1 | /* |
2 | * Copyright (C) 2015-2016 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "MathCommon.h" |
28 | |
29 | #include "PureNaN.h" |
30 | |
31 | namespace JSC { |
32 | |
33 | #if PLATFORM(IOS_FAMILY) && CPU(ARM_THUMB2) |
34 | |
35 | // The following code is taken from netlib.org: |
36 | // http://www.netlib.org/fdlibm/fdlibm.h |
37 | // http://www.netlib.org/fdlibm/e_pow.c |
38 | // http://www.netlib.org/fdlibm/s_scalbn.c |
39 | // |
40 | // And was originally distributed under the following license: |
41 | |
42 | /* |
43 | * ==================================================== |
44 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
45 | * |
46 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
47 | * Permission to use, copy, modify, and distribute this |
48 | * software is freely granted, provided that this notice |
49 | * is preserved. |
50 | * ==================================================== |
51 | */ |
52 | /* |
53 | * ==================================================== |
54 | * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
55 | * |
56 | * Permission to use, copy, modify, and distribute this |
57 | * software is freely granted, provided that this notice |
58 | * is preserved. |
59 | * ==================================================== |
60 | */ |
61 | |
62 | /* __ieee754_pow(x,y) return x**y |
63 | * |
64 | * n |
65 | * Method: Let x = 2 * (1+f) |
66 | * 1. Compute and return log2(x) in two pieces: |
67 | * log2(x) = w1 + w2, |
68 | * where w1 has 53-24 = 29 bit trailing zeros. |
69 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
70 | * arithmetic, where |y'|<=0.5. |
71 | * 3. Return x**y = 2**n*exp(y'*log2) |
72 | * |
73 | * Special cases: |
74 | * 1. (anything) ** 0 is 1 |
75 | * 2. (anything) ** 1 is itself |
76 | * 3. (anything) ** NAN is NAN |
77 | * 4. NAN ** (anything except 0) is NAN |
78 | * 5. +-(|x| > 1) ** +INF is +INF |
79 | * 6. +-(|x| > 1) ** -INF is +0 |
80 | * 7. +-(|x| < 1) ** +INF is +0 |
81 | * 8. +-(|x| < 1) ** -INF is +INF |
82 | * 9. +-1 ** +-INF is NAN |
83 | * 10. +0 ** (+anything except 0, NAN) is +0 |
84 | * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
85 | * 12. +0 ** (-anything except 0, NAN) is +INF |
86 | * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
87 | * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
88 | * 15. +INF ** (+anything except 0,NAN) is +INF |
89 | * 16. +INF ** (-anything except 0,NAN) is +0 |
90 | * 17. -INF ** (anything) = -0 ** (-anything) |
91 | * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
92 | * 19. (-anything except 0 and inf) ** (non-integer) is NAN |
93 | * |
94 | * Accuracy: |
95 | * pow(x,y) returns x**y nearly rounded. In particular |
96 | * pow(integer,integer) |
97 | * always returns the correct integer provided it is |
98 | * representable. |
99 | * |
100 | * Constants : |
101 | * The hexadecimal values are the intended ones for the following |
102 | * constants. The decimal values may be used, provided that the |
103 | * compiler will convert from decimal to binary accurately enough |
104 | * to produce the hexadecimal values shown. |
105 | */ |
106 | |
107 | #define __HI(x) *(1+(int*)&x) |
108 | #define __LO(x) *(int*)&x |
109 | |
110 | static const double |
111 | bp[] = {1.0, 1.5,}, |
112 | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
113 | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
114 | zero = 0.0, |
115 | one = 1.0, |
116 | two = 2.0, |
117 | two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
118 | huge = 1.0e300, |
119 | tiny = 1.0e-300, |
120 | /* for scalbn */ |
121 | two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
122 | twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ |
123 | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
124 | L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
125 | L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
126 | L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
127 | L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
128 | L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
129 | L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
130 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
131 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
