1 | /* |
2 | * Copyright (C) 2012-2019 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "DFGFixupPhase.h" |
28 | |
29 | #if ENABLE(DFG_JIT) |
30 | |
31 | #include "ArrayPrototype.h" |
32 | #include "DFGGraph.h" |
33 | #include "DFGInsertionSet.h" |
34 | #include "DFGPhase.h" |
35 | #include "DFGPredictionPropagationPhase.h" |
36 | #include "DFGVariableAccessDataDump.h" |
37 | #include "JSCInlines.h" |
38 | #include "TypeLocation.h" |
39 | |
40 | namespace JSC { namespace DFG { |
41 | |
42 | class FixupPhase : public Phase { |
43 | public: |
44 | FixupPhase(Graph& graph) |
45 | : Phase(graph, "fixup" ) |
46 | , m_insertionSet(graph) |
47 | { |
48 | } |
49 | |
50 | bool run() |
51 | { |
52 | ASSERT(m_graph.m_fixpointState == BeforeFixpoint); |
53 | ASSERT(m_graph.m_form == ThreadedCPS); |
54 | |
55 | m_profitabilityChanged = false; |
56 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
57 | fixupBlock(m_graph.block(blockIndex)); |
58 | |
59 | while (m_profitabilityChanged) { |
60 | m_profitabilityChanged = false; |
61 | |
62 | for (unsigned i = m_graph.m_argumentPositions.size(); i--;) |
63 | m_graph.m_argumentPositions[i].mergeArgumentUnboxingAwareness(); |
64 | |
65 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
66 | fixupGetAndSetLocalsInBlock(m_graph.block(blockIndex)); |
67 | } |
68 | |
69 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
70 | fixupChecksInBlock(m_graph.block(blockIndex)); |
71 | |
72 | m_graph.m_planStage = PlanStage::AfterFixup; |
73 | |
74 | return true; |
75 | } |
76 | |
77 | private: |
78 | |
79 | void fixupArithDivInt32(Node* node, Edge& leftChild, Edge& rightChild) |
80 | { |
81 | if (optimizeForX86() || optimizeForARM64() || optimizeForARMv7IDIVSupported()) { |
82 | fixIntOrBooleanEdge(leftChild); |
83 | fixIntOrBooleanEdge(rightChild); |
84 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
85 | node->setArithMode(Arith::Unchecked); |
86 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
87 | node->setArithMode(Arith::CheckOverflow); |
88 | else |
89 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
90 | return; |
91 | } |
92 | |
93 | // This will cause conversion nodes to be inserted later. |
94 | fixDoubleOrBooleanEdge(leftChild); |
95 | fixDoubleOrBooleanEdge(rightChild); |
96 | |
97 | // We don't need to do ref'ing on the children because we're stealing them from |
98 | // the original division. |
99 | Node* newDivision = m_insertionSet.insertNode(m_indexInBlock, SpecBytecodeDouble, *node); |
100 | newDivision->setResult(NodeResultDouble); |
101 | |
102 | node->setOp(DoubleAsInt32); |
103 | node->children.initialize(Edge(newDivision, DoubleRepUse), Edge(), Edge()); |
104 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
105 | node->setArithMode(Arith::CheckOverflow); |
106 | else |
107 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
108 | |
109 | } |
110 | |
111 | void fixupArithPow(Node* node) |
112 | { |
113 | if (node->child2()->shouldSpeculateInt32OrBooleanForArithmetic()) { |
114 | fixDoubleOrBooleanEdge(node->child1()); |
115 | fixIntOrBooleanEdge(node->child2()); |
116 | return; |
117 | } |
118 | |
119 | fixDoubleOrBooleanEdge(node->child1()); |
120 | fixDoubleOrBooleanEdge(node->child2()); |
121 | } |
122 | |
123 | void fixupArithDiv(Node* node, Edge& leftChild, Edge& rightChild) |
124 | { |
125 | if (m_graph.binaryArithShouldSpeculateInt32(node, FixupPass)) { |
126 | fixupArithDivInt32(node, leftChild, rightChild); |
127 | return; |
128 | } |
129 | |
130 | fixDoubleOrBooleanEdge(leftChild); |
131 | fixDoubleOrBooleanEdge(rightChild); |
132 | node->setResult(NodeResultDouble); |
133 | } |
134 | |
135 | void fixupArithMul(Node* node, Edge& leftChild, Edge& rightChild) |
136 | { |
137 | if (m_graph.binaryArithShouldSpeculateInt32(node, FixupPass)) { |
138 | fixIntOrBooleanEdge(leftChild); |
139 | fixIntOrBooleanEdge(rightChild); |
140 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
141 | node->setArithMode(Arith::Unchecked); |
142 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags()) || leftChild.node() == rightChild.node()) |
143 | node->setArithMode(Arith::CheckOverflow); |
144 | else |
145 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
146 | return; |
147 | } |
148 | if (m_graph.binaryArithShouldSpeculateInt52(node, FixupPass)) { |
149 | fixEdge<Int52RepUse>(leftChild); |
150 | fixEdge<Int52RepUse>(rightChild); |
151 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags()) || leftChild.node() == rightChild.node()) |
152 | node->setArithMode(Arith::CheckOverflow); |
153 | else |
154 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
155 | node->setResult(NodeResultInt52); |
156 | return; |
157 | } |
158 | |
159 | fixDoubleOrBooleanEdge(leftChild); |
160 | fixDoubleOrBooleanEdge(rightChild); |
161 | node->setResult(NodeResultDouble); |
162 | } |
163 | |
164 | void fixupBlock(BasicBlock* block) |
165 | { |
166 | if (!block) |
167 | return; |
168 | ASSERT(block->isReachable); |
169 | m_block = block; |
170 | for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) { |
171 | m_currentNode = block->at(m_indexInBlock); |
172 | fixupNode(m_currentNode); |
173 | } |
174 | m_insertionSet.execute(block); |
175 | } |
176 | |
177 | void fixupNode(Node* node) |
178 | { |
179 | NodeType op = node->op(); |
180 | |
181 | switch (op) { |
182 | case SetLocal: { |
183 | // This gets handled by fixupGetAndSetLocalsInBlock(). |
184 | return; |
185 | } |
186 | |
187 | case ValueSub: { |
188 | Edge& child1 = node->child1(); |
189 | Edge& child2 = node->child2(); |
190 | |
191 | if (Node::shouldSpeculateBigInt(child1.node(), child2.node())) { |
192 | fixEdge<BigIntUse>(child1); |
193 | fixEdge<BigIntUse>(child2); |
194 | break; |
195 | } |
196 | |
197 | if (Node::shouldSpeculateUntypedForArithmetic(node->child1().node(), node->child2().node())) { |
198 | fixEdge<UntypedUse>(child1); |
199 | fixEdge<UntypedUse>(child2); |
200 | break; |
201 | } |
202 | |
203 | if (attemptToMakeIntegerAdd(node)) { |
204 | // FIXME: Clear ArithSub's NodeMustGenerate when ArithMode is unchecked |
205 | // https://bugs.webkit.org/show_bug.cgi?id=190607 |
206 | node->setOp(ArithSub); |
207 | break; |
208 | } |
209 | |
210 | fixDoubleOrBooleanEdge(node->child1()); |
211 | fixDoubleOrBooleanEdge(node->child2()); |
212 | node->setOp(ArithSub); |
213 | node->setResult(NodeResultDouble); |
214 | |
215 | break; |
216 | } |
217 | |
218 | case ValueBitXor: |
219 | case ValueBitOr: |
220 | case ValueBitAnd: { |
221 | if (Node::shouldSpeculateBigInt(node->child1().node(), node->child2().node())) { |
222 | fixEdge<BigIntUse>(node->child1()); |
223 | fixEdge<BigIntUse>(node->child2()); |
224 | break; |
225 | } |
226 | |
227 | if (Node::shouldSpeculateUntypedForBitOps(node->child1().node(), node->child2().node())) { |
228 | fixEdge<UntypedUse>(node->child1()); |
229 | fixEdge<UntypedUse>(node->child2()); |
230 | break; |
231 | } |
232 | |
233 | // In such case, we need to fallback to ArithBitOp |
234 | switch (op) { |
235 | case ValueBitXor: |
236 | node->setOp(ArithBitXor); |
237 | break; |
238 | case ValueBitOr: |
239 | node->setOp(ArithBitOr); |
240 | break; |
241 | case ValueBitAnd: |
242 | node->setOp(ArithBitAnd); |
243 | break; |
244 | default: |
245 | DFG_CRASH(m_graph, node, "Unexpected node during ValueBit operation fixup" ); |
246 | break; |
247 | } |
248 | |
249 | node->clearFlags(NodeMustGenerate); |
250 | node->setResult(NodeResultInt32); |
251 | fixIntConvertingEdge(node->child1()); |
252 | fixIntConvertingEdge(node->child2()); |
253 | break; |
254 | } |
255 | |
256 | case ValueBitNot: { |
257 | Edge& operandEdge = node->child1(); |
258 | |
259 | if (operandEdge.node()->shouldSpeculateBigInt()) { |
260 | node->clearFlags(NodeMustGenerate); |
261 | fixEdge<BigIntUse>(operandEdge); |
262 | } else if (operandEdge.node()->shouldSpeculateUntypedForBitOps()) |
263 | fixEdge<UntypedUse>(operandEdge); |
264 | else { |
265 | node->setOp(ArithBitNot); |
266 | node->setResult(NodeResultInt32); |
267 | node->clearFlags(NodeMustGenerate); |
268 | fixIntConvertingEdge(operandEdge); |
269 | } |
270 | break; |
271 | } |
272 | |
273 | case ArithBitNot: { |
274 | Edge& operandEdge = node->child1(); |
275 | |
276 | fixIntConvertingEdge(operandEdge); |
277 | break; |
278 | } |
279 | |
280 | case ArithBitXor: |
281 | case ArithBitOr: |
282 | case ArithBitAnd: { |
283 | fixIntConvertingEdge(node->child1()); |
284 | fixIntConvertingEdge(node->child2()); |
285 | break; |
286 | } |
287 | |
288 | case BitRShift: |
289 | case BitLShift: |
290 | case BitURShift: { |
291 | if (Node::shouldSpeculateUntypedForBitOps(node->child1().node(), node->child2().node())) { |
292 | fixEdge<UntypedUse>(node->child1()); |
293 | fixEdge<UntypedUse>(node->child2()); |
294 | break; |
295 | } |
296 | fixIntConvertingEdge(node->child1()); |
297 | fixIntConvertingEdge(node->child2()); |
298 | break; |
299 | } |
300 | |
301 | case ArithIMul: { |
302 | fixIntConvertingEdge(node->child1()); |
303 | fixIntConvertingEdge(node->child2()); |
304 | node->setOp(ArithMul); |
305 | node->setArithMode(Arith::Unchecked); |
306 | node->child1().setUseKind(Int32Use); |
307 | node->child2().setUseKind(Int32Use); |
308 | break; |
309 | } |
310 | |
311 | case ArithClz32: { |
312 | if (node->child1()->shouldSpeculateNotCell()) { |
313 | fixIntConvertingEdge(node->child1()); |
314 | node->clearFlags(NodeMustGenerate); |
315 | } else |
316 | fixEdge<UntypedUse>(node->child1()); |
317 | break; |
318 | } |
319 | |
320 | case UInt32ToNumber: { |
321 | fixIntConvertingEdge(node->child1()); |
322 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
323 | node->convertToIdentity(); |
324 | else if (node->canSpeculateInt32(FixupPass)) |
325 | node->setArithMode(Arith::CheckOverflow); |
326 | else { |
327 | node->setArithMode(Arith::DoOverflow); |
328 | node->setResult(enableInt52() ? NodeResultInt52 : NodeResultDouble); |
329 | } |
330 | break; |
331 | } |
332 | |
333 | case ValueNegate: { |
334 | if (node->child1()->shouldSpeculateInt32OrBoolean() && node->canSpeculateInt32(FixupPass)) { |
335 | node->setOp(ArithNegate); |
336 | fixIntOrBooleanEdge(node->child1()); |
337 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
338 | node->setArithMode(Arith::Unchecked); |
339 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
340 | node->setArithMode(Arith::CheckOverflow); |
341 | else |
342 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
343 | node->setResult(NodeResultInt32); |
344 | node->clearFlags(NodeMustGenerate); |
345 | break; |
346 | } |
347 | |
348 | if (m_graph.unaryArithShouldSpeculateInt52(node, FixupPass)) { |
349 | node->setOp(ArithNegate); |
350 | fixEdge<Int52RepUse>(node->child1()); |
351 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
352 | node->setArithMode(Arith::CheckOverflow); |
353 | else |
354 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
355 | node->setResult(NodeResultInt52); |
356 | node->clearFlags(NodeMustGenerate); |
357 | break; |
358 | } |
359 | if (node->child1()->shouldSpeculateNotCell()) { |
360 | node->setOp(ArithNegate); |
361 | fixDoubleOrBooleanEdge(node->child1()); |
362 | node->setResult(NodeResultDouble); |
363 | node->clearFlags(NodeMustGenerate); |
364 | } else { |
365 | fixEdge<UntypedUse>(node->child1()); |
366 | node->setResult(NodeResultJS); |
367 | } |
368 | break; |
369 | } |
370 | |
371 | case ValueAdd: { |
372 | if (attemptToMakeIntegerAdd(node)) { |
373 | node->setOp(ArithAdd); |
374 | break; |
375 | } |
376 | if (Node::shouldSpeculateNumberOrBooleanExpectingDefined(node->child1().node(), node->child2().node())) { |
377 | fixDoubleOrBooleanEdge(node->child1()); |
378 | fixDoubleOrBooleanEdge(node->child2()); |
379 | node->setOp(ArithAdd); |
380 | node->setResult(NodeResultDouble); |
381 | break; |
382 | } |
383 | |
384 | if (attemptToMakeFastStringAdd(node)) |
385 | break; |
386 | |
387 | Edge& child1 = node->child1(); |
388 | Edge& child2 = node->child2(); |
389 | if (child1->shouldSpeculateString() || child2->shouldSpeculateString()) { |
390 | if (child1->shouldSpeculateInt32() || child2->shouldSpeculateInt32()) { |
391 | auto convertString = [&](Node* node, Edge& edge) { |
392 | if (edge->shouldSpeculateInt32()) |
393 | convertStringAddUse<Int32Use>(node, edge); |
394 | else { |
395 | ASSERT(edge->shouldSpeculateString()); |
396 | convertStringAddUse<StringUse>(node, edge); |
397 | } |
398 | }; |
399 | convertString(node, child1); |
400 | convertString(node, child2); |
401 | convertToMakeRope(node); |
402 | break; |
403 | } |
404 | } |
405 | |
406 | if (Node::shouldSpeculateBigInt(child1.node(), child2.node())) { |
407 | fixEdge<BigIntUse>(child1); |
408 | fixEdge<BigIntUse>(child2); |
409 | } else { |
410 | fixEdge<UntypedUse>(child1); |
411 | fixEdge<UntypedUse>(child2); |
412 | } |
413 | |
414 | node->setResult(NodeResultJS); |
415 | break; |
416 | } |
417 | |
418 | case StrCat: { |
419 | if (attemptToMakeFastStringAdd(node)) |
420 | break; |
421 | |
422 | // FIXME: Remove empty string arguments and possibly turn this into a ToString operation. That |
