1//
2// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
3// Use of this source code is governed by a BSD-style license that can be
4// found in the LICENSE file.
5//
6
7// mathutil.h: Math and bit manipulation functions.
8
9#ifndef COMMON_MATHUTIL_H_
10#define COMMON_MATHUTIL_H_
11
12#include <math.h>
13#include <stdint.h>
14#include <stdlib.h>
15#include <string.h>
16#include <algorithm>
17#include <limits>
18
19#include <anglebase/numerics/safe_math.h>
20
21#include "common/debug.h"
22#include "common/platform.h"
23
24namespace angle
25{
26using base::CheckedNumeric;
27using base::IsValueInRangeForNumericType;
28} // namespace angle
29
30namespace gl
31{
32
33const unsigned int Float32One = 0x3F800000;
34const unsigned short Float16One = 0x3C00;
35
36template <typename T>
37inline bool isPow2(T x)
38{
39 static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
40 return (x & (x - 1)) == 0 && (x != 0);
41}
42
43inline int log2(int x)
44{
45 int r = 0;
46 while ((x >> r) > 1)
47 r++;
48 return r;
49}
50
51inline unsigned int ceilPow2(unsigned int x)
52{
53 if (x != 0)
54 x--;
55 x |= x >> 1;
56 x |= x >> 2;
57 x |= x >> 4;
58 x |= x >> 8;
59 x |= x >> 16;
60 x++;
61
62 return x;
63}
64
65template <typename DestT, typename SrcT>
66inline DestT clampCast(SrcT value)
67{
68 // For floating-point types with denormalization, min returns the minimum positive normalized
69 // value. To find the value that has no values less than it, use numeric_limits::lowest.
70 constexpr const long double destLo =
71 static_cast<long double>(std::numeric_limits<DestT>::lowest());
72 constexpr const long double destHi =
73 static_cast<long double>(std::numeric_limits<DestT>::max());
74 constexpr const long double srcLo =
75 static_cast<long double>(std::numeric_limits<SrcT>::lowest());
76 constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
77
78 if (destHi < srcHi)
79 {
80 DestT destMax = std::numeric_limits<DestT>::max();
81 if (value >= static_cast<SrcT>(destMax))
82 {
83 return destMax;
84 }
85 }
86
87 if (destLo > srcLo)
88 {
89 DestT destLow = std::numeric_limits<DestT>::lowest();
90 if (value <= static_cast<SrcT>(destLow))
91 {
92 return destLow;
93 }
94 }
95
96 return static_cast<DestT>(value);
97}
98
99// Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
100// value is casted to the source type.
101template <>
102inline unsigned int clampCast(bool value)
103{
104 return static_cast<unsigned int>(value);
105}
106
107template <>
108inline int clampCast(bool value)
109{
110 return static_cast<int>(value);
111}
112
113template <typename T, typename MIN, typename MAX>
114inline T clamp(T x, MIN min, MAX max)
115{
116 // Since NaNs fail all comparison tests, a NaN value will default to min
117 return x > min ? (x > max ? max : x) : min;
118}
119
120inline float clamp01(float x)
121{
122 return clamp(x, 0.0f, 1.0f);
123}
124
125template <const int n>
126inline unsigned int unorm(float x)
127{
128 const unsigned int max = 0xFFFFFFFF >> (32 - n);
129
130 if (x > 1)
131 {
132 return max;
133 }
134 else if (x < 0)
135 {
136 return 0;
137 }
138 else
139 {
140 return (unsigned int)(max * x + 0.5f);
141 }
142}
143
144inline bool supportsSSE2()
145{
146#if defined(ANGLE_USE_SSE)
147 static bool checked = false;
148 static bool supports = false;
149
150 if (checked)
151 {
152 return supports;
153 }
154
155# if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
156 {
157 int info[4];
158 __cpuid(info, 0);
159
160 if (info[0] >= 1)
161 {
162 __cpuid(info, 1);
163
164 supports = (info[3] >> 26) & 1;
165 }
166 }
167# endif // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
168 checked = true;
169 return supports;
170#else // defined(ANGLE_USE_SSE)
171 return false;
172#endif
173}
174
175template <typename destType, typename sourceType>
176destType bitCast(const sourceType &source)
177{
178 size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
179 destType output;
180 memcpy(&output, &source, copySize);
181 return output;
182}
183
184inline unsigned short float32ToFloat16(float fp32)
185{
186 unsigned int fp32i = bitCast<unsigned int>(fp32);
187 unsigned int sign = (fp32i & 0x80000000) >> 16;
188 unsigned int abs = fp32i & 0x7FFFFFFF;
189
190 if (abs > 0x47FFEFFF) // Infinity
191 {
192 return static_cast<unsigned short>(sign | 0x7FFF);
193 }
194 else if (abs < 0x38800000) // Denormal
195 {
196 unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
197 int e = 113 - (abs >> 23);
198
199 if (e < 24)
200 {
201 abs = mantissa >> e;
