1 | /* |
2 | * Copyright (C) 2006-2016 Apple Inc. All rights reserved. |
3 | * Copyright (C) 2008 Google Inc. All rights reserved. |
4 | * Copyright (C) 2007-2009 Torch Mobile, Inc. |
5 | * Copyright (C) 2008 Cameron Zwarich <[email protected]> |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions are |
9 | * met: |
10 | * |
11 | * * Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * * Redistributions in binary form must reproduce the above |
14 | * copyright notice, this list of conditions and the following disclaimer |
15 | * in the documentation and/or other materials provided with the |
16 | * distribution. |
17 | * * Neither the name of Google Inc. nor the names of its |
18 | * contributors may be used to endorse or promote products derived from |
19 | * this software without specific prior written permission. |
20 | * |
21 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
25 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
26 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
27 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
28 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
29 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
30 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
31 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | */ |
33 | |
34 | #include "config.h" |
35 | #include <wtf/MonotonicTime.h> |
36 | |
37 | #include <time.h> |
38 | #include <wtf/WallTime.h> |
39 | |
40 | #if OS(DARWIN) |
41 | #include <mach/mach.h> |
42 | #include <mach/mach_time.h> |
43 | #include <mutex> |
44 | #include <sys/time.h> |
45 | #elif OS(WINDOWS) |
46 | |
47 | // Windows is first since we want to use hires timers, despite USE(CF) |
48 | // being defined. |
49 | // If defined, WIN32_LEAN_AND_MEAN disables timeBeginPeriod/timeEndPeriod. |
50 | #undef WIN32_LEAN_AND_MEAN |
51 | #include <windows.h> |
52 | #include <math.h> |
53 | #include <stdint.h> |
54 | #else |
55 | #include <sys/time.h> |
56 | #endif |
57 | |
58 | #if OS(FUCHSIA) |
59 | #include <zircon/syscalls.h> |
60 | #endif |
61 | |
62 | #if USE(GLIB) |
63 | #include <glib.h> |
64 | #endif |
65 | |
66 | namespace WTF { |
67 | |
68 | #if OS(WINDOWS) |
69 | |
70 | // Number of 100 nanosecond between January 1, 1601 and January 1, 1970. |
71 | static const ULONGLONG epochBias = 116444736000000000ULL; |
72 | static const double hundredsOfNanosecondsPerMillisecond = 10000; |
73 | |
74 | static double lowResUTCTime() |
75 | { |
76 | FILETIME fileTime; |
77 | |
78 | GetSystemTimeAsFileTime(&fileTime); |
79 | |
80 | // As per Windows documentation for FILETIME, copy the resulting FILETIME structure to a |
81 | // ULARGE_INTEGER structure using memcpy (using memcpy instead of direct assignment can |
82 | // prevent alignment faults on 64-bit Windows). |
83 | |
84 | ULARGE_INTEGER dateTime; |
85 | memcpy(&dateTime, &fileTime, sizeof(dateTime)); |
86 | |
87 | // Windows file times are in 100s of nanoseconds. |
88 | return (dateTime.QuadPart - epochBias) / hundredsOfNanosecondsPerMillisecond; |
89 | } |
90 | |
91 | #if USE(QUERY_PERFORMANCE_COUNTER) |
92 | |
93 | static LARGE_INTEGER qpcFrequency; |
94 | static bool syncedTime; |
95 | |
96 | static double highResUpTime() |
97 | { |
98 | // We use QPC, but only after sanity checking its result, due to bugs: |
99 | // http://support.microsoft.com/kb/274323 |
100 | // http://support.microsoft.com/kb/895980 |