423 | // would require a form of ToString that takes a KnownPrimitiveUse. This is necessary because |
424 | // the implementation of StrCat doesn't dynamically optimize for empty strings. |
425 | // https://bugs.webkit.org/show_bug.cgi?id=148540 |
426 | m_graph.doToChildren( |
427 | node, |
428 | [&] (Edge& edge) { |
429 | fixEdge<KnownPrimitiveUse>(edge); |
430 | // StrCat automatically coerces the values into strings before concatenating them. |
431 | // The ECMA spec says that we're not allowed to automatically coerce a Symbol into |
432 | // a string. If a Symbol is encountered, a TypeError will be thrown. As a result, |
433 | // our runtime functions for this slow path expect that they will never be passed |
434 | // Symbols. |
435 | m_insertionSet.insertNode( |
436 | m_indexInBlock, SpecNone, Check, node->origin, |
437 | Edge(edge.node(), NotSymbolUse)); |
438 | }); |
439 | break; |
440 | } |
441 | |
442 | case MakeRope: { |
443 | fixupMakeRope(node); |
444 | break; |
445 | } |
446 | |
447 | case ArithAdd: |
448 | case ArithSub: { |
449 | // FIXME: Clear ArithSub's NodeMustGenerate when ArithMode is unchecked |
450 | // https://bugs.webkit.org/show_bug.cgi?id=190607 |
451 | if (attemptToMakeIntegerAdd(node)) |
452 | break; |
453 | fixDoubleOrBooleanEdge(node->child1()); |
454 | fixDoubleOrBooleanEdge(node->child2()); |
455 | node->setResult(NodeResultDouble); |
456 | break; |
457 | } |
458 | |
459 | case ArithNegate: { |
460 | if (node->child1()->shouldSpeculateInt32OrBoolean() && node->canSpeculateInt32(FixupPass)) { |
461 | fixIntOrBooleanEdge(node->child1()); |
462 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
463 | node->setArithMode(Arith::Unchecked); |
464 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
465 | node->setArithMode(Arith::CheckOverflow); |
466 | else |
467 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
468 | node->setResult(NodeResultInt32); |
469 | node->clearFlags(NodeMustGenerate); |
470 | break; |
471 | } |
472 | if (m_graph.unaryArithShouldSpeculateInt52(node, FixupPass)) { |
473 | fixEdge<Int52RepUse>(node->child1()); |
474 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
475 | node->setArithMode(Arith::CheckOverflow); |
476 | else |
477 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
478 | node->setResult(NodeResultInt52); |
479 | node->clearFlags(NodeMustGenerate); |
480 | break; |
481 | } |
482 | |
483 | fixDoubleOrBooleanEdge(node->child1()); |
484 | node->setResult(NodeResultDouble); |
485 | node->clearFlags(NodeMustGenerate); |
486 | break; |
487 | } |
488 | |
489 | case ValueMul: { |
490 | Edge& leftChild = node->child1(); |
491 | Edge& rightChild = node->child2(); |
492 | |
493 | if (Node::shouldSpeculateBigInt(leftChild.node(), rightChild.node())) { |
494 | fixEdge<BigIntUse>(node->child1()); |
495 | fixEdge<BigIntUse>(node->child2()); |
496 | node->clearFlags(NodeMustGenerate); |
497 | break; |
498 | } |
499 | |
500 | // There are cases where we can have BigInt + Int32 operands reaching ValueMul. |
501 | // Imagine the scenario where ValueMul was never executed, but we can predict types |
502 | // reaching the node: |
503 | // |
504 | // 63: GetLocal(Check:Untyped:@72, JS|MustGen, NonBoolInt32, ...) predicting NonBoolInt32 |
505 | // 64: GetLocal(Check:Untyped:@71, JS|MustGen, BigInt, ...) predicting BigInt |
506 | // 65: ValueMul(Check:Untyped:@63, Check:Untyped:@64, BigInt|BoolInt32|NonBoolInt32, ...) |
507 | // |
508 | // In such scenario, we need to emit ValueMul(Untyped, Untyped), so the runtime can throw |
509 | // an exception whenever it gets excuted. |
510 | if (Node::shouldSpeculateUntypedForArithmetic(leftChild.node(), rightChild.node())) { |
511 | fixEdge<UntypedUse>(leftChild); |
512 | fixEdge<UntypedUse>(rightChild); |
513 | break; |
514 | } |
515 | |
516 | // At this point, all other possible specializations are only handled by ArithMul. |
517 | node->setOp(ArithMul); |
518 | node->setResult(NodeResultNumber); |
519 | fixupArithMul(node, leftChild, rightChild); |
520 | break; |
521 | } |
522 | |
523 | case ArithMul: { |
524 | Edge& leftChild = node->child1(); |
525 | Edge& rightChild = node->child2(); |
526 | |
527 | fixupArithMul(node, leftChild, rightChild); |
528 | break; |
529 | } |
530 | |
531 | case ValueMod: |
532 | case ValueDiv: { |
533 | Edge& leftChild = node->child1(); |
534 | Edge& rightChild = node->child2(); |
535 | |
536 | if (Node::shouldSpeculateBigInt(leftChild.node(), rightChild.node())) { |
537 | fixEdge<BigIntUse>(leftChild); |
538 | fixEdge<BigIntUse>(rightChild); |
539 | node->clearFlags(NodeMustGenerate); |
540 | break; |
541 | } |
542 | |
543 | if (Node::shouldSpeculateUntypedForArithmetic(leftChild.node(), rightChild.node())) { |
544 | fixEdge<UntypedUse>(leftChild); |
545 | fixEdge<UntypedUse>(rightChild); |
546 | break; |
547 | } |
548 | |
549 | if (op == ValueDiv) |
550 | node->setOp(ArithDiv); |
551 | else |
552 | node->setOp(ArithMod); |
553 | |
554 | node->setResult(NodeResultNumber); |
555 | fixupArithDiv(node, leftChild, rightChild); |
556 | break; |
557 | |
558 | } |
559 | |
560 | case ArithDiv: |
561 | case ArithMod: { |
562 | Edge& leftChild = node->child1(); |
563 | Edge& rightChild = node->child2(); |
564 | |
565 | fixupArithDiv(node, leftChild, rightChild); |
566 | break; |
567 | } |
568 | |
569 | case ArithMin: |
570 | case ArithMax: { |
571 | if (m_graph.binaryArithShouldSpeculateInt32(node, FixupPass)) { |
572 | fixIntOrBooleanEdge(node->child1()); |
573 | fixIntOrBooleanEdge(node->child2()); |
574 | break; |
575 | } |
576 | fixDoubleOrBooleanEdge(node->child1()); |
577 | fixDoubleOrBooleanEdge(node->child2()); |
578 | node->setResult(NodeResultDouble); |
579 | break; |
580 | } |
581 | |
582 | case ArithAbs: { |
583 | if (node->child1()->shouldSpeculateInt32OrBoolean() |
584 | && node->canSpeculateInt32(FixupPass)) { |
585 | fixIntOrBooleanEdge(node->child1()); |
586 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
587 | node->setArithMode(Arith::Unchecked); |
588 | else |
589 | node->setArithMode(Arith::CheckOverflow); |
590 | node->clearFlags(NodeMustGenerate); |
591 | node->setResult(NodeResultInt32); |
592 | break; |
593 | } |
594 | |
595 | if (node->child1()->shouldSpeculateNotCell()) { |
596 | fixDoubleOrBooleanEdge(node->child1()); |
597 | node->clearFlags(NodeMustGenerate); |
598 | } else |
599 | fixEdge<UntypedUse>(node->child1()); |
600 | node->setResult(NodeResultDouble); |
601 | break; |
602 | } |
603 | |
604 | case ValuePow: { |
605 | if (Node::shouldSpeculateBigInt(node->child1().node(), node->child2().node())) { |
606 | fixEdge<BigIntUse>(node->child1()); |
607 | fixEdge<BigIntUse>(node->child2()); |
608 | node->clearFlags(NodeMustGenerate); |
609 | break; |
610 | } |
611 | |
612 | if (Node::shouldSpeculateUntypedForArithmetic(node->child1().node(), node->child2().node())) { |
613 | fixEdge<UntypedUse>(node->child1()); |
614 | fixEdge<UntypedUse>(node->child2()); |
615 | break; |
616 | } |
617 | |
618 | node->setOp(ArithPow); |
619 | node->clearFlags(NodeMustGenerate); |
620 | node->setResult(NodeResultDouble); |
621 | |
622 | fixupArithPow(node); |
623 | break; |
624 | } |
625 | |
626 | case ArithPow: { |
627 | fixupArithPow(node); |
628 | break; |
629 | } |
630 | |
631 | case ArithRandom: { |
632 | node->setResult(NodeResultDouble); |
633 | break; |
634 | } |
635 | |
636 | case ArithRound: |
637 | case ArithFloor: |
638 | case ArithCeil: |
639 | case ArithTrunc: { |
640 | if (node->child1()->shouldSpeculateInt32OrBoolean() && m_graph.roundShouldSpeculateInt32(node, FixupPass)) { |
641 | fixIntOrBooleanEdge(node->child1()); |
642 | insertCheck<Int32Use>(node->child1().node()); |
643 | node->convertToIdentity(); |
644 | break; |
645 | } |
646 | if (node->child1()->shouldSpeculateNotCell()) { |
647 | fixDoubleOrBooleanEdge(node->child1()); |
648 | |
649 | if (isInt32OrBooleanSpeculation(node->getHeapPrediction()) && m_graph.roundShouldSpeculateInt32(node, FixupPass)) { |
650 | node->setResult(NodeResultInt32); |
651 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
652 | node->setArithRoundingMode(Arith::RoundingMode::Int32); |
653 | else |
654 | node->setArithRoundingMode(Arith::RoundingMode::Int32WithNegativeZeroCheck); |
655 | } else { |
656 | node->setResult(NodeResultDouble); |
657 | node->setArithRoundingMode(Arith::RoundingMode::Double); |
658 | } |
659 | node->clearFlags(NodeMustGenerate); |
660 | } else |
661 | fixEdge<UntypedUse>(node->child1()); |
662 | break; |
663 | } |
664 | |
665 | case ArithFRound: |
666 | case ArithSqrt: |
667 | case ArithUnary: { |
668 | Edge& child1 = node->child1(); |
669 | if (child1->shouldSpeculateNotCell()) { |
670 | fixDoubleOrBooleanEdge(child1); |
671 | node->clearFlags(NodeMustGenerate); |
672 | } else |
673 | fixEdge<UntypedUse>(child1); |
674 | break; |
675 | } |
676 | |
677 | case LogicalNot: { |
678 | if (node->child1()->shouldSpeculateBoolean()) { |
679 | if (node->child1()->result() == NodeResultBoolean) { |
680 | // This is necessary in case we have a bytecode instruction implemented by: |
681 | // |
682 | // a: CompareEq(...) |
683 | // b: LogicalNot(@a) |
684 | // |
685 | // In that case, CompareEq might have a side-effect. Then, we need to make |
686 | // sure that we know that Branch does not exit. |
687 | fixEdge<KnownBooleanUse>(node->child1()); |
688 | } else |
689 | fixEdge<BooleanUse>(node->child1()); |
690 | } else if (node->child1()->shouldSpeculateObjectOrOther()) |
691 | fixEdge<ObjectOrOtherUse>(node->child1()); |
692 | else if (node->child1()->shouldSpeculateInt32OrBoolean()) |
693 | fixIntOrBooleanEdge(node->child1()); |
694 | else if (node->child1()->shouldSpeculateNumber()) |
695 | fixEdge<DoubleRepUse>(node->child1()); |
696 | else if (node->child1()->shouldSpeculateString()) |
697 | fixEdge<StringUse>(node->child1()); |
698 | else if (node->child1()->shouldSpeculateStringOrOther()) |
699 | fixEdge<StringOrOtherUse>(node->child1()); |
700 | else { |
701 | WatchpointSet* masqueradesAsUndefinedWatchpoint = m_graph.globalObjectFor(node->origin.semantic)->masqueradesAsUndefinedWatchpoint(); |
702 | if (masqueradesAsUndefinedWatchpoint->isStillValid()) |
703 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
704 | } |
705 | break; |
706 | } |
707 | |
708 | case CompareEq: |
709 | case CompareLess: |
710 | case CompareLessEq: |
711 | case CompareGreater: |
712 | case CompareGreaterEq: { |
713 | if (node->op() == CompareEq |
714 | && Node::shouldSpeculateBoolean(node->child1().node(), node->child2().node())) { |
715 | fixEdge<BooleanUse>(node->child1()); |
716 | fixEdge<BooleanUse>(node->child2()); |
717 | node->clearFlags(NodeMustGenerate); |
718 | break; |
719 | } |
720 | if (Node::shouldSpeculateInt32OrBoolean(node->child1().node(), node->child2().node())) { |
721 | fixIntOrBooleanEdge(node->child1()); |
722 | fixIntOrBooleanEdge(node->child2()); |
723 | node->clearFlags(NodeMustGenerate); |
724 | break; |
725 | } |
726 | if (Node::shouldSpeculateInt52(node->child1().node(), node->child2().node())) { |
727 | fixEdge<Int52RepUse>(node->child1()); |
728 | fixEdge<Int52RepUse>(node->child2()); |
729 | node->clearFlags(NodeMustGenerate); |
730 | break; |
731 | } |
732 | if (Node::shouldSpeculateNumberOrBoolean(node->child1().node(), node->child2().node())) { |
733 | fixDoubleOrBooleanEdge(node->child1()); |
734 | fixDoubleOrBooleanEdge(node->child2()); |
735 | } |
736 | if (node->op() != CompareEq |
737 | && node->child1()->shouldSpeculateNotCell() |
738 | && node->child2()->shouldSpeculateNotCell()) { |
739 | if (node->child1()->shouldSpeculateNumberOrBoolean()) |
740 | fixDoubleOrBooleanEdge(node->child1()); |
741 | else |
742 | fixEdge<DoubleRepUse>(node->child1()); |
743 | if (node->child2()->shouldSpeculateNumberOrBoolean()) |
744 | fixDoubleOrBooleanEdge(node->child2()); |
745 | else |
746 | fixEdge<DoubleRepUse>(node->child2()); |
747 | node->clearFlags(NodeMustGenerate); |
748 | break; |
749 | } |
750 | if (node->child1()->shouldSpeculateStringIdent() && node->child2()->shouldSpeculateStringIdent()) { |
751 | fixEdge<StringIdentUse>(node->child1()); |
752 | fixEdge<StringIdentUse>(node->child2()); |
753 | node->clearFlags(NodeMustGenerate); |
754 | break; |
755 | } |
756 | if (node->child1()->shouldSpeculateString() && node->child2()->shouldSpeculateString() && GPRInfo::numberOfRegisters >= 7) { |
757 | fixEdge<StringUse>(node->child1()); |
758 | fixEdge<StringUse>(node->child2()); |
759 | node->clearFlags(NodeMustGenerate); |
760 | break; |
761 | } |
762 | |
763 | if (node->op() != CompareEq) |
764 | break; |
765 | if (Node::shouldSpeculateSymbol(node->child1().node(), node->child2().node())) { |
766 | fixEdge<SymbolUse>(node->child1()); |
767 | fixEdge<SymbolUse>(node->child2()); |
768 | node->clearFlags(NodeMustGenerate); |
769 | break; |
770 | } |
771 | if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObject()) { |
772 | fixEdge<ObjectUse>(node->child1()); |
773 | fixEdge<ObjectUse>(node->child2()); |
774 | node->clearFlags(NodeMustGenerate); |
775 | break; |
776 | } |
777 | |