202 }
203 else
204 {
205 abs = 0;
206 }
207
208 return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
209 }
210 else
211 {
212 return static_cast<unsigned short>(
213 sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
214 }
215}
216
217float float16ToFloat32(unsigned short h);
218
219unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
220void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
221
222inline unsigned short float32ToFloat11(float fp32)
223{
224 const unsigned int float32MantissaMask = 0x7FFFFF;
225 const unsigned int float32ExponentMask = 0x7F800000;
226 const unsigned int float32SignMask = 0x80000000;
227 const unsigned int float32ValueMask = ~float32SignMask;
228 const unsigned int float32ExponentFirstBit = 23;
229 const unsigned int float32ExponentBias = 127;
230
231 const unsigned short float11Max = 0x7BF;
232 const unsigned short float11MantissaMask = 0x3F;
233 const unsigned short float11ExponentMask = 0x7C0;
234 const unsigned short float11BitMask = 0x7FF;
235 const unsigned int float11ExponentBias = 14;
236
237 const unsigned int float32Maxfloat11 = 0x477E0000;
238 const unsigned int float32Minfloat11 = 0x38800000;
239
240 const unsigned int float32Bits = bitCast<unsigned int>(fp32);
241 const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
242
243 unsigned int float32Val = float32Bits & float32ValueMask;
244
245 if ((float32Val & float32ExponentMask) == float32ExponentMask)
246 {
247 // INF or NAN
248 if ((float32Val & float32MantissaMask) != 0)
249 {
250 return float11ExponentMask |
251 (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) &
252 float11MantissaMask);
253 }
254 else if (float32Sign)
255 {
256 // -INF is clamped to 0 since float11 is positive only
257 return 0;
258 }
259 else
260 {
261 return float11ExponentMask;
262 }
263 }
264 else if (float32Sign)
265 {
266 // float11 is positive only, so clamp to zero
267 return 0;
268 }
269 else if (float32Val > float32Maxfloat11)
270 {
271 // The number is too large to be represented as a float11, set to max
272 return float11Max;
273 }
274 else
275 {
276 if (float32Val < float32Minfloat11)
277 {
278 // The number is too small to be represented as a normalized float11
279 // Convert it to a denormalized value.
280 const unsigned int shift = (float32ExponentBias - float11ExponentBias) -
281 (float32Val >> float32ExponentFirstBit);
282 float32Val =
283 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
284 }
285 else
286 {
287 // Rebias the exponent to represent the value as a normalized float11
288 float32Val += 0xC8000000;
289 }
290
291 return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
292 }
293}
294
295inline unsigned short float32ToFloat10(float fp32)
296{
297 const unsigned int float32MantissaMask = 0x7FFFFF;
298 const unsigned int float32ExponentMask = 0x7F800000;
299 const unsigned int float32SignMask = 0x80000000;
300 const unsigned int float32ValueMask = ~float32SignMask;
301 const unsigned int float32ExponentFirstBit = 23;
302 const unsigned int float32ExponentBias = 127;
303
304 const unsigned short float10Max = 0x3DF;
305 const unsigned short float10MantissaMask = 0x1F;
306 const unsigned short float10ExponentMask = 0x3E0;
307 const unsigned short float10BitMask = 0x3FF;
308 const unsigned int float10ExponentBias = 14;
309
310 const unsigned int float32Maxfloat10 = 0x477C0000;
311 const unsigned int float32Minfloat10 = 0x38800000;
312
313 const unsigned int float32Bits = bitCast<unsigned int>(fp32);
314 const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
315
316 unsigned int float32Val = float32Bits & float32ValueMask;
317
318 if ((float32Val & float32ExponentMask) == float32ExponentMask)
319 {
320 // INF or NAN
321 if ((float32Val & float32MantissaMask) != 0)
322 {
323 return float10ExponentMask |
324 (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) &
325 float10MantissaMask);
326 }
327 else if (float32Sign)
328 {
329 // -INF is clamped to 0 since float11 is positive only
330 return 0;
331 }
332 else
333 {
334 return float10ExponentMask;
335 }
336 }
337 else if (float32Sign)
338 {
339 // float10 is positive only, so clamp to zero
340 return 0;
341 }
342 else if (float32Val > float32Maxfloat10)
343 {
344 // The number is too large to be represented as a float11, set to max
345 return float10Max;
346 }
347 else
348 {
349 if (float32Val < float32Minfloat10)
350 {
351 // The number is too small to be represented as a normalized float11
352 // Convert it to a denormalized value.