132 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
133 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
134 | P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
135 | lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
136 | lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
137 | lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
138 | ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
139 | cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
140 | cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
141 | cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
142 | ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
143 | ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
144 | ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
145 | |
146 | inline double fdlibmScalbn (double x, int n) |
147 | { |
148 | int k,hx,lx; |
149 | hx = __HI(x); |
150 | lx = __LO(x); |
151 | k = (hx&0x7ff00000)>>20; /* extract exponent */ |
152 | if (k==0) { /* 0 or subnormal x */ |
153 | if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ |
154 | x *= two54; |
155 | hx = __HI(x); |
156 | k = ((hx&0x7ff00000)>>20) - 54; |
157 | if (n< -50000) return tiny*x; /*underflow*/ |
158 | } |
159 | if (k==0x7ff) return x+x; /* NaN or Inf */ |
160 | k = k+n; |
161 | if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ |
162 | if (k > 0) /* normal result */ |
163 | {__HI(x) = (hx&0x800fffff)|(k<<20); return x;} |
164 | if (k <= -54) { |
165 | if (n > 50000) /* in case integer overflow in n+k */ |
166 | return huge*copysign(huge,x); /*overflow*/ |
167 | else return tiny*copysign(tiny,x); /*underflow*/ |
168 | } |
169 | k += 54; /* subnormal result */ |
170 | __HI(x) = (hx&0x800fffff)|(k<<20); |
171 | return x*twom54; |
172 | } |
173 | |
174 | static double fdlibmPow(double x, double y) |
175 | { |
176 | double z,ax,z_h,z_l,p_h,p_l; |
177 | double y1,t1,t2,r,s,t,u,v,w; |
178 | int i0,i1,i,j,k,yisint,n; |
179 | int hx,hy,ix,iy; |
180 | unsigned lx,ly; |
181 | |
182 | i0 = ((*(const int*)&one)>>29)^1; i1=1-i0; |
183 | hx = __HI(x); lx = __LO(x); |
184 | hy = __HI(y); ly = __LO(y); |
185 | ix = hx&0x7fffffff; iy = hy&0x7fffffff; |
186 | |
187 | /* y==zero: x**0 = 1 */ |
188 | if((iy|ly)==0) return one; |
189 | |
190 | /* +-NaN return x+y */ |
191 | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
192 | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
193 | return x+y; |
194 | |
195 | /* determine if y is an odd int when x < 0 |
196 | * yisint = 0 ... y is not an integer |
197 | * yisint = 1 ... y is an odd int |
198 | * yisint = 2 ... y is an even int |
199 | */ |
200 | yisint = 0; |
201 | if(hx<0) { |
202 | if(iy>=0x43400000) yisint = 2; /* even integer y */ |
203 | else if(iy>=0x3ff00000) { |
204 | k = (iy>>20)-0x3ff; /* exponent */ |
205 | if(k>20) { |
206 | j = ly>>(52-k); |
207 | if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1); |
208 | } else if(ly==0) { |
209 | j = iy>>(20-k); |
210 | if((j<<(20-k))==iy) yisint = 2-(j&1); |
211 | } |
212 | } |
213 | } |
214 | |
215 | /* special value of y */ |
216 | if(ly==0) { |
217 | if (iy==0x7ff00000) { /* y is +-inf */ |
218 | if(((ix-0x3ff00000)|lx)==0) |
219 | return y - y; /* inf**+-1 is NaN */ |
220 | else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ |
221 | return (hy>=0)? y: zero; |
222 | else /* (|x|<1)**-,+inf = inf,0 */ |
223 | return (hy<0)?-y: zero; |
224 | } |
225 | if(iy==0x3ff00000) { /* y is +-1 */ |
226 | if(hy<0) return one/x; else return x; |
227 | } |
228 | if(hy==0x40000000) return x*x; /* y is 2 */ |
229 | if(hy==0x3fe00000) { /* y is 0.5 */ |
230 | if(hx>=0) /* x >= +0 */ |
231 | return sqrt(x); |
232 | } |
233 | } |
234 | |
235 | ax = fabs(x); |
236 | /* special value of x */ |
237 | if(lx==0) { |
238 | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
239 | z = ax; /*x is +-0,+-inf,+-1*/ |
240 | if(hy<0) z = one/z; /* z = (1/|x|) */ |
241 | if(hx<0) { |
242 | if(((ix-0x3ff00000)|yisint)==0) { |
243 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
244 | } else if(yisint==1) |
245 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
246 | } |
247 | return z; |
248 | } |
249 | } |
250 | |
251 | n = (hx>>31)+1; |
252 | |
253 | /* (x<0)**(non-int) is NaN */ |
254 | if((n|yisint)==0) return (x-x)/(x-x); |
255 | |