778 | // If either child can be proved to be Null or Undefined, comparing them is greatly simplified. |
779 | bool oneArgumentIsUsedAsSpecOther = false; |
780 | if (node->child1()->isUndefinedOrNullConstant()) { |
781 | fixEdge<KnownOtherUse>(node->child1()); |
782 | oneArgumentIsUsedAsSpecOther = true; |
783 | } else if (node->child1()->shouldSpeculateOther()) { |
784 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, |
785 | Edge(node->child1().node(), OtherUse)); |
786 | fixEdge<KnownOtherUse>(node->child1()); |
787 | oneArgumentIsUsedAsSpecOther = true; |
788 | } |
789 | if (node->child2()->isUndefinedOrNullConstant()) { |
790 | fixEdge<KnownOtherUse>(node->child2()); |
791 | oneArgumentIsUsedAsSpecOther = true; |
792 | } else if (node->child2()->shouldSpeculateOther()) { |
793 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, |
794 | Edge(node->child2().node(), OtherUse)); |
795 | fixEdge<KnownOtherUse>(node->child2()); |
796 | oneArgumentIsUsedAsSpecOther = true; |
797 | } |
798 | if (oneArgumentIsUsedAsSpecOther) { |
799 | node->clearFlags(NodeMustGenerate); |
800 | break; |
801 | } |
802 | |
803 | if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObjectOrOther()) { |
804 | fixEdge<ObjectUse>(node->child1()); |
805 | fixEdge<ObjectOrOtherUse>(node->child2()); |
806 | node->clearFlags(NodeMustGenerate); |
807 | break; |
808 | } |
809 | if (node->child1()->shouldSpeculateObjectOrOther() && node->child2()->shouldSpeculateObject()) { |
810 | fixEdge<ObjectOrOtherUse>(node->child1()); |
811 | fixEdge<ObjectUse>(node->child2()); |
812 | node->clearFlags(NodeMustGenerate); |
813 | break; |
814 | } |
815 | |
816 | break; |
817 | } |
818 | |
819 | case CompareStrictEq: |
820 | case SameValue: { |
821 | fixupCompareStrictEqAndSameValue(node); |
822 | break; |
823 | } |
824 | |
825 | case StringFromCharCode: |
826 | if (node->child1()->shouldSpeculateInt32()) { |
827 | fixEdge<Int32Use>(node->child1()); |
828 | node->clearFlags(NodeMustGenerate); |
829 | } else |
830 | fixEdge<UntypedUse>(node->child1()); |
831 | break; |
832 | |
833 | case StringCharAt: |
834 | case StringCharCodeAt: { |
835 | // Currently we have no good way of refining these. |
836 | ASSERT(node->arrayMode() == ArrayMode(Array::String, Array::Read)); |
837 | blessArrayOperation(node->child1(), node->child2(), node->child3()); |
838 | fixEdge<KnownStringUse>(node->child1()); |
839 | fixEdge<Int32Use>(node->child2()); |
840 | break; |
841 | } |
842 | |
843 | case GetByVal: { |
844 | if (!node->prediction()) { |
845 | m_insertionSet.insertNode( |
846 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
847 | } |
848 | |
849 | node->setArrayMode( |
850 | node->arrayMode().refine( |
851 | m_graph, node, |
852 | m_graph.varArgChild(node, 0)->prediction(), |
853 | m_graph.varArgChild(node, 1)->prediction(), |
854 | SpecNone)); |
855 | |
856 | blessArrayOperation(m_graph.varArgChild(node, 0), m_graph.varArgChild(node, 1), m_graph.varArgChild(node, 2)); |
857 | |
858 | ArrayMode arrayMode = node->arrayMode(); |
859 | switch (arrayMode.type()) { |
860 | case Array::Contiguous: |
861 | case Array::Double: |
862 | if (arrayMode.isJSArrayWithOriginalStructure() && arrayMode.speculation() == Array::InBounds) { |
863 | // Check if SaneChain will work on a per-type basis. Note that: |
864 | // |
865 | // 1) We don't want double arrays to sometimes return undefined, since |
866 | // that would require a change to the return type and it would pessimise |
867 | // things a lot. So, we'd only want to do that if we actually had |
868 | // evidence that we could read from a hole. That's pretty annoying. |
869 | // Likely the best way to handle that case is with an equivalent of |
870 | // SaneChain for OutOfBounds. For now we just detect when Undefined and |
871 | // NaN are indistinguishable according to backwards propagation, and just |
872 | // use SaneChain in that case. This happens to catch a lot of cases. |
873 | // |
874 | // 2) We don't want int32 array loads to have to do a hole check just to |
875 | // coerce to Undefined, since that would mean twice the checks. |
876 | // |
877 | // This has two implications. First, we have to do more checks than we'd |
878 | // like. It's unfortunate that we have to do the hole check. Second, |
879 | // some accesses that hit a hole will now need to take the full-blown |
880 | // out-of-bounds slow path. We can fix that with: |
881 | // https://bugs.webkit.org/show_bug.cgi?id=144668 |
882 | |
883 | bool canDoSaneChain = false; |
884 | switch (arrayMode.type()) { |
885 | case Array::Contiguous: |
886 | // This is happens to be entirely natural. We already would have |
887 | // returned any JSValue, and now we'll return Undefined. We still do |
888 | // the check but it doesn't require taking any kind of slow path. |
889 | canDoSaneChain = true; |
890 | break; |
891 | |
892 | case Array::Double: |
893 | if (!(node->flags() & NodeBytecodeUsesAsOther)) { |
894 | // Holes look like NaN already, so if the user doesn't care |
895 | // about the difference between Undefined and NaN then we can |
896 | // do this. |
897 | canDoSaneChain = true; |
898 | } |
899 | break; |
900 | |
901 | default: |
902 | break; |
903 | } |
904 | |
905 | if (canDoSaneChain) { |
906 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
907 | Structure* arrayPrototypeStructure = globalObject->arrayPrototype()->structure(vm()); |
908 | Structure* objectPrototypeStructure = globalObject->objectPrototype()->structure(vm()); |
909 | if (arrayPrototypeStructure->transitionWatchpointSetIsStillValid() |
910 | && objectPrototypeStructure->transitionWatchpointSetIsStillValid() |
911 | && globalObject->arrayPrototypeChainIsSane()) { |
912 | m_graph.registerAndWatchStructureTransition(arrayPrototypeStructure); |
913 | m_graph.registerAndWatchStructureTransition(objectPrototypeStructure); |
914 | node->setArrayMode(arrayMode.withSpeculation(Array::SaneChain)); |
915 | } |
916 | } |
917 | } |
918 | break; |
919 | |
920 | case Array::String: |
921 | if ((node->prediction() & ~SpecString) |
922 | || m_graph.hasExitSite(node->origin.semantic, OutOfBounds)) |
923 | node->setArrayMode(arrayMode.withSpeculation(Array::OutOfBounds)); |
924 | break; |
925 | |
926 | default: |
927 | break; |
928 | } |
929 | |
930 | arrayMode = node->arrayMode(); |
931 | switch (arrayMode.type()) { |
932 | case Array::SelectUsingPredictions: |
933 | case Array::Unprofiled: |
934 | RELEASE_ASSERT_NOT_REACHED(); |
935 | break; |
936 | case Array::Generic: |
937 | if (m_graph.varArgChild(node, 0)->shouldSpeculateObject()) { |
938 | if (m_graph.varArgChild(node, 1)->shouldSpeculateString()) { |
939 | fixEdge<ObjectUse>(m_graph.varArgChild(node, 0)); |
940 | fixEdge<StringUse>(m_graph.varArgChild(node, 1)); |
941 | break; |
942 | } |
943 | |
944 | if (m_graph.varArgChild(node, 1)->shouldSpeculateSymbol()) { |
945 | fixEdge<ObjectUse>(m_graph.varArgChild(node, 0)); |
946 | fixEdge<SymbolUse>(m_graph.varArgChild(node, 1)); |
947 | break; |
948 | } |
949 | } |
950 | #if USE(JSVALUE32_64) |
951 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); // Speculating cell due to register pressure on 32-bit. |
952 | #endif |
953 | break; |
954 | case Array::ForceExit: |
955 | break; |
956 | case Array::String: |
957 | fixEdge<KnownStringUse>(m_graph.varArgChild(node, 0)); |
958 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
959 | break; |
960 | default: |
961 | fixEdge<KnownCellUse>(m_graph.varArgChild(node, 0)); |
962 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
963 | break; |
964 | } |
965 | |
966 | switch (arrayMode.type()) { |
967 | case Array::Double: |
968 | if (!arrayMode.isOutOfBounds()) |
969 | node->setResult(NodeResultDouble); |
970 | break; |
971 | |
972 | case Array::Float32Array: |
973 | case Array::Float64Array: |
974 | node->setResult(NodeResultDouble); |
975 | break; |
976 | |
977 | case Array::Uint32Array: |
978 | if (node->shouldSpeculateInt32()) |
979 | break; |
980 | if (node->shouldSpeculateInt52()) |
981 | node->setResult(NodeResultInt52); |
982 | else |
983 | node->setResult(NodeResultDouble); |
984 | break; |
985 | |
986 | default: |
987 | break; |
988 | } |
989 | |
990 | break; |
991 | } |
992 | |
993 | case PutByValDirect: |
994 | case PutByVal: |
995 | case PutByValAlias: { |
996 | Edge& child1 = m_graph.varArgChild(node, 0); |
997 | Edge& child2 = m_graph.varArgChild(node, 1); |
998 | Edge& child3 = m_graph.varArgChild(node, 2); |
999 | |
1000 | node->setArrayMode( |
1001 | node->arrayMode().refine( |
1002 | m_graph, node, |
1003 | child1->prediction(), |
1004 | child2->prediction(), |
1005 | child3->prediction())); |
1006 | |
1007 | blessArrayOperation(child1, child2, m_graph.varArgChild(node, 3)); |
1008 | |
1009 | switch (node->arrayMode().modeForPut().type()) { |
1010 | case Array::SelectUsingPredictions: |
1011 | case Array::SelectUsingArguments: |
1012 | case Array::Unprofiled: |
1013 | case Array::Undecided: |
1014 | RELEASE_ASSERT_NOT_REACHED(); |
1015 | break; |
1016 | case Array::ForceExit: |
1017 | case Array::Generic: |
1018 | if (child1->shouldSpeculateCell()) { |
1019 | if (child2->shouldSpeculateString()) { |
1020 | fixEdge<CellUse>(child1); |
1021 | fixEdge<StringUse>(child2); |
1022 | break; |
1023 | } |
1024 | |
1025 | if (child2->shouldSpeculateSymbol()) { |
1026 | fixEdge<CellUse>(child1); |
1027 | fixEdge<SymbolUse>(child2); |
1028 | break; |
1029 | } |
1030 | } |
1031 | #if USE(JSVALUE32_64) |
1032 | // Due to register pressure on 32-bit, we speculate cell and |
1033 | // ignore the base-is-not-cell case entirely by letting the |
1034 | // baseline JIT handle it. |
1035 | fixEdge<CellUse>(child1); |
1036 | #endif |
1037 | break; |
1038 | case Array::Int32: |
1039 | fixEdge<KnownCellUse>(child1); |
1040 | fixEdge<Int32Use>(child2); |
1041 | fixEdge<Int32Use>(child3); |
1042 | break; |
1043 | case Array::Double: |
1044 | fixEdge<KnownCellUse>(child1); |
1045 | fixEdge<Int32Use>(child2); |
1046 | fixEdge<DoubleRepRealUse>(child3); |
1047 | break; |
1048 | case Array::Int8Array: |
1049 | case Array::Int16Array: |
1050 | case Array::Int32Array: |
1051 | case Array::Uint8Array: |
1052 | case Array::Uint8ClampedArray: |
1053 | case Array::Uint16Array: |
1054 | case Array::Uint32Array: |
1055 | fixEdge<KnownCellUse>(child1); |
1056 | fixEdge<Int32Use>(child2); |
1057 | if (child3->shouldSpeculateInt32()) |
1058 | fixIntOrBooleanEdge(child3); |
1059 | else if (child3->shouldSpeculateInt52()) |
1060 | fixEdge<Int52RepUse>(child3); |
1061 | else |
1062 | fixDoubleOrBooleanEdge(child3); |
1063 | break; |
1064 | case Array::Float32Array: |
1065 | case Array::Float64Array: |
1066 | fixEdge<KnownCellUse>(child1); |
1067 | fixEdge<Int32Use>(child2); |
1068 | fixDoubleOrBooleanEdge(child3); |
1069 | break; |
1070 | case Array::Contiguous: |
1071 | case Array::ArrayStorage: |
1072 | case Array::SlowPutArrayStorage: |
1073 | fixEdge<KnownCellUse>(child1); |
1074 | fixEdge<Int32Use>(child2); |
1075 | speculateForBarrier(child3); |
1076 | break; |
1077 | default: |
1078 | fixEdge<KnownCellUse>(child1); |
1079 | fixEdge<Int32Use>(child2); |
1080 | break; |
1081 | } |
1082 | break; |
1083 | } |
1084 | |
1085 | case AtomicsAdd: |
1086 | case AtomicsAnd: |
1087 | case AtomicsCompareExchange: |
1088 | case AtomicsExchange: |
1089 | case AtomicsLoad: |
1090 | case AtomicsOr: |
1091 | case AtomicsStore: |
1092 | case AtomicsSub: |
1093 | case AtomicsXor: { |
1094 | Edge& base = m_graph.child(node, 0); |
1095 | Edge& index = m_graph.child(node, 1); |
1096 | |
1097 | bool badNews = false; |
1098 | for (unsigned i = numExtraAtomicsArgs(node->op()); i--;) { |
1099 | Edge& child = m_graph.child(node, 2 + i); |
1100 | // NOTE: DFG is not smart enough to handle double->int conversions in atomics. So, we |
1101 | // just call the function when that happens. But the FTL is totally cool with those |
1102 | // conversions. |
1103 | if (!child->shouldSpeculateInt32() |
1104 | && !child->shouldSpeculateInt52() |
1105 | && !(child->shouldSpeculateNumberOrBoolean() && m_graph.m_plan.isFTL())) |
1106 | badNews = true; |
1107 | } |
1108 | |
1109 | if (badNews) { |
1110 | node->setArrayMode(ArrayMode(Array::Generic, node->arrayMode().action())); |
1111 | break; |
1112 | } |
1113 | |
1114 | node->setArrayMode( |
1115 | node->arrayMode().refine( |
1116 | m_graph, node, base->prediction(), index->prediction())); |
1117 | |
1118 | if (node->arrayMode().type() == Array::Generic) |
1119 | break; |
1120 | |
1121 | for (unsigned i = numExtraAtomicsArgs(node->op()); i--;) { |
1122 | Edge& child = m_graph.child(node, 2 + i); |
1123 | if (child->shouldSpeculateInt32()) |
1124 | fixIntOrBooleanEdge(child); |
1125 | else if (child->shouldSpeculateInt52()) |
1126 | fixEdge<Int52RepUse>(child); |
1127 | else { |
1128 | RELEASE_ASSERT(child->shouldSpeculateNumberOrBoolean() && m_graph.m_plan.isFTL()); |
1129 | fixDoubleOrBooleanEdge(child); |
1130 | } |
1131 | } |
1132 | |
1133 | blessArrayOperation(base, index, m_graph.child(node, 2 + numExtraAtomicsArgs(node->op()))); |
1134 | fixEdge<CellUse>(base); |
1135 | fixEdge<Int32Use>(index); |
1136 | |