353 const unsigned int shift = (float32ExponentBias - float10ExponentBias) -
354 (float32Val >> float32ExponentFirstBit);
355 float32Val =
356 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
357 }
358 else
359 {
360 // Rebias the exponent to represent the value as a normalized float11
361 float32Val += 0xC8000000;
362 }
363
364 return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
365 }
366}
367
368inline float float11ToFloat32(unsigned short fp11)
369{
370 unsigned short exponent = (fp11 >> 6) & 0x1F;
371 unsigned short mantissa = fp11 & 0x3F;
372
373 if (exponent == 0x1F)
374 {
375 // INF or NAN
376 return bitCast<float>(0x7f800000 | (mantissa << 17));
377 }
378 else
379 {
380 if (exponent != 0)
381 {
382 // normalized
383 }
384 else if (mantissa != 0)
385 {
386 // The value is denormalized
387 exponent = 1;
388
389 do
390 {
391 exponent--;
392 mantissa <<= 1;
393 } while ((mantissa & 0x40) == 0);
394
395 mantissa = mantissa & 0x3F;
396 }
397 else // The value is zero
398 {
399 exponent = static_cast<unsigned short>(-112);
400 }
401
402 return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
403 }
404}
405
406inline float float10ToFloat32(unsigned short fp11)
407{
408 unsigned short exponent = (fp11 >> 5) & 0x1F;
409 unsigned short mantissa = fp11 & 0x1F;
410
411 if (exponent == 0x1F)
412 {
413 // INF or NAN
414 return bitCast<float>(0x7f800000 | (mantissa << 17));
415 }
416 else
417 {
418 if (exponent != 0)
419 {
420 // normalized
421 }
422 else if (mantissa != 0)
423 {
424 // The value is denormalized
425 exponent = 1;
426
427 do
428 {
429 exponent--;
430 mantissa <<= 1;
431 } while ((mantissa & 0x20) == 0);
432
433 mantissa = mantissa & 0x1F;
434 }
435 else // The value is zero
436 {
437 exponent = static_cast<unsigned short>(-112);
438 }
439
440 return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
441 }
442}
443
444// Convers to and from float and 16.16 fixed point format.
445
446inline float FixedToFloat(uint32_t fixedInput)
447{
448 return static_cast<float>(fixedInput) / 65536.0f;
449}
450
451inline uint32_t FloatToFixed(float floatInput)
452{
453 static constexpr uint32_t kHighest = 32767 * 65536 + 65535;
454 static constexpr uint32_t kLowest = static_cast<uint32_t>(-32768 * 65536 + 65535);
455
456 if (floatInput > 32767.65535)
457 {
458 return kHighest;
459 }
460 else if (floatInput < -32768.65535)
461 {
462 return kLowest;
463 }
464 else
465 {
466 return static_cast<uint32_t>(floatInput * 65536);
467 }
468}
469
470template <typename T>
471inline float normalizedToFloat(T input)
472{
473 static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
474
475 if (sizeof(T) > 2)
476 {
477 // float has only a 23 bit mantissa, so we need to do the calculation in double precision
478 constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max();
479 return static_cast<float>(input * inverseMax);
480 }
481 else
482 {
483 constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max();
484 return input * inverseMax;
485 }
486}
487
488template <unsigned int inputBitCount, typename T>
489inline float normalizedToFloat(T input)
490{
491 static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
492 static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
493
494 if (inputBitCount > 23)
495 {
496 // float has only a 23 bit mantissa, so we need to do the calculation in double precision
497 constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1);
498 return static_cast<float>(input * inverseMax);
499 }
500 else
501 {
502 constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
503 return input * inverseMax;
504 }
505}
506
507template <typename T>
508inline T floatToNormalized(float input)
509{
510 if (sizeof(T) > 2)
511 {
512 // float has only a 23 bit mantissa, so we need to do the calculation in double precision
513 return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5);
514 }
515 else
516 {
517 return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
518 }
519}
520
521template <unsigned int outputBitCount, typename T>
522inline T floatToNormalized(float input)
523{
524 static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
525
526 if (outputBitCount > 23)
527 {
528 // float has only a 23 bit mantissa, so we need to do the calculation in double precision
529 return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5);
530 }
531 else
532 {
533 return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
534 }
535}
536
537template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
538inline T getShiftedData(T input)
539{
540 static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
541 "T must have at least as many bits as inputBitCount + inputBitStart.");
542 const T mask = (1 << inputBitCount) - 1;
543 return (input >> inputBitStart) & mask;
544}
545
546template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
547inline T shiftData(T input)
548{
549 static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
550 "T must have at least as many bits as inputBitCount + inputBitStart.");
551 const T mask = (1 << inputBitCount) - 1;
552 return (input & mask) << inputBitStart;
553}
554
555inline unsigned int CountLeadingZeros(uint32_t x)
556{
557 // Use binary search to find the amount of leading zeros.