256 | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
257 | if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ |
258 | |
259 | /* |y| is huge */ |
260 | if(iy>0x41e00000) { /* if |y| > 2**31 */ |
261 | if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
262 | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
263 | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
264 | } |
265 | /* over/underflow if x is not close to one */ |
266 | if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; |
267 | if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; |
268 | /* now |1-x| is tiny <= 2**-20, suffice to compute |
269 | log(x) by x-x^2/2+x^3/3-x^4/4 */ |
270 | t = ax-one; /* t has 20 trailing zeros */ |
271 | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); |
272 | u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
273 | v = t*ivln2_l-w*ivln2; |
274 | t1 = u+v; |
275 | __LO(t1) = 0; |
276 | t2 = v-(t1-u); |
277 | } else { |
278 | double ss,s2,s_h,s_l,t_h,t_l; |
279 | n = 0; |
280 | /* take care subnormal number */ |
281 | if(ix<0x00100000) |
282 | {ax *= two53; n -= 53; ix = __HI(ax); } |
283 | n += ((ix)>>20)-0x3ff; |
284 | j = ix&0x000fffff; |
285 | /* determine interval */ |
286 | ix = j|0x3ff00000; /* normalize ix */ |
287 | if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
288 | else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
289 | else {k=0;n+=1;ix -= 0x00100000;} |
290 | __HI(ax) = ix; |
291 | |
292 | /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
293 | u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
294 | v = one/(ax+bp[k]); |
295 | ss = u*v; |
296 | s_h = ss; |
297 | __LO(s_h) = 0; |
298 | /* t_h=ax+bp[k] High */ |
299 | t_h = zero; |
300 | __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); |
301 | t_l = ax - (t_h-bp[k]); |
302 | s_l = v*((u-s_h*t_h)-s_h*t_l); |
303 | /* compute log(ax) */ |
304 | s2 = ss*ss; |
305 | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
306 | r += s_l*(s_h+ss); |
307 | s2 = s_h*s_h; |
308 | t_h = 3.0+s2+r; |
309 | __LO(t_h) = 0; |
310 | t_l = r-((t_h-3.0)-s2); |
311 | /* u+v = ss*(1+...) */ |
312 | u = s_h*t_h; |
313 | v = s_l*t_h+t_l*ss; |
314 | /* 2/(3log2)*(ss+...) */ |
315 | p_h = u+v; |
316 | __LO(p_h) = 0; |
317 | p_l = v-(p_h-u); |
318 | z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
319 | z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
320 | /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
321 | t = (double)n; |
322 | t1 = (((z_h+z_l)+dp_h[k])+t); |
323 | __LO(t1) = 0; |
324 | t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
325 | } |
326 | |
327 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
328 | y1 = y; |
329 | __LO(y1) = 0; |
330 | p_l = (y-y1)*t1+y*t2; |
331 | p_h = y1*t1; |
332 | z = p_l+p_h; |
333 | j = __HI(z); |
334 | i = __LO(z); |
335 | if (j>=0x40900000) { /* z >= 1024 */ |
336 | if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
337 | return s*huge*huge; /* overflow */ |
338 | else { |
339 | if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ |
340 | } |
341 | } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
342 | if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
343 | return s*tiny*tiny; /* underflow */ |
344 | else { |
345 | if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
346 | } |
347 | } |
348 | /* |
349 | * compute 2**(p_h+p_l) |
350 | */ |
351 | i = j&0x7fffffff; |
352 | k = (i>>20)-0x3ff; |
353 | n = 0; |
354 | if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
355 | n = j+(0x00100000>>(k+1)); |
356 | k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
357 | t = zero; |
358 | __HI(t) = (n&~(0x000fffff>>k)); |
359 | n = ((n&0x000fffff)|0x00100000)>>(20-k); |
360 | if(j<0) n = -n; |
361 | p_h -= t; |
362 | } |
363 | t = p_l+p_h; |
364 | __LO(t) = 0; |
365 | u = t*lg2_h; |
366 | v = (p_l-(t-p_h))*lg2+t*lg2_l; |
367 | z = u+v; |
368 | w = v-(z-u); |
369 | t = z*z; |
370 | t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
371 | r = (z*t1)/(t1-two)-(w+z*w); |
372 | z = one-(r-z); |
373 | j = __HI(z); |
374 | j += (n<<20); |
375 | if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */ |
376 | else __HI(z) += (n<<20); |
377 | return s*z; |
378 | } |
379 | |
380 | static ALWAYS_INLINE bool isDenormal(double x) |
381 | { |