1137 | if (node->arrayMode().type() == Array::Uint32Array) { |
1138 | // NOTE: This means basically always doing Int52. |
1139 | if (node->shouldSpeculateInt52()) |
1140 | node->setResult(NodeResultInt52); |
1141 | else |
1142 | node->setResult(NodeResultDouble); |
1143 | } |
1144 | break; |
1145 | } |
1146 | |
1147 | case AtomicsIsLockFree: |
1148 | if (node->child1()->shouldSpeculateInt32()) |
1149 | fixIntOrBooleanEdge(node->child1()); |
1150 | break; |
1151 | |
1152 | case ArrayPush: { |
1153 | // May need to refine the array mode in case the value prediction contravenes |
1154 | // the array prediction. For example, we may have evidence showing that the |
1155 | // array is in Int32 mode, but the value we're storing is likely to be a double. |
1156 | // Then we should turn this into a conversion to Double array followed by the |
1157 | // push. On the other hand, we absolutely don't want to refine based on the |
1158 | // base prediction. If it has non-cell garbage in it, then we want that to be |
1159 | // ignored. That's because ArrayPush can't handle any array modes that aren't |
1160 | // array-related - so if refine() turned this into a "Generic" ArrayPush then |
1161 | // that would break things. |
1162 | Edge& storageEdge = m_graph.varArgChild(node, 0); |
1163 | Edge& arrayEdge = m_graph.varArgChild(node, 1); |
1164 | unsigned elementOffset = 2; |
1165 | unsigned elementCount = node->numChildren() - elementOffset; |
1166 | for (unsigned i = 0; i < elementCount; ++i) { |
1167 | Edge& element = m_graph.varArgChild(node, i + elementOffset); |
1168 | node->setArrayMode( |
1169 | node->arrayMode().refine( |
1170 | m_graph, node, |
1171 | arrayEdge->prediction() & SpecCell, |
1172 | SpecInt32Only, |
1173 | element->prediction())); |
1174 | } |
1175 | blessArrayOperation(arrayEdge, Edge(), storageEdge); |
1176 | fixEdge<KnownCellUse>(arrayEdge); |
1177 | |
1178 | // Convert `array.push()` to GetArrayLength. |
1179 | if (!elementCount && node->arrayMode().supportsSelfLength()) { |
1180 | node->setOpAndDefaultFlags(GetArrayLength); |
1181 | node->child1() = arrayEdge; |
1182 | node->child2() = storageEdge; |
1183 | fixEdge<KnownCellUse>(node->child1()); |
1184 | break; |
1185 | } |
1186 | |
1187 | // We do not want to perform osr exit and retry for ArrayPush. We insert Check with appropriate type, |
1188 | // and ArrayPush uses the edge as known typed edge. Therefore, ArrayPush do not need to perform type checks. |
1189 | for (unsigned i = 0; i < elementCount; ++i) { |
1190 | Edge& element = m_graph.varArgChild(node, i + elementOffset); |
1191 | switch (node->arrayMode().type()) { |
1192 | case Array::Int32: |
1193 | fixEdge<Int32Use>(element); |
1194 | break; |
1195 | case Array::Double: |
1196 | fixEdge<DoubleRepRealUse>(element); |
1197 | break; |
1198 | case Array::Contiguous: |
1199 | case Array::ArrayStorage: |
1200 | speculateForBarrier(element); |
1201 | break; |
1202 | default: |
1203 | break; |
1204 | } |
1205 | } |
1206 | break; |
1207 | } |
1208 | |
1209 | case ArrayPop: { |
1210 | blessArrayOperation(node->child1(), Edge(), node->child2()); |
1211 | fixEdge<KnownCellUse>(node->child1()); |
1212 | break; |
1213 | } |
1214 | |
1215 | case ArraySlice: { |
1216 | fixEdge<KnownCellUse>(m_graph.varArgChild(node, 0)); |
1217 | if (node->numChildren() >= 3) { |
1218 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
1219 | if (node->numChildren() == 4) |
1220 | fixEdge<Int32Use>(m_graph.varArgChild(node, 2)); |
1221 | } |
1222 | break; |
1223 | } |
1224 | |
1225 | case ArrayIndexOf: |
1226 | fixupArrayIndexOf(node); |
1227 | break; |
1228 | |
1229 | case RegExpExec: |
1230 | case RegExpTest: { |
1231 | fixEdge<KnownCellUse>(node->child1()); |
1232 | |
1233 | if (node->child2()->shouldSpeculateRegExpObject()) { |
1234 | fixEdge<RegExpObjectUse>(node->child2()); |
1235 | |
1236 | if (node->child3()->shouldSpeculateString()) |
1237 | fixEdge<StringUse>(node->child3()); |
1238 | } |
1239 | break; |
1240 | } |
1241 | |
1242 | case RegExpMatchFast: { |
1243 | fixEdge<KnownCellUse>(node->child1()); |
1244 | fixEdge<RegExpObjectUse>(node->child2()); |
1245 | fixEdge<StringUse>(node->child3()); |
1246 | break; |
1247 | } |
1248 | |
1249 | case StringReplace: |
1250 | case StringReplaceRegExp: { |
1251 | if (node->child2()->shouldSpeculateString()) { |
1252 | m_insertionSet.insertNode( |
1253 | m_indexInBlock, SpecNone, Check, node->origin, |
1254 | Edge(node->child2().node(), StringUse)); |
1255 | fixEdge<StringUse>(node->child2()); |
1256 | } else if (op == StringReplace) { |
1257 | if (node->child2()->shouldSpeculateRegExpObject()) |
1258 | addStringReplacePrimordialChecks(node->child2().node()); |
1259 | else |
1260 | m_insertionSet.insertNode( |
1261 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
1262 | } |
1263 | |
1264 | if (node->child1()->shouldSpeculateString() |
1265 | && node->child2()->shouldSpeculateRegExpObject() |
1266 | && node->child3()->shouldSpeculateString()) { |
1267 | |
1268 | fixEdge<StringUse>(node->child1()); |
1269 | fixEdge<RegExpObjectUse>(node->child2()); |
1270 | fixEdge<StringUse>(node->child3()); |
1271 | break; |
1272 | } |
1273 | break; |
1274 | } |
1275 | |
1276 | case Branch: { |
1277 | if (node->child1()->shouldSpeculateBoolean()) { |
1278 | if (node->child1()->result() == NodeResultBoolean) { |
1279 | // This is necessary in case we have a bytecode instruction implemented by: |
1280 | // |
1281 | // a: CompareEq(...) |
1282 | // b: Branch(@a) |
1283 | // |
1284 | // In that case, CompareEq might have a side-effect. Then, we need to make |
1285 | // sure that we know that Branch does not exit. |
1286 | fixEdge<KnownBooleanUse>(node->child1()); |
1287 | } else |
1288 | fixEdge<BooleanUse>(node->child1()); |
1289 | } else if (node->child1()->shouldSpeculateObjectOrOther()) |
1290 | fixEdge<ObjectOrOtherUse>(node->child1()); |
1291 | else if (node->child1()->shouldSpeculateInt32OrBoolean()) |
1292 | fixIntOrBooleanEdge(node->child1()); |
1293 | else if (node->child1()->shouldSpeculateNumber()) |
1294 | fixEdge<DoubleRepUse>(node->child1()); |
1295 | else if (node->child1()->shouldSpeculateString()) |
1296 | fixEdge<StringUse>(node->child1()); |
1297 | else if (node->child1()->shouldSpeculateStringOrOther()) |
1298 | fixEdge<StringOrOtherUse>(node->child1()); |
1299 | else { |
1300 | WatchpointSet* masqueradesAsUndefinedWatchpoint = m_graph.globalObjectFor(node->origin.semantic)->masqueradesAsUndefinedWatchpoint(); |
1301 | if (masqueradesAsUndefinedWatchpoint->isStillValid()) |
1302 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
1303 | } |
1304 | break; |
1305 | } |
1306 | |
1307 | case Switch: { |
1308 | SwitchData* data = node->switchData(); |
1309 | switch (data->kind) { |
1310 | case SwitchImm: |
1311 | if (node->child1()->shouldSpeculateInt32()) |
1312 | fixEdge<Int32Use>(node->child1()); |
1313 | break; |
1314 | case SwitchChar: |
1315 | if (node->child1()->shouldSpeculateString()) |
1316 | fixEdge<StringUse>(node->child1()); |
1317 | break; |
1318 | case SwitchString: |
1319 | if (node->child1()->shouldSpeculateStringIdent()) |
1320 | fixEdge<StringIdentUse>(node->child1()); |
1321 | else if (node->child1()->shouldSpeculateString()) |
1322 | fixEdge<StringUse>(node->child1()); |
1323 | break; |
1324 | case SwitchCell: |
1325 | if (node->child1()->shouldSpeculateCell()) |
1326 | fixEdge<CellUse>(node->child1()); |
1327 | // else it's fine for this to have UntypedUse; we will handle this by just making |
1328 | // non-cells take the default case. |
1329 | break; |
1330 | } |
1331 | break; |
1332 | } |
1333 | |
1334 | case ToPrimitive: { |
1335 | fixupToPrimitive(node); |
1336 | break; |
1337 | } |
1338 | |
1339 | case ToNumber: { |
1340 | fixupToNumber(node); |
1341 | break; |
1342 | } |
1343 | |
1344 | case ToString: |
1345 | case CallStringConstructor: { |
1346 | fixupToStringOrCallStringConstructor(node); |
1347 | break; |
1348 | } |
1349 | |
1350 | case NewStringObject: { |
1351 | fixEdge<KnownStringUse>(node->child1()); |
1352 | break; |
1353 | } |
1354 | |
1355 | case NewSymbol: { |
1356 | if (node->child1()) |
1357 | fixEdge<KnownStringUse>(node->child1()); |
1358 | break; |
1359 | } |
1360 | |
1361 | case NewArrayWithSpread: { |
1362 | watchHavingABadTime(node); |
1363 | |
1364 | BitVector* bitVector = node->bitVector(); |
1365 | for (unsigned i = node->numChildren(); i--;) { |
1366 | if (bitVector->get(i)) |
1367 | fixEdge<KnownCellUse>(m_graph.m_varArgChildren[node->firstChild() + i]); |
1368 | else |
1369 | fixEdge<UntypedUse>(m_graph.m_varArgChildren[node->firstChild() + i]); |
1370 | } |
1371 | |
1372 | break; |
1373 | } |
1374 | |
1375 | case Spread: { |
1376 | // Note: We care about performing the protocol on our child's global object, not necessarily ours. |
1377 | |
1378 | watchHavingABadTime(node->child1().node()); |
1379 | |
1380 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->child1()->origin.semantic); |
1381 | // When we go down the fast path, we don't consult the prototype chain, so we must prove |
1382 | // that it doesn't contain any indexed properties, and that any holes will result in |
1383 | // jsUndefined(). |
1384 | Structure* arrayPrototypeStructure = globalObject->arrayPrototype()->structure(vm()); |
1385 | Structure* objectPrototypeStructure = globalObject->objectPrototype()->structure(vm()); |
1386 | if (node->child1()->shouldSpeculateArray() |
1387 | && arrayPrototypeStructure->transitionWatchpointSetIsStillValid() |
1388 | && objectPrototypeStructure->transitionWatchpointSetIsStillValid() |
1389 | && globalObject->arrayPrototypeChainIsSane() |
1390 | && m_graph.isWatchingArrayIteratorProtocolWatchpoint(node->child1().node()) |
1391 | && m_graph.isWatchingHavingABadTimeWatchpoint(node->child1().node())) { |
1392 | m_graph.registerAndWatchStructureTransition(objectPrototypeStructure); |
1393 | m_graph.registerAndWatchStructureTransition(arrayPrototypeStructure); |
1394 | fixEdge<ArrayUse>(node->child1()); |
1395 | } else |
1396 | fixEdge<CellUse>(node->child1()); |
1397 | break; |
1398 | } |
1399 | |
1400 | case NewArray: { |
1401 | watchHavingABadTime(node); |
1402 | |
1403 | for (unsigned i = m_graph.varArgNumChildren(node); i--;) { |
1404 | node->setIndexingType( |
1405 | leastUpperBoundOfIndexingTypeAndType( |
1406 | node->indexingType(), m_graph.varArgChild(node, i)->prediction())); |
1407 | } |
1408 | switch (node->indexingType()) { |
1409 | case ALL_BLANK_INDEXING_TYPES: |
1410 | CRASH(); |
1411 | break; |
1412 | case ALL_UNDECIDED_INDEXING_TYPES: |
1413 | if (node->numChildren()) { |
1414 | // This will only happen if the children have no type predictions. We |
1415 | // would have already exited by now, but insert a forced exit just to |
1416 | // be safe. |
1417 | m_insertionSet.insertNode( |
1418 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
1419 | } |
1420 | break; |
1421 | case ALL_INT32_INDEXING_TYPES: |
1422 | for (unsigned operandIndex = 0; operandIndex < node->numChildren(); ++operandIndex) |
1423 | fixEdge<Int32Use>(m_graph.m_varArgChildren[node->firstChild() + operandIndex]); |
1424 | break; |
1425 | case ALL_DOUBLE_INDEXING_TYPES: |
1426 | for (unsigned operandIndex = 0; operandIndex < node->numChildren(); ++operandIndex) |
1427 | fixEdge<DoubleRepRealUse>(m_graph.m_varArgChildren[node->firstChild() + operandIndex]); |
1428 | break; |
1429 | case ALL_CONTIGUOUS_INDEXING_TYPES: |
1430 | case ALL_ARRAY_STORAGE_INDEXING_TYPES: |
1431 | break; |
1432 | default: |
1433 | CRASH(); |
1434 | break; |
1435 | } |
1436 | break; |
1437 | } |
1438 | |
1439 | case NewTypedArray: { |
1440 | watchHavingABadTime(node); |
1441 | |
1442 | if (node->child1()->shouldSpeculateInt32()) { |
1443 | fixEdge<Int32Use>(node->child1()); |
1444 | node->clearFlags(NodeMustGenerate); |
1445 | break; |
1446 | } |
1447 | break; |
1448 | } |
1449 | |
1450 | case NewArrayWithSize: { |
1451 | watchHavingABadTime(node); |
1452 | fixEdge<Int32Use>(node->child1()); |
1453 | break; |
1454 | } |
1455 | |
1456 | case NewArrayBuffer: { |
1457 | watchHavingABadTime(node); |
1458 | break; |
1459 | } |
1460 | |
1461 | case ToObject: { |
1462 | fixupToObject(node); |
1463 | break; |
1464 | } |
1465 | |
1466 | case CallObjectConstructor: { |
1467 | fixupCallObjectConstructor(node); |
1468 | break; |
1469 | } |
1470 | |
1471 | case ToThis: { |
1472 | fixupToThis(node); |
1473 | break; |
1474 | } |
1475 | |
1476 | case PutStructure: { |
1477 | fixEdge<KnownCellUse>(node->child1()); |
1478 | break; |
1479 | } |
1480 | |
1481 | case GetClosureVar: |
1482 | case GetFromArguments: { |
1483 | fixEdge<KnownCellUse>(node->child1()); |
1484 | break; |
1485 | } |
1486 | |
1487 | case PutClosureVar: |
1488 | case PutToArguments: { |
1489 | fixEdge<KnownCellUse>(node->child1()); |
1490 | speculateForBarrier(node->child2()); |
1491 | break; |
1492 | } |
1493 | |
1494 | case SkipScope: |
1495 | case GetScope: |
1496 | case GetGetter: |
1497 | case GetSetter: |
1498 | case GetGlobalObject: { |
1499 | fixEdge<KnownCellUse>(node->child1()); |
1500 | break; |
1501 | } |
1502 | |