558 unsigned int zeros = 32u;
559 uint32_t y;
560
561 y = x >> 16u;
562 if (y != 0)
563 {
564 zeros = zeros - 16u;
565 x = y;
566 }
567 y = x >> 8u;
568 if (y != 0)
569 {
570 zeros = zeros - 8u;
571 x = y;
572 }
573 y = x >> 4u;
574 if (y != 0)
575 {
576 zeros = zeros - 4u;
577 x = y;
578 }
579 y = x >> 2u;
580 if (y != 0)
581 {
582 zeros = zeros - 2u;
583 x = y;
584 }
585 y = x >> 1u;
586 if (y != 0)
587 {
588 return zeros - 2u;
589 }
590 return zeros - x;
591}
592
593inline unsigned char average(unsigned char a, unsigned char b)
594{
595 return ((a ^ b) >> 1) + (a & b);
596}
597
598inline signed char average(signed char a, signed char b)
599{
600 return ((short)a + (short)b) / 2;
601}
602
603inline unsigned short average(unsigned short a, unsigned short b)
604{
605 return ((a ^ b) >> 1) + (a & b);
606}
607
608inline signed short average(signed short a, signed short b)
609{
610 return ((int)a + (int)b) / 2;
611}
612
613inline unsigned int average(unsigned int a, unsigned int b)
614{
615 return ((a ^ b) >> 1) + (a & b);
616}
617
618inline int average(int a, int b)
619{
620 long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll;
621 return static_cast<int>(average);
622}
623
624inline float average(float a, float b)
625{
626 return (a + b) * 0.5f;
627}
628
629inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
630{
631 return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
632}
633
634inline unsigned int averageFloat11(unsigned int a, unsigned int b)
635{
636 return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) +
637 float11ToFloat32(static_cast<unsigned short>(b))) *
638 0.5f);
639}
640
641inline unsigned int averageFloat10(unsigned int a, unsigned int b)
642{
643 return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) +
644 float10ToFloat32(static_cast<unsigned short>(b))) *
645 0.5f);
646}
647
648template <typename T>
649class Range
650{
651 public:
652 Range() {}
653 Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
654
655 T length() const { return (empty() ? 0 : (mHigh - mLow)); }
656
657 bool intersects(Range<T> other)
658 {
659 if (mLow <= other.mLow)
660 {
661 return other.mLow < mHigh;
662 }
663 else
664 {
665 return mLow < other.mHigh;
666 }
667 }
668
669 // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
670 void extend(T value)
671 {
672 mLow = value < mLow ? value : mLow;
673 mHigh = value >= mHigh ? (value + 1) : mHigh;
674 }
675
676 bool empty() const { return mHigh <= mLow; }
677
678 bool contains(T value) const { return value >= mLow && value < mHigh; }
679
680 class Iterator final
681 {
682 public:
683 Iterator(T value) : mCurrent(value) {}
684
685 Iterator &operator++()
686 {
687 mCurrent++;
688 return *this;
689 }
690 bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
691 bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
692 T operator*() const { return mCurrent; }
693
694 private:
695 T mCurrent;
696 };
697
698 Iterator begin() const { return Iterator(mLow); }
699
700 Iterator end() const { return Iterator(mHigh); }
701
702 T low() const { return mLow; }
703 T high() const { return mHigh; }
704
705 void invalidate()
706 {
707 mLow = std::numeric_limits<T>::max();
708 mHigh = std::numeric_limits<T>::min();
709 }
710
711 private:
712 T mLow;
713 T mHigh;
714};
715
716typedef Range<int> RangeI;
717typedef Range<unsigned int> RangeUI;
718
719struct IndexRange
720{
721 struct Undefined
722 {};
723 IndexRange(Undefined) {}
724 IndexRange() : IndexRange(0, 0, 0) {}
725 IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
726 : start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
727 {
728 ASSERT(start <= end);
729 }
730
731 // Number of vertices in the range.