101 | // http://msdn.microsoft.com/en-us/library/ms644904.aspx ("...you can get different results on different processors due to bugs in the basic input/output system (BIOS) or the hardware abstraction layer (HAL)." |
102 | |
103 | static LARGE_INTEGER qpcLast; |
104 | static DWORD tickCountLast; |
105 | static bool inited; |
106 | |
107 | LARGE_INTEGER qpc; |
108 | QueryPerformanceCounter(&qpc); |
109 | #if defined(_M_IX86) || defined(__i386__) |
110 | DWORD tickCount = GetTickCount(); |
111 | #else |
112 | ULONGLONG tickCount = GetTickCount64(); |
113 | #endif |
114 | |
115 | if (inited) { |
116 | __int64 qpcElapsed = ((qpc.QuadPart - qpcLast.QuadPart) * 1000) / qpcFrequency.QuadPart; |
117 | __int64 tickCountElapsed; |
118 | if (tickCount >= tickCountLast) |
119 | tickCountElapsed = (tickCount - tickCountLast); |
120 | else { |
121 | #if COMPILER(MINGW) |
122 | __int64 tickCountLarge = tickCount + 0x100000000ULL; |
123 | #else |
124 | __int64 tickCountLarge = tickCount + 0x100000000I64; |
125 | #endif |
126 | tickCountElapsed = tickCountLarge - tickCountLast; |
127 | } |
128 | |
129 | // force a re-sync if QueryPerformanceCounter differs from GetTickCount by more than 500ms. |
130 | // (500ms value is from http://support.microsoft.com/kb/274323) |
131 | __int64 diff = tickCountElapsed - qpcElapsed; |
132 | if (diff > 500 || diff < -500) |
133 | syncedTime = false; |
134 | } else |
135 | inited = true; |
136 | |
137 | qpcLast = qpc; |
138 | tickCountLast = tickCount; |
139 | |
140 | return (1000.0 * qpc.QuadPart) / static_cast<double>(qpcFrequency.QuadPart); |
141 | } |
142 | |
143 | static bool qpcAvailable() |
144 | { |
145 | static bool available; |
146 | static bool checked; |
147 | |
148 | if (checked) |
149 | return available; |
150 | |
151 | available = QueryPerformanceFrequency(&qpcFrequency); |
152 | checked = true; |
153 | return available; |
154 | } |
155 | |
156 | static inline double currentTime() |
157 | { |
158 | // Use a combination of ftime and QueryPerformanceCounter. |
159 | // ftime returns the information we want, but doesn't have sufficient resolution. |
160 | // QueryPerformanceCounter has high resolution, but is only usable to measure time intervals. |
161 | // To combine them, we call ftime and QueryPerformanceCounter initially. Later calls will use QueryPerformanceCounter |
162 | // by itself, adding the delta to the saved ftime. We periodically re-sync to correct for drift. |
163 | static double syncLowResUTCTime; |
164 | static double syncHighResUpTime; |
165 | static double lastUTCTime; |
166 | |
167 | double lowResTime = lowResUTCTime(); |
168 | |
169 | if (!qpcAvailable()) |
170 | return lowResTime / 1000.0; |
171 | |
172 | double highResTime = highResUpTime(); |
173 | |
174 | if (!syncedTime) { |
175 | timeBeginPeriod(1); // increase time resolution around low-res time getter |
176 | syncLowResUTCTime = lowResTime = lowResUTCTime(); |
177 | timeEndPeriod(1); // restore time resolution |
178 | syncHighResUpTime = highResTime; |
179 | syncedTime = true; |
180 | } |
181 | |
182 | double highResElapsed = highResTime - syncHighResUpTime; |
183 | double utc = syncLowResUTCTime + highResElapsed; |
184 | |
185 | // force a clock re-sync if we've drifted |
186 | double lowResElapsed = lowResTime - syncLowResUTCTime; |
187 | const double maximumAllowedDriftMsec = 15.625 * 2.0; // 2x the typical low-res accuracy |
188 | if (fabs(highResElapsed - lowResElapsed) > maximumAllowedDriftMsec) |
189 | syncedTime = false; |