1503 | case AllocatePropertyStorage: |
1504 | case ReallocatePropertyStorage: { |
1505 | fixEdge<KnownCellUse>(node->child1()); |
1506 | break; |
1507 | } |
1508 | |
1509 | case NukeStructureAndSetButterfly: { |
1510 | fixEdge<KnownCellUse>(node->child1()); |
1511 | break; |
1512 | } |
1513 | |
1514 | case TryGetById: { |
1515 | if (node->child1()->shouldSpeculateCell()) |
1516 | fixEdge<CellUse>(node->child1()); |
1517 | break; |
1518 | } |
1519 | |
1520 | case GetByIdDirect: |
1521 | case GetByIdDirectFlush: { |
1522 | if (node->child1()->shouldSpeculateCell()) |
1523 | fixEdge<CellUse>(node->child1()); |
1524 | break; |
1525 | } |
1526 | |
1527 | case GetById: |
1528 | case GetByIdFlush: { |
1529 | // FIXME: This should be done in the ByteCodeParser based on reading the |
1530 | // PolymorphicAccess, which will surely tell us that this is a AccessCase::ArrayLength. |
1531 | // https://bugs.webkit.org/show_bug.cgi?id=154990 |
1532 | auto uid = m_graph.identifiers()[node->identifierNumber()]; |
1533 | if (node->child1()->shouldSpeculateCellOrOther() |
1534 | && !m_graph.hasExitSite(node->origin.semantic, BadType) |
1535 | && !m_graph.hasExitSite(node->origin.semantic, BadCache) |
1536 | && !m_graph.hasExitSite(node->origin.semantic, BadIndexingType) |
1537 | && !m_graph.hasExitSite(node->origin.semantic, ExoticObjectMode)) { |
1538 | |
1539 | if (uid == vm().propertyNames->length.impl()) { |
1540 | attemptToMakeGetArrayLength(node); |
1541 | break; |
1542 | } |
1543 | |
1544 | if (uid == vm().propertyNames->lastIndex.impl() |
1545 | && node->child1()->shouldSpeculateRegExpObject()) { |
1546 | node->setOp(GetRegExpObjectLastIndex); |
1547 | node->clearFlags(NodeMustGenerate); |
1548 | fixEdge<RegExpObjectUse>(node->child1()); |
1549 | break; |
1550 | } |
1551 | } |
1552 | |
1553 | if (node->child1()->shouldSpeculateNumber()) { |
1554 | if (uid == vm().propertyNames->toString.impl()) { |
1555 | if (m_graph.isWatchingNumberToStringWatchpoint(node)) { |
1556 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
1557 | if (node->child1()->shouldSpeculateInt32()) { |
1558 | insertCheck<Int32Use>(node->child1().node()); |
1559 | m_graph.convertToConstant(node, m_graph.freeze(globalObject->numberProtoToStringFunction())); |
1560 | break; |
1561 | } |
1562 | |
1563 | if (node->child1()->shouldSpeculateInt52()) { |
1564 | insertCheck<Int52RepUse>(node->child1().node()); |
1565 | m_graph.convertToConstant(node, m_graph.freeze(globalObject->numberProtoToStringFunction())); |
1566 | break; |
1567 | } |
1568 | |
1569 | ASSERT(node->child1()->shouldSpeculateNumber()); |
1570 | insertCheck<DoubleRepUse>(node->child1().node()); |
1571 | m_graph.convertToConstant(node, m_graph.freeze(globalObject->numberProtoToStringFunction())); |
1572 | break; |
1573 | } |
1574 | } |
1575 | } |
1576 | |
1577 | if (node->child1()->shouldSpeculateCell()) |
1578 | fixEdge<CellUse>(node->child1()); |
1579 | break; |
1580 | } |
1581 | |
1582 | case GetByIdWithThis: { |
1583 | if (node->child1()->shouldSpeculateCell() && node->child2()->shouldSpeculateCell()) { |
1584 | fixEdge<CellUse>(node->child1()); |
1585 | fixEdge<CellUse>(node->child2()); |
1586 | } |
1587 | break; |
1588 | } |
1589 | |
1590 | case PutById: |
1591 | case PutByIdFlush: |
1592 | case PutByIdDirect: { |
1593 | if (node->child1()->shouldSpeculateCellOrOther() |
1594 | && !m_graph.hasExitSite(node->origin.semantic, BadType) |
1595 | && !m_graph.hasExitSite(node->origin.semantic, BadCache) |
1596 | && !m_graph.hasExitSite(node->origin.semantic, BadIndexingType) |
1597 | && !m_graph.hasExitSite(node->origin.semantic, ExoticObjectMode)) { |
1598 | |
1599 | auto uid = m_graph.identifiers()[node->identifierNumber()]; |
1600 | |
1601 | if (uid == vm().propertyNames->lastIndex.impl() |
1602 | && node->child1()->shouldSpeculateRegExpObject()) { |
1603 | node->convertToSetRegExpObjectLastIndex(); |
1604 | fixEdge<RegExpObjectUse>(node->child1()); |
1605 | speculateForBarrier(node->child2()); |
1606 | break; |
1607 | } |
1608 | } |
1609 | |
1610 | fixEdge<CellUse>(node->child1()); |
1611 | break; |
1612 | } |
1613 | |
1614 | case PutGetterById: |
1615 | case PutSetterById: { |
1616 | fixEdge<KnownCellUse>(node->child1()); |
1617 | fixEdge<KnownCellUse>(node->child2()); |
1618 | break; |
1619 | } |
1620 | |
1621 | case PutGetterSetterById: { |
1622 | fixEdge<KnownCellUse>(node->child1()); |
1623 | break; |
1624 | } |
1625 | |
1626 | case PutGetterByVal: |
1627 | case PutSetterByVal: { |
1628 | fixEdge<KnownCellUse>(node->child1()); |
1629 | fixEdge<KnownCellUse>(node->child3()); |
1630 | break; |
1631 | } |
1632 | |
1633 | case GetExecutable: { |
1634 | fixEdge<FunctionUse>(node->child1()); |
1635 | break; |
1636 | } |
1637 | |
1638 | case OverridesHasInstance: |
1639 | case CheckStructure: |
1640 | case CheckCell: |
1641 | case CreateThis: |
1642 | case GetButterfly: { |
1643 | fixEdge<CellUse>(node->child1()); |
1644 | break; |
1645 | } |
1646 | |
1647 | case ObjectCreate: { |
1648 | if (node->child1()->shouldSpeculateObject()) { |
1649 | fixEdge<ObjectUse>(node->child1()); |
1650 | node->clearFlags(NodeMustGenerate); |
1651 | break; |
1652 | } |
1653 | break; |
1654 | } |
1655 | |
1656 | case ObjectKeys: { |
1657 | if (node->child1()->shouldSpeculateObject()) { |
1658 | watchHavingABadTime(node); |
1659 | fixEdge<ObjectUse>(node->child1()); |
1660 | } |
1661 | break; |
1662 | } |
1663 | |
1664 | case CheckStringIdent: { |
1665 | fixEdge<StringIdentUse>(node->child1()); |
1666 | break; |
1667 | } |
1668 | |
1669 | case Arrayify: |
1670 | case ArrayifyToStructure: { |
1671 | fixEdge<CellUse>(node->child1()); |
1672 | if (node->child2()) |
1673 | fixEdge<Int32Use>(node->child2()); |
1674 | break; |
1675 | } |
1676 | |
1677 | case GetByOffset: |
1678 | case GetGetterSetterByOffset: { |
1679 | if (!node->child1()->hasStorageResult()) |
1680 | fixEdge<KnownCellUse>(node->child1()); |
1681 | fixEdge<KnownCellUse>(node->child2()); |
1682 | break; |
1683 | } |
1684 | |
1685 | case MultiGetByOffset: { |
1686 | fixEdge<CellUse>(node->child1()); |
1687 | break; |
1688 | } |
1689 | |
1690 | case PutByOffset: { |
1691 | if (!node->child1()->hasStorageResult()) |
1692 | fixEdge<KnownCellUse>(node->child1()); |
1693 | fixEdge<KnownCellUse>(node->child2()); |
1694 | speculateForBarrier(node->child3()); |
1695 | break; |
1696 | } |
1697 | |
1698 | case MultiPutByOffset: { |
1699 | fixEdge<CellUse>(node->child1()); |
1700 | break; |
1701 | } |
1702 | |
1703 | case MatchStructure: { |
1704 | // FIXME: Introduce a variant of MatchStructure that doesn't do a cell check. |
1705 | // https://bugs.webkit.org/show_bug.cgi?id=185784 |
1706 | fixEdge<CellUse>(node->child1()); |
1707 | break; |
1708 | } |
1709 | |
1710 | case InstanceOf: { |
1711 | if (node->child1()->shouldSpeculateCell() |
1712 | && node->child2()->shouldSpeculateCell() |
1713 | && is64Bit()) { |
1714 | fixEdge<CellUse>(node->child1()); |
1715 | fixEdge<CellUse>(node->child2()); |
1716 | break; |
1717 | } |
1718 | break; |
1719 | } |
1720 | |
1721 | case InstanceOfCustom: |
1722 | fixEdge<CellUse>(node->child2()); |
1723 | break; |
1724 | |
1725 | case InById: { |
1726 | fixEdge<CellUse>(node->child1()); |
1727 | break; |
1728 | } |
1729 | |
1730 | case InByVal: { |
1731 | if (node->child2()->shouldSpeculateInt32()) { |
1732 | convertToHasIndexedProperty(node); |
1733 | break; |
1734 | } |
1735 | |
1736 | fixEdge<CellUse>(node->child1()); |
1737 | break; |
1738 | } |
1739 | |
1740 | case HasOwnProperty: { |
1741 | fixEdge<ObjectUse>(node->child1()); |
1742 | #if CPU(X86) |
1743 | // We don't have enough registers to do anything interesting on x86 and mips. |
1744 | fixEdge<UntypedUse>(node->child2()); |
1745 | #else |
1746 | if (node->child2()->shouldSpeculateString()) |
1747 | fixEdge<StringUse>(node->child2()); |
1748 | else if (node->child2()->shouldSpeculateSymbol()) |
1749 | fixEdge<SymbolUse>(node->child2()); |
1750 | else |
1751 | fixEdge<UntypedUse>(node->child2()); |
1752 | #endif |
1753 | break; |
1754 | } |
1755 | |
1756 | case CheckVarargs: |
1757 | case Check: { |
1758 | m_graph.doToChildren( |
1759 | node, |
1760 | [&] (Edge& edge) { |
1761 | switch (edge.useKind()) { |
1762 | case NumberUse: |
1763 | if (edge->shouldSpeculateInt32ForArithmetic()) |
1764 | edge.setUseKind(Int32Use); |
1765 | break; |
1766 | default: |
1767 | break; |
1768 | } |
1769 | observeUseKindOnEdge(edge); |
1770 | }); |
1771 | break; |
1772 | } |
1773 | |
1774 | case Phantom: |
1775 | // Phantoms are meaningless past Fixup. We recreate them on-demand in the backend. |
1776 | node->remove(m_graph); |
1777 | break; |
1778 | |
1779 | case FiatInt52: { |
1780 | RELEASE_ASSERT(enableInt52()); |
1781 | node->convertToIdentity(); |
1782 | fixEdge<Int52RepUse>(node->child1()); |
1783 | node->setResult(NodeResultInt52); |
1784 | break; |
1785 | } |
1786 | |
1787 | case GetArrayLength: { |
1788 | fixEdge<KnownCellUse>(node->child1()); |
1789 | break; |
1790 | } |
1791 | |
1792 | case GetTypedArrayByteOffset: { |
1793 | fixEdge<KnownCellUse>(node->child1()); |
1794 | break; |
1795 | } |
1796 | |
1797 | case CompareBelow: |
1798 | case CompareBelowEq: { |
1799 | fixEdge<Int32Use>(node->child1()); |
1800 | fixEdge<Int32Use>(node->child2()); |
1801 | break; |
1802 | } |
1803 | |
1804 | case GetPrototypeOf: { |
1805 | fixupGetPrototypeOf(node); |
1806 | break; |
1807 | } |
1808 | |
1809 | case Phi: |
1810 | case Upsilon: |
1811 | case EntrySwitch: |
1812 | case GetIndexedPropertyStorage: |
1813 | case LastNodeType: |
1814 | case CheckTierUpInLoop: |
1815 | case CheckTierUpAtReturn: |
1816 | case CheckTierUpAndOSREnter: |
1817 | case CheckArray: |
1818 | case CheckInBounds: |
1819 | case ConstantStoragePointer: |
1820 | case DoubleAsInt32: |
1821 | case ValueToInt32: |
1822 | case DoubleRep: |
1823 | case ValueRep: |
1824 | case Int52Rep: |
1825 | case Int52Constant: |
1826 | case Identity: // This should have been cleaned up. |
1827 | case BooleanToNumber: |
1828 | case PhantomNewObject: |
1829 | case PhantomNewFunction: |
1830 | case PhantomNewGeneratorFunction: |
1831 | case PhantomNewAsyncGeneratorFunction: |
1832 | case PhantomNewAsyncFunction: |
1833 | case PhantomCreateActivation: |
1834 | case PhantomDirectArguments: |
1835 | case PhantomCreateRest: |
1836 | case PhantomSpread: |
1837 | case PhantomNewArrayWithSpread: |
1838 | case PhantomNewArrayBuffer: |
1839 | case PhantomClonedArguments: |
1840 | case PhantomNewRegexp: |
1841 | case GetMyArgumentByVal: |
1842 | case GetMyArgumentByValOutOfBounds: |
1843 | case GetVectorLength: |
1844 | case PutHint: |
1845 | case CheckStructureImmediate: |
1846 | case CheckStructureOrEmpty: |
1847 | case MaterializeNewObject: |
1848 | case MaterializeCreateActivation: |
1849 | case PutStack: |
1850 | case KillStack: |
1851 | case GetStack: |
1852 | case StoreBarrier: |
1853 | case FencedStoreBarrier: |
1854 | case GetRegExpObjectLastIndex: |
1855 | case SetRegExpObjectLastIndex: |
1856 | case RecordRegExpCachedResult: |
1857 | case RegExpExecNonGlobalOrSticky: |
1858 | case RegExpMatchFastGlobal: |
1859 | // These are just nodes that we don't currently expect to see during fixup. |
1860 | // If we ever wanted to insert them prior to fixup, then we just have to create |
1861 | // fixup rules for them. |
1862 | DFG_CRASH(m_graph, node, "Unexpected node during fixup" ); |
1863 | break; |
1864 | |
1865 | case PutGlobalVariable: { |
1866 | fixEdge<CellUse>(node->child1()); |
1867 | speculateForBarrier(node->child2()); |
1868 | break; |
1869 | } |
1870 | |
1871 | case IsObject: |
1872 | if (node->child1()->shouldSpeculateObject()) { |
1873 | m_insertionSet.insertNode( |
1874 | m_indexInBlock, SpecNone, Check, node->origin, |
1875 | Edge(node->child1().node(), ObjectUse)); |
1876 | m_graph.convertToConstant(node, jsBoolean(true)); |
1877 | observeUseKindOnNode<ObjectUse>(node); |
1878 | } |
1879 | break; |
1880 | |
1881 | case IsCellWithType: { |
1882 | fixupIsCellWithType(node); |
1883 | break; |
1884 | } |
1885 | |
1886 | case GetEnumerableLength: { |
1887 | fixEdge<CellUse>(node->child1()); |
1888 | break; |
1889 | } |
1890 | case HasGenericProperty: { |
1891 | fixEdge<CellUse>(node->child2()); |
1892 | break; |
1893 | } |
1894 | case HasStructureProperty: { |
1895 | fixEdge<StringUse>(node->child2()); |
1896 | fixEdge<KnownCellUse>(node->child3()); |
1897 | break; |
1898 | } |
1899 | case HasIndexedProperty: { |
1900 | node->setArrayMode( |
1901 | node->arrayMode().refine( |
1902 | m_graph, node, |
1903 | m_graph.varArgChild(node, 0)->prediction(), |
1904 | m_graph.varArgChild(node, 1)->prediction(), |
1905 | SpecNone)); |
1906 | |
1907 | blessArrayOperation(m_graph.varArgChild(node, 0), m_graph.varArgChild(node, 1), m_graph.varArgChild(node, 2)); |
1908 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); |
1909 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
1910 | break; |
1911 | } |
1912 | case GetDirectPname: { |
1913 | Edge& base = m_graph.varArgChild(node, 0); |
1914 | Edge& property = m_graph.varArgChild(node, 1); |
1915 | Edge& index = m_graph.varArgChild(node, 2); |