732 size_t vertexCount() const { return (end - start) + 1; }
733
734 // Inclusive range of indices that are not primitive restart
735 size_t start;
736 size_t end;
737
738 // Number of non-primitive restart indices
739 size_t vertexIndexCount;
740};
741
742// Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
743// floating-point value. As in GLSL ldexp() built-in.
744inline float Ldexp(float x, int exp)
745{
746 if (exp > 128)
747 {
748 return std::numeric_limits<float>::infinity();
749 }
750 if (exp < -126)
751 {
752 return 0.0f;
753 }
754 double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
755 return static_cast<float>(result);
756}
757
758// First, both normalized floating-point values are converted into 16-bit integer values.
759// Then, the results are packed into the returned 32-bit unsigned integer.
760// The first float value will be written to the least significant bits of the output;
761// the last float value will be written to the most significant bits.
762// The conversion of each value to fixed point is done as follows :
763// packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
764inline uint32_t packSnorm2x16(float f1, float f2)
765{
766 int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
767 int16_t mostSignificantBits = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
768 return static_cast<uint32_t>(mostSignificantBits) << 16 |
769 (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
770}
771
772// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
773// each component is converted to a normalized floating-point value to generate the returned two
774// float values. The first float value will be extracted from the least significant bits of the
775// input; the last float value will be extracted from the most-significant bits. The conversion for
776// unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f /
777// 32767.0, -1, +1)
778inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
779{
780 int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
781 int16_t mostSignificantBits = static_cast<int16_t>(u >> 16);
782 *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
783 *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
784}
785
786// First, both normalized floating-point values are converted into 16-bit integer values.
787// Then, the results are packed into the returned 32-bit unsigned integer.
788// The first float value will be written to the least significant bits of the output;
789// the last float value will be written to the most significant bits.
790// The conversion of each value to fixed point is done as follows:
791// packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
792inline uint32_t packUnorm2x16(float f1, float f2)
793{
794 uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
795 uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
796 return static_cast<uint32_t>(mostSignificantBits) << 16 |
797 static_cast<uint32_t>(leastSignificantBits);
798}
799
800// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
801// each component is converted to a normalized floating-point value to generate the returned two
802// float values. The first float value will be extracted from the least significant bits of the
803// input; the last float value will be extracted from the most-significant bits. The conversion for
804// unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0
805inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
806{
807 uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
808 uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
809 *f1 = static_cast<float>(leastSignificantBits) / 65535.0f;
810 *f2 = static_cast<float>(mostSignificantBits) / 65535.0f;
811}
812
813// Helper functions intended to be used only here.
814namespace priv
815{
816
817inline uint8_t ToPackedUnorm8(float f)
818{
819 return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
820}
821
822inline int8_t ToPackedSnorm8(float f)
823{
824 return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
825}
826
827} // namespace priv
828
829// Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
830// similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
831// unsigned integer starting from the least significant bits.
832inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
833{
834 uint8_t bits[4];
835 bits[0] = priv::ToPackedUnorm8(f1);
836 bits[1] = priv::ToPackedUnorm8(f2);
837 bits[2] = priv::ToPackedUnorm8(f3);
838 bits[3] = priv::ToPackedUnorm8(f4);
839 uint32_t result = 0u;
840 for (int i = 0; i < 4; ++i)
841 {
842 int shift = i * 8;
843 result |= (static_cast<uint32_t>(bits[i]) << shift);
844 }
845 return result;
846}
847
848// Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
849// Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
850// bits.