190 | |
191 | // make sure time doesn't run backwards (only correct if difference is < 2 seconds, since DST or clock changes could occur) |
192 | const double backwardTimeLimit = 2000.0; |
193 | if (utc < lastUTCTime && (lastUTCTime - utc) < backwardTimeLimit) |
194 | return lastUTCTime / 1000.0; |
195 | lastUTCTime = utc; |
196 | return utc / 1000.0; |
197 | } |
198 | |
199 | #else |
200 | |
201 | static inline double currentTime() |
202 | { |
203 | static bool init = false; |
204 | static double lastTime; |
205 | static DWORD lastTickCount; |
206 | if (!init) { |
207 | lastTime = lowResUTCTime(); |
208 | lastTickCount = GetTickCount(); |
209 | init = true; |
210 | return lastTime; |
211 | } |
212 | |
213 | DWORD tickCountNow = GetTickCount(); |
214 | DWORD elapsed = tickCountNow - lastTickCount; |
215 | double timeNow = lastTime + (double)elapsed / 1000.; |
216 | if (elapsed >= 0x7FFFFFFF) { |
217 | lastTime = timeNow; |
218 | lastTickCount = tickCountNow; |
219 | } |
220 | return timeNow; |
221 | } |
222 | |
223 | #endif // USE(QUERY_PERFORMANCE_COUNTER) |
224 | |
225 | #elif USE(GLIB) |
226 | |
227 | // Note: GTK on Windows will pick up the PLATFORM(WIN) implementation above which provides |
228 | // better accuracy compared with Windows implementation of g_get_current_time: |
229 | // (http://www.google.com/codesearch/p?hl=en#HHnNRjks1t0/glib-2.5.2/glib/gmain.c&q=g_get_current_time). |
230 | // Non-Windows GTK builds could use gettimeofday() directly but for the sake of consistency lets use GTK function. |
231 | static inline double currentTime() |
232 | { |
233 | GTimeVal now; |
234 | g_get_current_time(&now); |
235 | return static_cast<double>(now.tv_sec) + static_cast<double>(now.tv_usec / 1000000.0); |
236 | } |
237 | |
238 | #else |
239 | |
240 | static inline double currentTime() |
241 | { |
242 | struct timeval now; |
243 | gettimeofday(&now, 0); |
244 | return now.tv_sec + now.tv_usec / 1000000.0; |
245 | } |
246 | |
247 | #endif |
248 | |
249 | WallTime WallTime::now() |
250 | { |
251 | return fromRawSeconds(currentTime()); |
252 | } |
253 | |
254 | MonotonicTime MonotonicTime::now() |
255 | { |
256 | #if USE(GLIB) |
257 | return fromRawSeconds(static_cast<double>(g_get_monotonic_time() / 1000000.0)); |
258 | #elif OS(DARWIN) |
259 | // Based on listing #2 from Apple QA 1398, but modified to be thread-safe. |
260 | static mach_timebase_info_data_t timebaseInfo; |
261 | static std::once_flag initializeTimerOnceFlag; |
262 | std::call_once(initializeTimerOnceFlag, [] { |
263 | kern_return_t kr = mach_timebase_info(&timebaseInfo); |
264 | ASSERT_UNUSED(kr, kr == KERN_SUCCESS); |
265 | ASSERT(timebaseInfo.denom); |
266 | }); |
267 | |
268 | return fromRawSeconds((mach_absolute_time() * timebaseInfo.numer) / (1.0e9 * timebaseInfo.denom)); |
269 | #elif OS(FUCHSIA) |
270 | return fromRawSeconds(zx_clock_get_monotonic() / static_cast<double>(ZX_SEC(1))); |
271 | #elif OS(LINUX) || OS(FREEBSD) || OS(OPENBSD) || OS(NETBSD) |
272 | struct timespec ts { }; |
273 | clock_gettime(CLOCK_MONOTONIC, &ts); |
274 | return fromRawSeconds(static_cast<double>(ts.tv_sec) + ts.tv_nsec / 1.0e9); |
275 | #else |
276 | static double lastTime = 0; |
277 | double currentTimeNow = currentTime(); |
278 | if (currentTimeNow < lastTime) |
279 | return lastTime; |
280 | lastTime = currentTimeNow; |
281 | return fromRawSeconds(currentTimeNow); |
282 | #endif |
283 | } |
284 | |
285 | } // namespace WTF |
286 | |