestLessThanOrEqual(const KeyType& key) const |
312 | { |
313 | NodeType* best = 0; |
314 | for (NodeType* current = m_root; current;) { |
315 | if (current->key() == key) |
316 | return current; |
317 | if (current->key() > key) |
318 | current = current->left(); |
319 | else { |
320 | best = current; |
321 | current = current->right(); |
322 | } |
323 | } |
324 | return best; |
325 | } |
326 | |
327 | NodeType* first() const |
328 | { |
329 | if (!m_root) |
330 | return 0; |
331 | return treeMinimum(m_root); |
332 | } |
333 | |
334 | NodeType* last() const |
335 | { |
336 | if (!m_root) |
337 | return 0; |
338 | return treeMaximum(m_root); |
339 | } |
340 | |
341 | // This is an O(n) operation. |
342 | size_t size() |
343 | { |
344 | size_t result = 0; |
345 | for (NodeType* current = first(); current; current = current->successor()) |
346 | result++; |
347 | return result; |
348 | } |
349 | |
350 | // This is an O(1) operation. |
351 | bool isEmpty() |
352 | { |
353 | return !m_root; |
354 | } |
355 | |
356 | private: |
357 | // Finds the minimum element in the sub-tree rooted at the given |
358 | // node. |
359 | static NodeType* treeMinimum(NodeType* x) |
360 | { |
361 | while (x->left()) |
362 | x = x->left(); |
363 | return x; |
364 | } |
365 | |
366 | static NodeType* treeMaximum(NodeType* x) |
367 | { |
368 | while (x->right()) |
369 | x = x->right(); |
370 | return x; |
371 | } |
372 | |
373 | static const NodeType* treeMinimum(const NodeType* x) |
374 | { |
375 | while (x->left()) |
376 | x = x->left(); |
377 | return x; |
378 | } |
379 | |
380 | static const NodeType* treeMaximum(const NodeType* x) |
381 | { |
382 | while (x->right()) |
383 | x = x->right(); |
384 | return x; |
385 | } |
386 | |
387 | void treeInsert(NodeType* z) |
388 | { |
389 | ASSERT(!z->left()); |
390 | ASSERT(!z->right()); |
391 | ASSERT(!z->parent()); |
392 | ASSERT(z->color() == Red); |
393 | |
394 | NodeType* y = 0; |
395 | NodeType* x = m_root; |
396 | while (x) { |
397 | y = x; |
398 | if (z->key() < x->key()) |
399 | x = x->left(); |
400 | else |
401 | x = x->right(); |
402 | } |
403 | z->setParent(y); |
404 | if (!y) |
405 | m_root = z; |
406 | else { |
407 | if (z->key() < y->key()) |
408 | y->setLeft(z); |
409 | else |
410 | y->setRight(z); |
411 | } |
412 | } |
413 | |
414 | //---------------------------------------------------------------------- |
415 | // Red-Black tree operations |
416 | // |
417 | |
418 | // Left-rotates the subtree rooted at x. |
419 | // Returns the new root of the subtree (x's right child). |
420 | NodeType* leftRotate(NodeType* x) |
421 | { |
422 | // Set y. |
423 | NodeType* y = x->right(); |
424 | |
425 | // Turn y's left subtree into x's right subtree. |
426 | x->setRight(y->left()); |
427 | if (y->left()) |
428 | y->left()->setParent(x); |
429 | |
430 | // Link x's parent to y. |
431 | y->setParent(x->parent()); |
432 | if (!x->parent()) |
433 | m_root = y; |
434 | else { |
435 | if (x == x->parent()->left()) |
436 | x->parent()->setLeft(y); |
437 | else |
438 | x->parent()->setRight(y); |
439 | } |
440 | |
441 | // Put x on y's left. |
442 | y->setLeft(x); |
443 | x->setParent(y); |
444 | |
445 | return y; |
446 | } |
447 | |
448 | // Right-rotates the subtree rooted at y. |
449 | // Returns the new root of the subtree (y's left child). |
450 | NodeType* rightRotate(NodeType* y) |
451 | { |
452 | // Set x. |
453 | NodeType* x = y->left(); |
454 | |