851inline void UnpackUnorm4x8(uint32_t u, float *f)
852{
853 for (int i = 0; i < 4; ++i)
854 {
855 int shift = i * 8;
856 uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
857 f[i] = static_cast<float>(bits) / 255.0f;
858 }
859}
860
861// Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
862// are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
863// significant bits.
864inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
865{
866 int8_t bits[4];
867 bits[0] = priv::ToPackedSnorm8(f1);
868 bits[1] = priv::ToPackedSnorm8(f2);
869 bits[2] = priv::ToPackedSnorm8(f3);
870 bits[3] = priv::ToPackedSnorm8(f4);
871 uint32_t result = 0u;
872 for (int i = 0; i < 4; ++i)
873 {
874 int shift = i * 8;
875 result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
876 }
877 return result;
878}
879
880// Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
881// Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
882// bits, and clamped to the range -1.0 to 1.0.
883inline void UnpackSnorm4x8(uint32_t u, float *f)
884{
885 for (int i = 0; i < 4; ++i)
886 {
887 int shift = i * 8;
888 int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
889 f[i] = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
890 }
891}
892
893// Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
894// floating-point representation found in the OpenGL ES Specification, and then packing these
895// two 16-bit integers into a 32-bit unsigned integer.
896// f1: The 16 least-significant bits of the result;
897// f2: The 16 most-significant bits.
898inline uint32_t packHalf2x16(float f1, float f2)
899{
900 uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
901 uint16_t mostSignificantBits = static_cast<uint16_t>(float32ToFloat16(f2));
902 return static_cast<uint32_t>(mostSignificantBits) << 16 |
903 static_cast<uint32_t>(leastSignificantBits);
904}
905
906// Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of
907// 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL
908// ES Specification, and converting them to 32-bit floating-point values. The first float value is
909// obtained from the 16 least-significant bits of u; the second component is obtained from the 16
910// most-significant bits of u.
911inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
912{
913 uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
914 uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
915
916 *f1 = float16ToFloat32(leastSignificantBits);
917 *f2 = float16ToFloat32(mostSignificantBits);
918}
919
920inline uint8_t sRGBToLinear(uint8_t srgbValue)
921{
922 float value = srgbValue / 255.0f;
923 if (value <= 0.04045f)
924 {
925 value = value / 12.92f;
926 }
927 else
928 {
929 value = std::pow((value + 0.055f) / 1.055f, 2.4f);
930 }
931 return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
932}
933
934inline uint8_t linearToSRGB(uint8_t linearValue)
935{
936 float value = linearValue / 255.0f;
937 if (value <= 0.0f)
938 {
939 value = 0.0f;
940 }
941 else if (value < 0.0031308f)
942 {
943 value = value * 12.92f;
944 }
945 else if (value < 1.0f)
946 {
947 value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
948 }
949 else
950 {
951 value = 1.0f;
952 }
953 return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
954}
955
956// Reverse the order of the bits.
957inline uint32_t BitfieldReverse(uint32_t value)
958{
959 // TODO([email protected]): Optimize this if needed. There don't seem to be compiler intrinsics
960 // for this, and right now it's not used in performance-critical paths.
961 uint32_t result = 0u;
962 for (size_t j = 0u; j < 32u; ++j)
963 {
964 result |= (((value >> j) & 1u) << (31u - j));
965 }
966 return result;
967}
968
969// Count the 1 bits.