382 | static const uint64_t signbit = 0x8000000000000000ULL; |
383 | static const uint64_t minNormal = 0x0001000000000000ULL; |
384 | return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1; |
385 | } |
386 | |
387 | static ALWAYS_INLINE bool isEdgeCase(double x) |
388 | { |
389 | static const uint64_t signbit = 0x8000000000000000ULL; |
390 | static const uint64_t infinity = 0x7fffffffffffffffULL; |
391 | return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1; |
392 | } |
393 | |
394 | static ALWAYS_INLINE double mathPowInternal(double x, double y) |
395 | { |
396 | if (!isDenormal(x) && !isDenormal(y)) { |
397 | double libmResult = std::pow(x, y); |
398 | if (libmResult || isEdgeCase(x) || isEdgeCase(y)) |
399 | return libmResult; |
400 | } |
401 | return fdlibmPow(x, y); |
402 | } |
403 | |
404 | #else |
405 | |
406 | ALWAYS_INLINE double mathPowInternal(double x, double y) |
407 | { |
408 | return pow(x, y); |
409 | } |
410 | |
411 | #endif |
412 | |
413 | double JIT_OPERATION operationMathPow(double x, double y) |
414 | { |
415 | if (std::isnan(y)) |
416 | return PNaN; |
417 | double absoluteBase = fabs(x); |
418 | if (absoluteBase == 1 && std::isinf(y)) |
419 | return PNaN; |
420 | |
421 | if (y == 0.5) { |
422 | if (!absoluteBase) |
423 | return 0; |
424 | if (absoluteBase == std::numeric_limits<double>::infinity()) |
425 | return std::numeric_limits<double>::infinity(); |
426 | return sqrt(x); |
427 | } |
428 | |
429 | if (y == -0.5) { |
430 | if (!absoluteBase) |
431 | return std::numeric_limits<double>::infinity(); |
432 | if (absoluteBase == std::numeric_limits<double>::infinity()) |
433 | return 0.; |
434 | return 1. / sqrt(x); |
435 | } |
436 | |
437 | int32_t yAsInt = y; |
438 | if (static_cast<double>(yAsInt) == y && yAsInt >= 0 && yAsInt <= maxExponentForIntegerMathPow) { |
439 | // If the exponent is a small positive int32 integer, we do a fast exponentiation |
440 | double result = 1; |
441 | double xd = x; |
442 | while (yAsInt) { |
443 | if (yAsInt & 1) |
444 | result *= xd; |
445 | xd *= xd; |
446 | yAsInt >>= 1; |
447 | } |
448 | return result; |
449 | } |
450 | return mathPowInternal(x, y); |
451 | } |
452 | |
453 | int32_t JIT_OPERATION operationToInt32(double value) |
454 | { |
455 | return JSC::toInt32(value); |
456 | } |
457 | |
458 | int32_t JIT_OPERATION operationToInt32SensibleSlow(double number) |
459 | { |
460 | return toInt32Internal<ToInt32Mode::AfterSensibleConversionAttempt>(number); |
461 | } |
462 | |
463 | #if HAVE(ARM_IDIV_INSTRUCTIONS) |
464 | static inline bool isStrictInt32(double value) |
465 | { |
466 | int32_t valueAsInt32 = static_cast<int32_t>(value); |
467 | if (value != valueAsInt32) |
468 | return false; |
469 | |
470 | if (!valueAsInt32) { |
471 | if (std::signbit(value)) |
472 | return false; |
473 | } |
474 | return true; |
475 | } |
476 | #endif |
477 | |
478 | extern "C" { |
479 | double jsRound(double value) |
480 | { |
481 | double integer = ceil(value); |
482 | return integer - (integer - value > 0.5); |
483 | } |
484 | |
485 | #if CALLING_CONVENTION_IS_STDCALL || CPU(ARM_THUMB2) |
486 | double jsMod(double x, double y) |
487 | { |
488 | #if HAVE(ARM_IDIV_INSTRUCTIONS) |
489 | // fmod() does not have exact results for integer on ARMv7. |
490 | // When DFG/FTL use IDIV, the result of op_mod can change if we use fmod(). |
491 | // |
492 | // We implement here the same algorithm and conditions as the upper tier to keep |
493 | // a stable result when tiering up. |
494 | if (y) { |
495 | if (isStrictInt32(x) && isStrictInt32(y)) { |
496 | int32_t xAsInt32 = static_cast<int32_t>(x); |
497 | int32_t yAsInt32 = static_cast<int32_t>(y); |
498 | int32_t quotient = xAsInt32 / yAsInt32; |
499 | if (!productOverflows<int32_t>(quotient, yAsInt32)) { |
500 | int32_t remainder = xAsInt32 - (quotient * yAsInt32); |
501 | if (remainder || xAsInt32 >= 0) |
502 | return remainder; |
503 | } |
504 | } |
505 | } |
506 | #endif |
507 | return fmod(x, y); |
508 | } |
509 | #endif |
510 | } // extern "C" |
511 | |
512 | namespace Math { |
513 | |
514 | double JIT_OPERATION log1p(double value) |
515 | { |
516 | if (value == 0.0) |
517 | return value; |
518 | return std::log1p(value); |
519 | } |
520 | |
521 | } // namespace Math |
522 | } // namespace JSC |
523 | |