1916 | Edge& enumerator = m_graph.varArgChild(node, 3); |
1917 | fixEdge<CellUse>(base); |
1918 | fixEdge<KnownCellUse>(property); |
1919 | fixEdge<Int32Use>(index); |
1920 | fixEdge<KnownCellUse>(enumerator); |
1921 | break; |
1922 | } |
1923 | case GetPropertyEnumerator: { |
1924 | if (node->child1()->shouldSpeculateCell()) |
1925 | fixEdge<CellUse>(node->child1()); |
1926 | break; |
1927 | } |
1928 | case GetEnumeratorStructurePname: { |
1929 | fixEdge<KnownCellUse>(node->child1()); |
1930 | fixEdge<Int32Use>(node->child2()); |
1931 | break; |
1932 | } |
1933 | case GetEnumeratorGenericPname: { |
1934 | fixEdge<KnownCellUse>(node->child1()); |
1935 | fixEdge<Int32Use>(node->child2()); |
1936 | break; |
1937 | } |
1938 | case ToIndexString: { |
1939 | fixEdge<Int32Use>(node->child1()); |
1940 | break; |
1941 | } |
1942 | case ProfileType: { |
1943 | // We want to insert type checks based on the instructionTypeSet of the TypeLocation, not the globalTypeSet. |
1944 | // Because the instructionTypeSet is contained in globalTypeSet, if we produce a type check for |
1945 | // type T for the instructionTypeSet, the global type set must also have information for type T. |
1946 | // So if it the type check succeeds for type T in the instructionTypeSet, a type check for type T |
1947 | // in the globalTypeSet would've also succeeded. |
1948 | // (The other direction does not hold in general). |
1949 | |
1950 | RefPtr<TypeSet> typeSet = node->typeLocation()->m_instructionTypeSet; |
1951 | RuntimeTypeMask seenTypes = typeSet->seenTypes(); |
1952 | if (typeSet->doesTypeConformTo(TypeAnyInt)) { |
1953 | if (node->child1()->shouldSpeculateInt32()) { |
1954 | fixEdge<Int32Use>(node->child1()); |
1955 | node->remove(m_graph); |
1956 | break; |
1957 | } |
1958 | |
1959 | if (enableInt52()) { |
1960 | fixEdge<AnyIntUse>(node->child1()); |
1961 | node->remove(m_graph); |
1962 | break; |
1963 | } |
1964 | |
1965 | // Must not perform fixEdge<NumberUse> here since the type set only includes TypeAnyInt. Double values should be logged. |
1966 | } |
1967 | |
1968 | if (typeSet->doesTypeConformTo(TypeNumber | TypeAnyInt)) { |
1969 | fixEdge<NumberUse>(node->child1()); |
1970 | node->remove(m_graph); |
1971 | } else if (typeSet->doesTypeConformTo(TypeString)) { |
1972 | fixEdge<StringUse>(node->child1()); |
1973 | node->remove(m_graph); |
1974 | } else if (typeSet->doesTypeConformTo(TypeBoolean)) { |
1975 | fixEdge<BooleanUse>(node->child1()); |
1976 | node->remove(m_graph); |
1977 | } else if (typeSet->doesTypeConformTo(TypeUndefined | TypeNull) && (seenTypes & TypeUndefined) && (seenTypes & TypeNull)) { |
1978 | fixEdge<OtherUse>(node->child1()); |
1979 | node->remove(m_graph); |
1980 | } else if (typeSet->doesTypeConformTo(TypeObject)) { |
1981 | StructureSet set; |
1982 | { |
1983 | ConcurrentJSLocker locker(typeSet->m_lock); |
1984 | set = typeSet->structureSet(locker); |
1985 | } |
1986 | if (!set.isEmpty()) { |
1987 | fixEdge<CellUse>(node->child1()); |
1988 | node->convertToCheckStructureOrEmpty(m_graph.addStructureSet(set)); |
1989 | } |
1990 | } |
1991 | |
1992 | break; |
1993 | } |
1994 | |
1995 | case CreateClonedArguments: { |
1996 | watchHavingABadTime(node); |
1997 | break; |
1998 | } |
1999 | |
2000 | case CreateScopedArguments: |
2001 | case CreateActivation: |
2002 | case NewFunction: |
2003 | case NewGeneratorFunction: |
2004 | case NewAsyncGeneratorFunction: |
2005 | case NewAsyncFunction: { |
2006 | // Child 1 is always the current scope, which is guaranteed to be an object |
2007 | // FIXME: should be KnownObjectUse once that exists (https://bugs.webkit.org/show_bug.cgi?id=175689) |
2008 | fixEdge<KnownCellUse>(node->child1()); |
2009 | break; |
2010 | } |
2011 | |
2012 | case PushWithScope: { |
2013 | // Child 1 is always the current scope, which is guaranteed to be an object |
2014 | // FIXME: should be KnownObjectUse once that exists (https://bugs.webkit.org/show_bug.cgi?id=175689) |
2015 | fixEdge<KnownCellUse>(node->child1()); |
2016 | if (node->child2()->shouldSpeculateObject()) |
2017 | fixEdge<ObjectUse>(node->child2()); |
2018 | break; |
2019 | } |
2020 | |
2021 | case SetFunctionName: { |
2022 | // The first child is guaranteed to be a cell because op_set_function_name is only used |
2023 | // on a newly instantiated function object (the first child). |
2024 | fixEdge<KnownCellUse>(node->child1()); |
2025 | fixEdge<UntypedUse>(node->child2()); |
2026 | break; |
2027 | } |
2028 | |
2029 | case CreateRest: { |
2030 | watchHavingABadTime(node); |
2031 | fixEdge<Int32Use>(node->child1()); |
2032 | break; |
2033 | } |
2034 | |
2035 | case ResolveScopeForHoistingFuncDeclInEval: { |
2036 | fixEdge<KnownCellUse>(node->child1()); |
2037 | break; |
2038 | } |
2039 | case ResolveScope: |
2040 | case GetDynamicVar: |
2041 | case PutDynamicVar: { |
2042 | fixEdge<KnownCellUse>(node->child1()); |
2043 | break; |
2044 | } |
2045 | |
2046 | case LogShadowChickenPrologue: { |
2047 | fixEdge<KnownCellUse>(node->child1()); |
2048 | break; |
2049 | } |
2050 | case LogShadowChickenTail: { |
2051 | fixEdge<UntypedUse>(node->child1()); |
2052 | fixEdge<KnownCellUse>(node->child2()); |
2053 | break; |
2054 | } |
2055 | |
2056 | case GetMapBucket: |
2057 | if (node->child1().useKind() == MapObjectUse) |
2058 | fixEdge<MapObjectUse>(node->child1()); |
2059 | else if (node->child1().useKind() == SetObjectUse) |
2060 | fixEdge<SetObjectUse>(node->child1()); |
2061 | else |
2062 | RELEASE_ASSERT_NOT_REACHED(); |
2063 | |
2064 | #if USE(JSVALUE64) |
2065 | if (node->child2()->shouldSpeculateBoolean()) |
2066 | fixEdge<BooleanUse>(node->child2()); |
2067 | else if (node->child2()->shouldSpeculateInt32()) |
2068 | fixEdge<Int32Use>(node->child2()); |
2069 | else if (node->child2()->shouldSpeculateSymbol()) |
2070 | fixEdge<SymbolUse>(node->child2()); |
2071 | else if (node->child2()->shouldSpeculateObject()) |
2072 | fixEdge<ObjectUse>(node->child2()); |
2073 | else if (node->child2()->shouldSpeculateString()) |
2074 | fixEdge<StringUse>(node->child2()); |
2075 | else if (node->child2()->shouldSpeculateCell()) |
2076 | fixEdge<CellUse>(node->child2()); |
2077 | else |
2078 | fixEdge<UntypedUse>(node->child2()); |
2079 | #else |
2080 | fixEdge<UntypedUse>(node->child2()); |
2081 | #endif // USE(JSVALUE64) |
2082 | |
2083 | fixEdge<Int32Use>(node->child3()); |
2084 | break; |
2085 | |
2086 | case GetMapBucketHead: |
2087 | if (node->child1().useKind() == MapObjectUse) |
2088 | fixEdge<MapObjectUse>(node->child1()); |
2089 | else if (node->child1().useKind() == SetObjectUse) |
2090 | fixEdge<SetObjectUse>(node->child1()); |
2091 | else |
2092 | RELEASE_ASSERT_NOT_REACHED(); |
2093 | break; |
2094 | |
2095 | case GetMapBucketNext: |
2096 | case LoadKeyFromMapBucket: |
2097 | case LoadValueFromMapBucket: |
2098 | fixEdge<CellUse>(node->child1()); |
2099 | break; |
2100 | |
2101 | case MapHash: { |
2102 | #if USE(JSVALUE64) |
2103 | if (node->child1()->shouldSpeculateBoolean()) { |
2104 | fixEdge<BooleanUse>(node->child1()); |
2105 | break; |
2106 | } |
2107 | |
2108 | if (node->child1()->shouldSpeculateInt32()) { |
2109 | fixEdge<Int32Use>(node->child1()); |
2110 | break; |
2111 | } |
2112 | |
2113 | if (node->child1()->shouldSpeculateSymbol()) { |
2114 | fixEdge<SymbolUse>(node->child1()); |
2115 | break; |
2116 | } |
2117 | |
2118 | if (node->child1()->shouldSpeculateObject()) { |
2119 | fixEdge<ObjectUse>(node->child1()); |
2120 | break; |
2121 | } |
2122 | |
2123 | if (node->child1()->shouldSpeculateString()) { |
2124 | fixEdge<StringUse>(node->child1()); |
2125 | break; |
2126 | } |
2127 | |
2128 | if (node->child1()->shouldSpeculateCell()) { |
2129 | fixEdge<CellUse>(node->child1()); |
2130 | break; |
2131 | } |
2132 | |
2133 | fixEdge<UntypedUse>(node->child1()); |
2134 | #else |
2135 | fixEdge<UntypedUse>(node->child1()); |
2136 | #endif // USE(JSVALUE64) |
2137 | break; |
2138 | } |
2139 | |
2140 | case NormalizeMapKey: { |
2141 | fixupNormalizeMapKey(node); |
2142 | break; |
2143 | } |
2144 | |
2145 | case WeakMapGet: { |
2146 | if (node->child1().useKind() == WeakMapObjectUse) |
2147 | fixEdge<WeakMapObjectUse>(node->child1()); |
2148 | else if (node->child1().useKind() == WeakSetObjectUse) |
2149 | fixEdge<WeakSetObjectUse>(node->child1()); |
2150 | else |
2151 | RELEASE_ASSERT_NOT_REACHED(); |
2152 | fixEdge<ObjectUse>(node->child2()); |
2153 | fixEdge<Int32Use>(node->child3()); |
2154 | break; |
2155 | } |
2156 | |
2157 | case SetAdd: { |
2158 | fixEdge<SetObjectUse>(node->child1()); |
2159 | fixEdge<Int32Use>(node->child3()); |
2160 | break; |
2161 | } |
2162 | |
2163 | case MapSet: { |
2164 | fixEdge<MapObjectUse>(m_graph.varArgChild(node, 0)); |
2165 | fixEdge<Int32Use>(m_graph.varArgChild(node, 3)); |
2166 | break; |
2167 | } |
2168 | |
2169 | case WeakSetAdd: { |
2170 | fixEdge<WeakSetObjectUse>(node->child1()); |
2171 | fixEdge<ObjectUse>(node->child2()); |
2172 | fixEdge<Int32Use>(node->child3()); |
2173 | break; |
2174 | } |
2175 | |
2176 | case WeakMapSet: { |
2177 | fixEdge<WeakMapObjectUse>(m_graph.varArgChild(node, 0)); |
2178 | fixEdge<ObjectUse>(m_graph.varArgChild(node, 1)); |
2179 | fixEdge<Int32Use>(m_graph.varArgChild(node, 3)); |
2180 | break; |
2181 | } |
2182 | |
2183 | case DefineDataProperty: { |
2184 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); |
2185 | Edge& propertyEdge = m_graph.varArgChild(node, 1); |
2186 | if (propertyEdge->shouldSpeculateSymbol()) |
2187 | fixEdge<SymbolUse>(propertyEdge); |
2188 | else if (propertyEdge->shouldSpeculateStringIdent()) |
2189 | fixEdge<StringIdentUse>(propertyEdge); |
2190 | else if (propertyEdge->shouldSpeculateString()) |
2191 | fixEdge<StringUse>(propertyEdge); |
2192 | else |
2193 | fixEdge<UntypedUse>(propertyEdge); |
2194 | fixEdge<UntypedUse>(m_graph.varArgChild(node, 2)); |
2195 | fixEdge<Int32Use>(m_graph.varArgChild(node, 3)); |
2196 | break; |
2197 | } |
2198 | |
2199 | case StringValueOf: { |
2200 | fixupStringValueOf(node); |
2201 | break; |
2202 | } |
2203 | |
2204 | case StringSlice: { |
2205 | fixEdge<StringUse>(node->child1()); |
2206 | fixEdge<Int32Use>(node->child2()); |
2207 | if (node->child3()) |
2208 | fixEdge<Int32Use>(node->child3()); |
2209 | break; |
2210 | } |
2211 | |
2212 | case ToLowerCase: { |
2213 | // We currently only support StringUse since that will ensure that |
2214 | // ToLowerCase is a pure operation. If we decide to update this with |
2215 | // more types in the future, we need to ensure that the clobberize rules |
2216 | // are correct. |
2217 | fixEdge<StringUse>(node->child1()); |
2218 | break; |
2219 | } |
2220 | |
2221 | case NumberToStringWithRadix: { |
2222 | if (node->child1()->shouldSpeculateInt32()) |
2223 | fixEdge<Int32Use>(node->child1()); |
2224 | else if (node->child1()->shouldSpeculateInt52()) |
2225 | fixEdge<Int52RepUse>(node->child1()); |
2226 | else |
2227 | fixEdge<DoubleRepUse>(node->child1()); |
2228 | fixEdge<Int32Use>(node->child2()); |
2229 | break; |
2230 | } |
2231 | |
2232 | case DefineAccessorProperty: { |
2233 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); |
2234 | Edge& propertyEdge = m_graph.varArgChild(node, 1); |
2235 | if (propertyEdge->shouldSpeculateSymbol()) |
2236 | fixEdge<SymbolUse>(propertyEdge); |
2237 | else if (propertyEdge->shouldSpeculateStringIdent()) |
2238 | fixEdge<StringIdentUse>(propertyEdge); |
2239 | else if (propertyEdge->shouldSpeculateString()) |
2240 | fixEdge<StringUse>(propertyEdge); |
2241 | else |
2242 | fixEdge<UntypedUse>(propertyEdge); |
2243 | fixEdge<CellUse>(m_graph.varArgChild(node, 2)); |
2244 | fixEdge<CellUse>(m_graph.varArgChild(node, 3)); |
2245 | fixEdge<Int32Use>(m_graph.varArgChild(node, 4)); |
2246 | break; |
2247 | } |
2248 | |
2249 | case CheckSubClass: { |
2250 | fixupCheckSubClass(node); |
2251 | break; |
2252 | } |
2253 | |
2254 | case CallDOMGetter: { |
2255 | DOMJIT::CallDOMGetterSnippet* snippet = node->callDOMGetterData()->snippet; |
2256 | fixEdge<CellUse>(node->child1()); // DOM. |
2257 | if (snippet && snippet->requireGlobalObject) |
2258 | fixEdge<KnownCellUse>(node->child2()); // GlobalObject. |
2259 | break; |
2260 | } |
2261 | |
2262 | case CallDOM: { |
2263 | fixupCallDOM(node); |
2264 | break; |
2265 | } |
2266 | |
2267 | case Call: { |
2268 | attemptToMakeCallDOM(node); |
2269 | break; |
2270 | } |
2271 | |
2272 | case ParseInt: { |
2273 | if (node->child1()->shouldSpeculateInt32() && !node->child2()) { |
2274 | fixEdge<Int32Use>(node->child1()); |
2275 | node->convertToIdentity(); |
2276 | break; |
2277 | } |
2278 | |
2279 | if (node->child1()->shouldSpeculateString()) { |
2280 | fixEdge<StringUse>(node->child1()); |
2281 | node->clearFlags(NodeMustGenerate); |
2282 | } |
2283 | |
2284 | if (node->child2()) |
2285 | fixEdge<Int32Use>(node->child2()); |
2286 | |
2287 | break; |
2288 | } |
2289 | |
2290 | case IdentityWithProfile: { |
2291 | node->clearFlags(NodeMustGenerate); |
2292 | break; |
2293 | } |
2294 | |
2295 | case ThrowStaticError: |
2296 | fixEdge<StringUse>(node->child1()); |
2297 | break; |
2298 | |