970#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
971# define ANGLE_HAS_BITCOUNT_32
972inline int BitCount(uint32_t bits)
973{
974 return static_cast<int>(__popcnt(bits));
975}
976# if defined(_M_X64)
977# define ANGLE_HAS_BITCOUNT_64
978inline int BitCount(uint64_t bits)
979{
980 return static_cast<int>(__popcnt64(bits));
981}
982# endif // defined(_M_X64)
983#endif // defined(_M_IX86) || defined(_M_X64)
984
985#if defined(ANGLE_PLATFORM_POSIX)
986# define ANGLE_HAS_BITCOUNT_32
987inline int BitCount(uint32_t bits)
988{
989 return __builtin_popcount(bits);
990}
991
992# if defined(ANGLE_IS_64_BIT_CPU)
993# define ANGLE_HAS_BITCOUNT_64
994inline int BitCount(uint64_t bits)
995{
996 return __builtin_popcountll(bits);
997}
998# endif // defined(ANGLE_IS_64_BIT_CPU)
999#endif // defined(ANGLE_PLATFORM_POSIX)
1000
1001int BitCountPolyfill(uint32_t bits);
1002
1003#if !defined(ANGLE_HAS_BITCOUNT_32)
1004inline int BitCount(const uint32_t bits)
1005{
1006 return BitCountPolyfill(bits);
1007}
1008#endif // !defined(ANGLE_HAS_BITCOUNT_32)
1009
1010#if !defined(ANGLE_HAS_BITCOUNT_64)
1011inline int BitCount(const uint64_t bits)
1012{
1013 return BitCount(static_cast<uint32_t>(bits >> 32)) + BitCount(static_cast<uint32_t>(bits));
1014}
1015#endif // !defined(ANGLE_HAS_BITCOUNT_64)
1016#undef ANGLE_HAS_BITCOUNT_32
1017#undef ANGLE_HAS_BITCOUNT_64
1018
1019inline int BitCount(uint8_t bits)
1020{
1021 return BitCount(static_cast<uint32_t>(bits));
1022}
1023
1024inline int BitCount(uint16_t bits)
1025{
1026 return BitCount(static_cast<uint32_t>(bits));
1027}
1028
1029#if defined(ANGLE_PLATFORM_WINDOWS)
1030// Return the index of the least significant bit set. Indexing is such that bit 0 is the least
1031// significant bit. Implemented for different bit widths on different platforms.
1032inline unsigned long ScanForward(uint32_t bits)
1033{
1034 ASSERT(bits != 0u);
1035 unsigned long firstBitIndex = 0ul;
1036 unsigned char ret = _BitScanForward(&firstBitIndex, bits);
1037 ASSERT(ret != 0u);
1038 return firstBitIndex;
1039}
1040
1041# if defined(ANGLE_IS_64_BIT_CPU)
1042inline unsigned long ScanForward(uint64_t bits)
1043{
1044 ASSERT(bits != 0u);
1045 unsigned long firstBitIndex = 0ul;
1046 unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
1047 ASSERT(ret != 0u);
1048 return firstBitIndex;
1049}
1050# endif // defined(ANGLE_IS_64_BIT_CPU)
1051#endif // defined(ANGLE_PLATFORM_WINDOWS)
1052
1053#if defined(ANGLE_PLATFORM_POSIX)
1054inline unsigned long ScanForward(uint32_t bits)
1055{
1056 ASSERT(bits != 0u);
1057 return static_cast<unsigned long>(__builtin_ctz(bits));
1058}
1059
1060# if defined(ANGLE_IS_64_BIT_CPU)
1061inline unsigned long ScanForward(uint64_t bits)
1062{
1063 ASSERT(bits != 0u);
1064 return static_cast<unsigned long>(__builtin_ctzll(bits));
1065}
1066# endif // defined(ANGLE_IS_64_BIT_CPU)
1067#endif // defined(ANGLE_PLATFORM_POSIX)
1068
1069inline unsigned long ScanForward(uint8_t bits)
1070{
1071 return ScanForward(static_cast<uint32_t>(bits));
1072}
1073
1074inline unsigned long ScanForward(uint16_t bits)
1075{
1076 return ScanForward(static_cast<uint32_t>(bits));
1077}
1078
1079// Return the index of the most significant bit set. Indexing is such that bit 0 is the least
1080// significant bit.
1081inline unsigned long ScanReverse(unsigned long bits)
1082{
1083 ASSERT(bits != 0u);
1084#if defined(ANGLE_PLATFORM_WINDOWS)
1085 unsigned long lastBitIndex = 0ul;
1086 unsigned char ret = _BitScanReverse(&lastBitIndex, bits);
1087 ASSERT(ret != 0u);
1088 return lastBitIndex;
1089#elif defined(ANGLE_PLATFORM_POSIX)
1090 return static_cast<unsigned long>(sizeof(unsigned long) * CHAR_BIT - 1 - __builtin_clzl(bits));
1091#else
1092# error Please implement bit-scan-reverse for your platform!
1093#endif
1094}
1095
1096// Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
1097template <typename T>
1098int FindLSB(T bits)
1099{
1100 static_assert(std::is_integral<T>::value, "must be integral type.");
1101 if (bits == 0u)
1102 {
1103 return -1;
1104 }
1105 else
1106 {
1107 return static_cast<int>(ScanForward(bits));
1108 }
1109}
1110
1111// Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
1112template <typename T>
1113int FindMSB(T bits)
1114{
1115 static_assert(std::is_integral<T>::value, "must be integral type.");
1116 if (bits == 0u)
1117 {
1118 return -1;
1119 }
1120 else
1121 {
1122 return static_cast<int>(ScanReverse(bits));
1123 }
1124}
1125
1126// Returns whether the argument is Not a Number.