455 | // Turn x's right subtree into y's left subtree. |
456 | y->setLeft(x->right()); |
457 | if (x->right()) |
458 | x->right()->setParent(y); |
459 | |
460 | // Link y's parent to x. |
461 | x->setParent(y->parent()); |
462 | if (!y->parent()) |
463 | m_root = x; |
464 | else { |
465 | if (y == y->parent()->left()) |
466 | y->parent()->setLeft(x); |
467 | else |
468 | y->parent()->setRight(x); |
469 | } |
470 | |
471 | // Put y on x's right. |
472 | x->setRight(y); |
473 | y->setParent(x); |
474 | |
475 | return x; |
476 | } |
477 | |
478 | // Restores the red-black property to the tree after splicing out |
479 | // a node. Note that x may be null, which is why xParent must be |
480 | // supplied. |
481 | void removeFixup(NodeType* x, NodeType* xParent) |
482 | { |
483 | while (x != m_root && (!x || x->color() == Black)) { |
484 | if (x == xParent->left()) { |
485 | // Note: the text points out that w can not be null. |
486 | // The reason is not obvious from simply looking at |
487 | // the code; it comes about from the properties of the |
488 | // red-black tree. |
489 | NodeType* w = xParent->right(); |
490 | ASSERT(w); // x's sibling should not be null. |
491 | if (w->color() == Red) { |
492 | // Case 1 |
493 | w->setColor(Black); |
494 | xParent->setColor(Red); |
495 | leftRotate(xParent); |
496 | w = xParent->right(); |
497 | } |
498 | if ((!w->left() || w->left()->color() == Black) |
499 | && (!w->right() || w->right()->color() == Black)) { |
500 | // Case 2 |
501 | w->setColor(Red); |
502 | x = xParent; |
503 | xParent = x->parent(); |
504 | } else { |
505 | if (!w->right() || w->right()->color() == Black) { |
506 | // Case 3 |
507 | w->left()->setColor(Black); |
508 | w->setColor(Red); |
509 | rightRotate(w); |
510 | w = xParent->right(); |
511 | } |
512 | // Case 4 |
513 | w->setColor(xParent->color()); |
514 | xParent->setColor(Black); |
515 | if (w->right()) |
516 | w->right()->setColor(Black); |
517 | leftRotate(xParent); |
518 | x = m_root; |
519 | xParent = x->parent(); |
520 | } |
521 | } else { |
522 | // Same as "then" clause with "right" and "left" |
523 | // exchanged. |
524 | |
525 | // Note: the text points out that w can not be null. |
526 | // The reason is not obvious from simply looking at |
527 | // the code; it comes about from the properties of the |
528 | // red-black tree. |
529 | NodeType* w = xParent->left(); |
530 | ASSERT(w); // x's sibling should not be null. |
531 | if (w->color() == Red) { |
532 | // Case 1 |
533 | w->setColor(Black); |
534 | xParent->setColor(Red); |
535 | rightRotate(xParent); |
536 | w = xParent->left(); |
537 | } |
538 | if ((!w->right() || w->right()->color() == Black) |
539 | && (!w->left() || w->left()->color() == Black)) { |
540 | // Case 2 |
541 | w->setColor(Red); |
542 | x = xParent; |
543 | xParent = x->parent(); |
544 | } else { |
545 | if (!w->left() || w->left()->color() == Black) { |
546 | // Case 3 |
547 | w->right()->setColor(Black); |
548 | w->setColor(Red); |
549 | leftRotate(w); |
550 | w = xParent->left(); |
551 | } |
552 | // Case 4 |
553 | w->setColor(xParent->color()); |
554 | xParent->setColor(Black); |
555 | if (w->left()) |
556 | w->left()->setColor(Black); |
557 | rightRotate(xParent); |
558 | x = m_root; |
559 | xParent = x->parent(); |
560 | } |
561 | } |
562 | } |
563 | if (x) |
564 | x->setColor(Black); |
565 | } |
566 | |
567 | NodeType* m_root; |
568 | }; |
569 | |
570 | } |
571 | |