2299 | case NumberIsInteger: |
2300 | if (node->child1()->shouldSpeculateInt32()) { |
2301 | m_insertionSet.insertNode( |
2302 | m_indexInBlock, SpecNone, Check, node->origin, |
2303 | Edge(node->child1().node(), Int32Use)); |
2304 | m_graph.convertToConstant(node, jsBoolean(true)); |
2305 | break; |
2306 | } |
2307 | break; |
2308 | |
2309 | case SetCallee: |
2310 | fixEdge<CellUse>(node->child1()); |
2311 | break; |
2312 | |
2313 | case DataViewGetInt: |
2314 | case DataViewGetFloat: { |
2315 | fixEdge<DataViewObjectUse>(node->child1()); |
2316 | fixEdge<Int32Use>(node->child2()); |
2317 | if (node->child3()) |
2318 | fixEdge<BooleanUse>(node->child3()); |
2319 | |
2320 | if (node->op() == DataViewGetInt) { |
2321 | DataViewData data = node->dataViewData(); |
2322 | switch (data.byteSize) { |
2323 | case 1: |
2324 | case 2: |
2325 | node->setResult(NodeResultInt32); |
2326 | break; |
2327 | case 4: |
2328 | if (data.isSigned) |
2329 | node->setResult(NodeResultInt32); |
2330 | else |
2331 | node->setResult(NodeResultInt52); |
2332 | break; |
2333 | default: |
2334 | RELEASE_ASSERT_NOT_REACHED(); |
2335 | } |
2336 | } |
2337 | break; |
2338 | } |
2339 | |
2340 | case DataViewSet: { |
2341 | fixEdge<DataViewObjectUse>(m_graph.varArgChild(node, 0)); |
2342 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
2343 | if (m_graph.varArgChild(node, 3)) |
2344 | fixEdge<BooleanUse>(m_graph.varArgChild(node, 3)); |
2345 | |
2346 | DataViewData data = node->dataViewData(); |
2347 | Edge& valueToStore = m_graph.varArgChild(node, 2); |
2348 | if (data.isFloatingPoint) |
2349 | fixEdge<DoubleRepUse>(valueToStore); |
2350 | else { |
2351 | switch (data.byteSize) { |
2352 | case 1: |
2353 | case 2: |
2354 | fixEdge<Int32Use>(valueToStore); |
2355 | break; |
2356 | case 4: |
2357 | if (data.isSigned) |
2358 | fixEdge<Int32Use>(valueToStore); |
2359 | else |
2360 | fixEdge<Int52RepUse>(valueToStore); |
2361 | break; |
2362 | } |
2363 | } |
2364 | break; |
2365 | } |
2366 | |
2367 | #if !ASSERT_DISABLED |
2368 | // Have these no-op cases here to ensure that nobody forgets to add handlers for new opcodes. |
2369 | case SetArgumentDefinitely: |
2370 | case SetArgumentMaybe: |
2371 | case JSConstant: |
2372 | case LazyJSConstant: |
2373 | case DoubleConstant: |
2374 | case GetLocal: |
2375 | case GetCallee: |
2376 | case GetArgumentCountIncludingThis: |
2377 | case SetArgumentCountIncludingThis: |
2378 | case GetRestLength: |
2379 | case GetArgument: |
2380 | case Flush: |
2381 | case PhantomLocal: |
2382 | case GetGlobalVar: |
2383 | case GetGlobalLexicalVariable: |
2384 | case NotifyWrite: |
2385 | case DirectCall: |
2386 | case CheckTypeInfoFlags: |
2387 | case TailCallInlinedCaller: |
2388 | case DirectTailCallInlinedCaller: |
2389 | case Construct: |
2390 | case DirectConstruct: |
2391 | case CallVarargs: |
2392 | case CallEval: |
2393 | case TailCallVarargsInlinedCaller: |
2394 | case ConstructVarargs: |
2395 | case CallForwardVarargs: |
2396 | case ConstructForwardVarargs: |
2397 | case TailCallForwardVarargs: |
2398 | case TailCallForwardVarargsInlinedCaller: |
2399 | case LoadVarargs: |
2400 | case ForwardVarargs: |
2401 | case ProfileControlFlow: |
2402 | case NewObject: |
2403 | case NewRegexp: |
2404 | case DeleteById: |
2405 | case DeleteByVal: |
2406 | case IsTypedArrayView: |
2407 | case IsEmpty: |
2408 | case IsUndefined: |
2409 | case IsUndefinedOrNull: |
2410 | case IsBoolean: |
2411 | case IsNumber: |
2412 | case IsObjectOrNull: |
2413 | case IsFunction: |
2414 | case CreateDirectArguments: |
2415 | case Jump: |
2416 | case Return: |
2417 | case TailCall: |
2418 | case DirectTailCall: |
2419 | case TailCallVarargs: |
2420 | case Throw: |
2421 | case CountExecution: |
2422 | case SuperSamplerBegin: |
2423 | case SuperSamplerEnd: |
2424 | case ForceOSRExit: |
2425 | case CheckBadCell: |
2426 | case CheckNotEmpty: |
2427 | case AssertNotEmpty: |
2428 | case CheckTraps: |
2429 | case Unreachable: |
2430 | case ExtractOSREntryLocal: |
2431 | case ExtractCatchLocal: |
2432 | case ClearCatchLocals: |
2433 | case LoopHint: |
2434 | case MovHint: |
2435 | case InitializeEntrypointArguments: |
2436 | case ZombieHint: |
2437 | case ExitOK: |
2438 | case BottomValue: |
2439 | case TypeOf: |
2440 | case PutByIdWithThis: |
2441 | case PutByValWithThis: |
2442 | case GetByValWithThis: |
2443 | case CompareEqPtr: |
2444 | case NumberToStringWithValidRadixConstant: |
2445 | case GetGlobalThis: |
2446 | case ExtractValueFromWeakMapGet: |
2447 | case CPUIntrinsic: |
2448 | case FilterCallLinkStatus: |
2449 | case FilterGetByIdStatus: |
2450 | case FilterPutByIdStatus: |
2451 | case FilterInByIdStatus: |
2452 | case InvalidationPoint: |
2453 | break; |
2454 | #else |
2455 | default: |
2456 | break; |
2457 | #endif |
2458 | } |
2459 | } |
2460 | |
2461 | void watchHavingABadTime(Node* node) |
2462 | { |
2463 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
2464 | |
2465 | // If this global object is not having a bad time, watch it. We go down this path anytime the code |
2466 | // does an array allocation. The types of array allocations may change if we start to have a bad |
2467 | // time. It's easier to reason about this if we know that whenever the types change after we start |
2468 | // optimizing, the code just gets thrown out. Doing this at FixupPhase is just early enough, since |
2469 | // prior to this point nobody should have been doing optimizations based on the indexing type of |
2470 | // the allocation. |
2471 | if (!globalObject->isHavingABadTime()) { |
2472 | m_graph.watchpoints().addLazily(globalObject->havingABadTimeWatchpoint()); |
2473 | m_graph.freeze(globalObject); |
2474 | } |
2475 | } |
2476 | |
2477 | template<UseKind useKind> |
2478 | void createToString(Node* node, Edge& edge) |
2479 | { |
2480 | Node* toString = m_insertionSet.insertNode( |
2481 | m_indexInBlock, SpecString, ToString, node->origin, |
2482 | Edge(edge.node(), useKind)); |
2483 | switch (useKind) { |
2484 | case Int32Use: |
2485 | case Int52RepUse: |
2486 | case DoubleRepUse: |
2487 | case NotCellUse: |
2488 | toString->clearFlags(NodeMustGenerate); |
2489 | break; |
2490 | default: |
2491 | break; |
2492 | } |
2493 | edge.setNode(toString); |
2494 | } |
2495 | |
2496 | template<UseKind useKind> |
2497 | void attemptToForceStringArrayModeByToStringConversion(ArrayMode& arrayMode, Node* node) |
2498 | { |
2499 | ASSERT(arrayMode == ArrayMode(Array::Generic, Array::Read) || arrayMode == ArrayMode(Array::Generic, Array::OriginalNonArray, Array::Read)); |
2500 | |
2501 | if (!m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) |
2502 | return; |
2503 | |
2504 | addCheckStructureForOriginalStringObjectUse(useKind, node->origin, node->child1().node()); |
2505 | createToString<useKind>(node, node->child1()); |
2506 | arrayMode = ArrayMode(Array::String, Array::Read); |
2507 | } |
2508 | |
2509 | void addCheckStructureForOriginalStringObjectUse(UseKind useKind, const NodeOrigin& origin, Node* node) |
2510 | { |
2511 | RELEASE_ASSERT(useKind == StringObjectUse || useKind == StringOrStringObjectUse); |
2512 | |
2513 | StructureSet set; |
2514 | set.add(m_graph.globalObjectFor(node->origin.semantic)->stringObjectStructure()); |
2515 | if (useKind == StringOrStringObjectUse) |
2516 | set.add(vm().stringStructure.get()); |
2517 | |
2518 | m_insertionSet.insertNode( |
2519 | m_indexInBlock, SpecNone, CheckStructure, origin, |
2520 | OpInfo(m_graph.addStructureSet(set)), Edge(node, CellUse)); |
2521 | } |
2522 | |
2523 | template<UseKind useKind> |
2524 | void convertStringAddUse(Node* node, Edge& edge) |
2525 | { |
2526 | if (useKind == StringUse) { |
2527 | observeUseKindOnNode<StringUse>(edge.node()); |
2528 | m_insertionSet.insertNode( |
2529 | m_indexInBlock, SpecNone, Check, node->origin, |
2530 | Edge(edge.node(), StringUse)); |
2531 | edge.setUseKind(KnownStringUse); |
2532 | return; |
2533 | } |
2534 | |
2535 | observeUseKindOnNode<useKind>(edge.node()); |
2536 | createToString<useKind>(node, edge); |
2537 | } |
2538 | |
2539 | void convertToMakeRope(Node* node) |
2540 | { |
2541 | node->setOpAndDefaultFlags(MakeRope); |
2542 | fixupMakeRope(node); |
2543 | } |
2544 | |
2545 | void fixupMakeRope(Node* node) |
2546 | { |
2547 | for (unsigned i = 0; i < AdjacencyList::Size; ++i) { |
2548 | Edge& edge = node->children.child(i); |
2549 | if (!edge) |
2550 | break; |
2551 | edge.setUseKind(KnownStringUse); |
2552 | JSString* string = edge->dynamicCastConstant<JSString*>(vm()); |
2553 | if (!string) |
2554 | continue; |
2555 | if (string->length()) |
2556 | continue; |
2557 | |
2558 | // Don't allow the MakeRope to have zero children. |
2559 | if (!i && !node->child2()) |
2560 | break; |
2561 | |
2562 | node->children.removeEdge(i--); |
2563 | } |
2564 | |
2565 | if (!node->child2()) { |
2566 | ASSERT(!node->child3()); |
2567 | node->convertToIdentity(); |
2568 | } |
2569 | } |
2570 | |
2571 | void fixupIsCellWithType(Node* node) |
2572 | { |
2573 | switch (node->speculatedTypeForQuery()) { |
2574 | case SpecString: |
2575 | if (node->child1()->shouldSpeculateString()) { |
2576 | m_insertionSet.insertNode( |
2577 | m_indexInBlock, SpecNone, Check, node->origin, |
2578 | Edge(node->child1().node(), StringUse)); |
2579 | m_graph.convertToConstant(node, jsBoolean(true)); |
2580 | observeUseKindOnNode<StringUse>(node); |
2581 | return; |
2582 | } |
2583 | break; |
2584 | |
2585 | case SpecProxyObject: |
2586 | if (node->child1()->shouldSpeculateProxyObject()) { |
2587 | m_insertionSet.insertNode( |
2588 | m_indexInBlock, SpecNone, Check, node->origin, |
2589 | Edge(node->child1().node(), ProxyObjectUse)); |
2590 | m_graph.convertToConstant(node, jsBoolean(true)); |
2591 | observeUseKindOnNode<ProxyObjectUse>(node); |
2592 | return; |
2593 | } |
2594 | break; |
2595 | |
2596 | case SpecRegExpObject: |
2597 | if (node->child1()->shouldSpeculateRegExpObject()) { |
2598 | m_insertionSet.insertNode( |
2599 | m_indexInBlock, SpecNone, Check, node->origin, |
2600 | Edge(node->child1().node(), RegExpObjectUse)); |
2601 | m_graph.convertToConstant(node, jsBoolean(true)); |
2602 | observeUseKindOnNode<RegExpObjectUse>(node); |
2603 | return; |
2604 | } |
2605 | break; |
2606 | |
2607 | case SpecArray: |
2608 | if (node->child1()->shouldSpeculateArray()) { |
2609 | m_insertionSet.insertNode( |
2610 | m_indexInBlock, SpecNone, Check, node->origin, |
2611 | Edge(node->child1().node(), ArrayUse)); |
2612 | m_graph.convertToConstant(node, jsBoolean(true)); |
2613 | observeUseKindOnNode<ArrayUse>(node); |
2614 | return; |
2615 | } |
2616 | break; |
2617 | |
2618 | case SpecDerivedArray: |
2619 | if (node->child1()->shouldSpeculateDerivedArray()) { |
2620 | m_insertionSet.insertNode( |
2621 | m_indexInBlock, SpecNone, Check, node->origin, |
2622 | Edge(node->child1().node(), DerivedArrayUse)); |
2623 | m_graph.convertToConstant(node, jsBoolean(true)); |
2624 | observeUseKindOnNode<DerivedArrayUse>(node); |
2625 | return; |
2626 | } |
2627 | break; |
2628 | } |
2629 | |
2630 | if (node->child1()->shouldSpeculateCell()) { |
2631 | fixEdge<CellUse>(node->child1()); |
2632 | return; |
2633 | } |
2634 | |
2635 | if (node->child1()->shouldSpeculateNotCell()) { |
2636 | m_insertionSet.insertNode( |
2637 | m_indexInBlock, SpecNone, Check, node->origin, |
2638 | Edge(node->child1().node(), NotCellUse)); |
2639 | m_graph.convertToConstant(node, jsBoolean(false)); |
2640 | observeUseKindOnNode<NotCellUse>(node); |
2641 | return; |
2642 | } |
2643 | } |
2644 | |
2645 | void fixupGetPrototypeOf(Node* node) |
2646 | { |
2647 | // Reflect.getPrototypeOf only accepts Objects. For Reflect.getPrototypeOf, ByteCodeParser attaches ObjectUse edge filter before fixup phase. |
2648 | if (node->child1().useKind() != ObjectUse) { |
2649 | if (node->child1()->shouldSpeculateString()) { |
2650 | insertCheck<StringUse>(node->child1().node()); |
2651 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->stringPrototype())); |
2652 | return; |
2653 | } |
2654 | if (node->child1()->shouldSpeculateInt32()) { |
2655 | insertCheck<Int32Use>(node->child1().node()); |
2656 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->numberPrototype())); |
2657 | return; |
2658 | } |
2659 | if (node->child1()->shouldSpeculateInt52()) { |
2660 | insertCheck<Int52RepUse>(node->child1().node()); |
2661 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->numberPrototype())); |
2662 | return; |
2663 | } |
2664 | if (node->child1()->shouldSpeculateNumber()) { |
2665 | insertCheck<NumberUse>(node->child1().node()); |
2666 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->numberPrototype())); |
2667 | return; |
2668 | } |
2669 | if (node->child1()->shouldSpeculateSymbol()) { |
2670 | insertCheck<SymbolUse>(node->child1().node()); |
2671 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->symbolPrototype())); |
2672 | return; |
2673 | } |
2674 | if (node->child1()->shouldSpeculateBoolean()) { |
2675 | insertCheck<BooleanUse>(node->child1().node()); |
2676 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->booleanPrototype())); |
2677 | return; |