1127// IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1128// non-zero.
1129inline bool isNaN(float f)
1130{
1131 // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1132 // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1133 return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1134 (bitCast<uint32_t>(f) & 0x7fffffu);
1135}
1136
1137// Returns whether the argument is infinity.
1138// IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1139// zero.
1140inline bool isInf(float f)
1141{
1142 // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1143 // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1144 return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1145 !(bitCast<uint32_t>(f) & 0x7fffffu);
1146}
1147
1148namespace priv
1149{
1150template <unsigned int N, unsigned int R>
1151struct iSquareRoot
1152{
1153 static constexpr unsigned int solve()
1154 {
1155 return (R * R > N)
1156 ? 0
1157 : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
1158 }
1159 enum Result
1160 {
1161 value = iSquareRoot::solve()
1162 };
1163};
1164
1165template <unsigned int N>
1166struct iSquareRoot<N, N>
1167{
1168 enum result
1169 {
1170 value = N
1171 };
1172};
1173
1174} // namespace priv
1175
1176template <unsigned int N>
1177constexpr unsigned int iSquareRoot()
1178{
1179 return priv::iSquareRoot<N, 1>::value;
1180}
1181
1182// Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
1183//
1184// Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
1185// behavior is undefined.
1186
1187template <typename T>
1188inline T WrappingSum(T lhs, T rhs)
1189{
1190 uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1191 uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1192 return static_cast<T>(lhsUnsigned + rhsUnsigned);
1193}
1194
1195template <typename T>
1196inline T WrappingDiff(T lhs, T rhs)
1197{
1198 uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1199 uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1200 return static_cast<T>(lhsUnsigned - rhsUnsigned);
1201}
1202
1203inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
1204{
1205 int64_t lhsWide = static_cast<int64_t>(lhs);
1206 int64_t rhsWide = static_cast<int64_t>(rhs);
1207 // The multiplication is guaranteed not to overflow.
1208 int64_t resultWide = lhsWide * rhsWide;
1209 // Implement the desired wrapping behavior by masking out the high-order 32 bits.
1210 resultWide = resultWide & 0xffffffffll;
1211 // Casting to a narrower signed type is fine since the casted value is representable in the
1212 // narrower type.
1213 return static_cast<int32_t>(resultWide);
1214}
1215
1216inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension)
1217{
1218 return 2.0f * dimensionScreen / viewportDimension;
1219}
1220
1221inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension)
1222{
1223 float halfShifted = coordinateScreen / viewportDimension;
1224 return 2.0f * (halfShifted - 0.5f);
1225}
1226
1227} // namespace gl
1228
1229namespace rx
1230{
1231
1232template <typename T>
1233T roundUp(const T value, const T alignment)
1234{
1235 auto temp = value + alignment - static_cast<T>(1);
1236 return temp - temp % alignment;
1237}
1238
1239template <typename T>
1240angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
1241{
1242 angle::CheckedNumeric<T> checkedValue(value);
1243 angle::CheckedNumeric<T> checkedAlignment(alignment);
1244 return roundUp(checkedValue, checkedAlignment);
1245}
1246
1247inline unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
1248{
1249 unsigned int divided = value / divisor;
1250 return (divided + ((value % divisor == 0) ? 0 : 1));
1251}
1252
1253#if defined(_MSC_VER)
1254
1255# define ANGLE_ROTL(x, y) _rotl(x, y)
1256# define ANGLE_ROTR16(x, y) _rotr16(x, y)
1257
1258#else
1259
1260inline uint32_t RotL(uint32_t x, int8_t r)
1261{
1262 return (x << r) | (x >> (32 - r));
1263}
1264
1265inline uint16_t RotR16(uint16_t x, int8_t r)
1266{
1267 return (x >> r) | (x << (16 - r));
1268}
1269
1270# define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
1271# define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
1272
1273#endif // namespace rx
1274
1275constexpr unsigned int Log2(unsigned int bytes)
1276{
1277 return bytes == 1 ? 0 : (1 + Log2(bytes / 2));
1278}
1279} // namespace rx
1280
1281#endif // COMMON_MATHUTIL_H_
1282