2678 | } |
2679 | } |
2680 | |
2681 | if (node->child1()->shouldSpeculateFinalObject()) { |
2682 | fixEdge<FinalObjectUse>(node->child1()); |
2683 | node->clearFlags(NodeMustGenerate); |
2684 | return; |
2685 | } |
2686 | if (node->child1()->shouldSpeculateArray()) { |
2687 | fixEdge<ArrayUse>(node->child1()); |
2688 | node->clearFlags(NodeMustGenerate); |
2689 | return; |
2690 | } |
2691 | if (node->child1()->shouldSpeculateFunction()) { |
2692 | fixEdge<FunctionUse>(node->child1()); |
2693 | node->clearFlags(NodeMustGenerate); |
2694 | return; |
2695 | } |
2696 | } |
2697 | |
2698 | void fixupToThis(Node* node) |
2699 | { |
2700 | bool isStrictMode = m_graph.isStrictModeFor(node->origin.semantic); |
2701 | |
2702 | if (isStrictMode) { |
2703 | if (node->child1()->shouldSpeculateBoolean()) { |
2704 | fixEdge<BooleanUse>(node->child1()); |
2705 | node->convertToIdentity(); |
2706 | return; |
2707 | } |
2708 | |
2709 | if (node->child1()->shouldSpeculateInt32()) { |
2710 | fixEdge<Int32Use>(node->child1()); |
2711 | node->convertToIdentity(); |
2712 | return; |
2713 | } |
2714 | |
2715 | if (node->child1()->shouldSpeculateInt52()) { |
2716 | fixEdge<Int52RepUse>(node->child1()); |
2717 | node->convertToIdentity(); |
2718 | node->setResult(NodeResultInt52); |
2719 | return; |
2720 | } |
2721 | |
2722 | if (node->child1()->shouldSpeculateNumber()) { |
2723 | fixEdge<DoubleRepUse>(node->child1()); |
2724 | node->convertToIdentity(); |
2725 | node->setResult(NodeResultDouble); |
2726 | return; |
2727 | } |
2728 | |
2729 | if (node->child1()->shouldSpeculateSymbol()) { |
2730 | fixEdge<SymbolUse>(node->child1()); |
2731 | node->convertToIdentity(); |
2732 | return; |
2733 | } |
2734 | |
2735 | if (node->child1()->shouldSpeculateStringIdent()) { |
2736 | fixEdge<StringIdentUse>(node->child1()); |
2737 | node->convertToIdentity(); |
2738 | return; |
2739 | } |
2740 | |
2741 | if (node->child1()->shouldSpeculateString()) { |
2742 | fixEdge<StringUse>(node->child1()); |
2743 | node->convertToIdentity(); |
2744 | return; |
2745 | } |
2746 | |
2747 | if (node->child1()->shouldSpeculateBigInt()) { |
2748 | fixEdge<BigIntUse>(node->child1()); |
2749 | node->convertToIdentity(); |
2750 | return; |
2751 | } |
2752 | } |
2753 | |
2754 | if (node->child1()->shouldSpeculateOther()) { |
2755 | if (isStrictMode) { |
2756 | fixEdge<OtherUse>(node->child1()); |
2757 | node->convertToIdentity(); |
2758 | return; |
2759 | } |
2760 | |
2761 | m_insertionSet.insertNode( |
2762 | m_indexInBlock, SpecNone, Check, node->origin, |
2763 | Edge(node->child1().node(), OtherUse)); |
2764 | observeUseKindOnNode<OtherUse>(node->child1().node()); |
2765 | m_graph.convertToConstant( |
2766 | node, m_graph.globalThisObjectFor(node->origin.semantic)); |
2767 | return; |
2768 | } |
2769 | |
2770 | // FIXME: This should cover other use cases but we don't have use kinds for them. It's not critical, |
2771 | // however, since we cover all the missing cases in constant folding. |
2772 | // https://bugs.webkit.org/show_bug.cgi?id=157213 |
2773 | if (node->child1()->shouldSpeculateStringObject()) { |
2774 | fixEdge<StringObjectUse>(node->child1()); |
2775 | node->convertToIdentity(); |
2776 | return; |
2777 | } |
2778 | |
2779 | if (isFinalObjectSpeculation(node->child1()->prediction())) { |
2780 | fixEdge<FinalObjectUse>(node->child1()); |
2781 | node->convertToIdentity(); |
2782 | return; |
2783 | } |
2784 | } |
2785 | |
2786 | void fixupToPrimitive(Node* node) |
2787 | { |
2788 | if (node->child1()->shouldSpeculateInt32()) { |
2789 | fixEdge<Int32Use>(node->child1()); |
2790 | node->convertToIdentity(); |
2791 | return; |
2792 | } |
2793 | |
2794 | if (node->child1()->shouldSpeculateString()) { |
2795 | fixEdge<StringUse>(node->child1()); |
2796 | node->convertToIdentity(); |
2797 | return; |
2798 | } |
2799 | |
2800 | if (node->child1()->shouldSpeculateStringObject() |
2801 | && m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
2802 | addCheckStructureForOriginalStringObjectUse(StringObjectUse, node->origin, node->child1().node()); |
2803 | fixEdge<StringObjectUse>(node->child1()); |
2804 | node->convertToToString(); |
2805 | return; |
2806 | } |
2807 | |
2808 | if (node->child1()->shouldSpeculateStringOrStringObject() |
2809 | && m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
2810 | addCheckStructureForOriginalStringObjectUse(StringOrStringObjectUse, node->origin, node->child1().node()); |
2811 | fixEdge<StringOrStringObjectUse>(node->child1()); |
2812 | node->convertToToString(); |
2813 | return; |
2814 | } |
2815 | } |
2816 | |
2817 | void fixupToNumber(Node* node) |
2818 | { |
2819 | // If the prediction of the child is Number, we attempt to convert ToNumber to Identity. |
2820 | if (node->child1()->shouldSpeculateNumber()) { |
2821 | if (isInt32Speculation(node->getHeapPrediction())) { |
2822 | // If the both predictions of this node and the child is Int32, we just convert ToNumber to Identity, that's simple. |
2823 | if (node->child1()->shouldSpeculateInt32()) { |
2824 | fixEdge<Int32Use>(node->child1()); |
2825 | node->convertToIdentity(); |
2826 | return; |
2827 | } |
2828 | |
2829 | // The another case is that the predicted type of the child is Int32, but the heap prediction tell the users that this will produce non Int32 values. |
2830 | // In that case, let's receive the child value as a Double value and convert it to Int32. This case happens in misc-bugs-847389-jpeg2000. |
2831 | fixEdge<DoubleRepUse>(node->child1()); |
2832 | node->setOp(DoubleAsInt32); |
2833 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
2834 | node->setArithMode(Arith::CheckOverflow); |
2835 | else |
2836 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
2837 | return; |
2838 | } |
2839 | |
2840 | fixEdge<DoubleRepUse>(node->child1()); |
2841 | node->convertToIdentity(); |
2842 | node->setResult(NodeResultDouble); |
2843 | return; |
2844 | } |
2845 | |
2846 | fixEdge<UntypedUse>(node->child1()); |
2847 | node->setResult(NodeResultJS); |
2848 | } |
2849 | |
2850 | void fixupToObject(Node* node) |
2851 | { |
2852 | if (node->child1()->shouldSpeculateObject()) { |
2853 | fixEdge<ObjectUse>(node->child1()); |
2854 | node->convertToIdentity(); |
2855 | return; |
2856 | } |
2857 | |
2858 | // ToObject(Null/Undefined) can throw an error. We can emit filters to convert ToObject to CallObjectConstructor. |
2859 | |
2860 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
2861 | |
2862 | if (node->child1()->shouldSpeculateString()) { |
2863 | insertCheck<StringUse>(node->child1().node()); |
2864 | fixEdge<KnownStringUse>(node->child1()); |
2865 | node->convertToNewStringObject(m_graph.registerStructure(globalObject->stringObjectStructure())); |
2866 | return; |
2867 | } |
2868 | |
2869 | if (node->child1()->shouldSpeculateSymbol()) { |
2870 | insertCheck<SymbolUse>(node->child1().node()); |
2871 | node->convertToCallObjectConstructor(m_graph.freeze(globalObject)); |
2872 | return; |
2873 | } |
2874 | |
2875 | if (node->child1()->shouldSpeculateNumber()) { |
2876 | insertCheck<NumberUse>(node->child1().node()); |
2877 | node->convertToCallObjectConstructor(m_graph.freeze(globalObject)); |
2878 | return; |
2879 | } |
2880 | |
2881 | if (node->child1()->shouldSpeculateBoolean()) { |
2882 | insertCheck<BooleanUse>(node->child1().node()); |
2883 | node->convertToCallObjectConstructor(m_graph.freeze(globalObject)); |
2884 | return; |
2885 | } |
2886 | |
2887 | fixEdge<UntypedUse>(node->child1()); |
2888 | } |
2889 | |
2890 | void fixupCallObjectConstructor(Node* node) |
2891 | { |
2892 | if (node->child1()->shouldSpeculateObject()) { |
2893 | fixEdge<ObjectUse>(node->child1()); |
2894 | node->convertToIdentity(); |
2895 | return; |
2896 | } |
2897 | |
2898 | if (node->child1()->shouldSpeculateString()) { |
2899 | auto* globalObject = jsCast<JSGlobalObject*>(node->cellOperand()->cell()); |
2900 | insertCheck<StringUse>(node->child1().node()); |
2901 | fixEdge<KnownStringUse>(node->child1()); |
2902 | node->convertToNewStringObject(m_graph.registerStructure(globalObject->stringObjectStructure())); |
2903 | return; |
2904 | } |
2905 | |
2906 | // While ToObject(Null/Undefined) throws an error, CallObjectConstructor(Null/Undefined) generates a new empty object. |
2907 | if (node->child1()->shouldSpeculateOther()) { |
2908 | insertCheck<OtherUse>(node->child1().node()); |
2909 | node->convertToNewObject(m_graph.registerStructure(jsCast<JSGlobalObject*>(node->cellOperand()->cell())->objectStructureForObjectConstructor())); |
2910 | return; |
2911 | } |
2912 | |
2913 | fixEdge<UntypedUse>(node->child1()); |
2914 | } |
2915 | |
2916 | void fixupToStringOrCallStringConstructor(Node* node) |
2917 | { |
2918 | if (node->child1()->shouldSpeculateString()) { |
2919 | fixEdge<StringUse>(node->child1()); |
2920 | node->convertToIdentity(); |
2921 | return; |
2922 | } |
2923 | |
2924 | if (node->child1()->shouldSpeculateStringObject() |
2925 | && m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
2926 | addCheckStructureForOriginalStringObjectUse(StringObjectUse, node->origin, node->child1().node()); |
2927 | fixEdge<StringObjectUse>(node->child1()); |
2928 | return; |
2929 | } |
2930 | |
2931 | if (node->child1()->shouldSpeculateStringOrStringObject() |
2932 | && m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
2933 | addCheckStructureForOriginalStringObjectUse(StringOrStringObjectUse, node->origin, node->child1().node()); |
2934 | fixEdge<StringOrStringObjectUse>(node->child1()); |
2935 | return; |
2936 | } |
2937 | |
2938 | if (node->child1()->shouldSpeculateCell()) { |
2939 | fixEdge<CellUse>(node->child1()); |
2940 | return; |
2941 | } |
2942 | |
2943 | if (node->child1()->shouldSpeculateInt32()) { |
2944 | fixEdge<Int32Use>(node->child1()); |
2945 | node->clearFlags(NodeMustGenerate); |
2946 | return; |
2947 | } |
2948 | |
2949 | if (node->child1()->shouldSpeculateInt52()) { |
2950 | fixEdge<Int52RepUse>(node->child1()); |
2951 | node->clearFlags(NodeMustGenerate); |
2952 | return; |
2953 | } |
2954 | |
2955 | if (node->child1()->shouldSpeculateNumber()) { |
2956 | fixEdge<DoubleRepUse>(node->child1()); |
2957 | node->clearFlags(NodeMustGenerate); |
2958 | return; |
2959 | } |
2960 | |
2961 | // ToString(Symbol) throws an error. So if the child1 can include Symbols, |
2962 | // we need to care about it in the clobberize. In the following case, |
2963 | // since NotCellUse edge filter is used and this edge filters Symbols, |
2964 | // we can say that ToString never throws an error! |
2965 | if (node->child1()->shouldSpeculateNotCell()) { |
2966 | fixEdge<NotCellUse>(node->child1()); |
2967 | node->clearFlags(NodeMustGenerate); |
2968 | return; |
2969 | } |
2970 | } |
2971 | |
2972 | void fixupStringValueOf(Node* node) |
2973 | { |
2974 | if (node->child1()->shouldSpeculateString()) { |
2975 | fixEdge<StringUse>(node->child1()); |
2976 | node->convertToIdentity(); |
2977 | return; |
2978 | } |
2979 | |
2980 | if (node->child1()->shouldSpeculateStringObject()) { |
2981 | fixEdge<StringObjectUse>(node->child1()); |
2982 | node->convertToToString(); |
2983 | // It does not need to look up a toString property for the StringObject case. So we can clear NodeMustGenerate. |
2984 | node->clearFlags(NodeMustGenerate); |
2985 | return; |
2986 | } |
2987 | |
2988 | if (node->child1()->shouldSpeculateStringOrStringObject()) { |
2989 | fixEdge<StringOrStringObjectUse>(node->child1()); |
2990 | node->convertToToString(); |
2991 | // It does not need to look up a toString property for the StringObject case. So we can clear NodeMustGenerate. |
2992 | node->clearFlags(NodeMustGenerate); |
2993 | return; |
2994 | } |
2995 | } |
2996 | |
2997 | bool attemptToMakeFastStringAdd(Node* node) |
2998 | { |
2999 | bool goodToGo = true; |
3000 | m_graph.doToChildren( |
3001 | node, |
3002 | [&] (Edge& edge) { |
3003 | if (edge->shouldSpeculateString()) |
3004 | return; |
3005 | if (m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
3006 | if (edge->shouldSpeculateStringObject()) |
3007 | return; |
3008 | if (edge->shouldSpeculateStringOrStringObject()) |
3009 | return; |
3010 | } |
3011 | goodToGo = false; |
3012 | }); |
3013 | if (!goodToGo) |
3014 | return false; |
3015 | |
3016 | m_graph.doToChildren( |
3017 | node, |
3018 | [&] (Edge& edge) { |
3019 | if (edge->shouldSpeculateString()) { |
3020 | convertStringAddUse<StringUse>(node, edge); |
3021 | return; |
3022 | } |
3023 | if (!Options::useConcurrentJIT()) |
3024 | ASSERT(m_graph.canOptimizeStringObjectAccess(node->origin.semantic)); |
3025 | if (edge->shouldSpeculateStringObject()) { |
3026 | addCheckStructureForOriginalStringObjectUse(StringObjectUse, node->origin, edge.node()); |
3027 | convertStringAddUse<StringObjectUse>(node, edge); |
3028 | return; |
3029 | } |
3030 | if (edge->shouldSpeculateStringOrStringObject()) { |
3031 | addCheckStructureForOriginalStringObjectUse(StringOrStringObjectUse, node->origin, edge.node()); |
3032 | convertStringAddUse<StringOrStringObjectUse>(node, edge); |
3033 | return; |
3034 | } |
3035 | RELEASE_ASSERT_NOT_REACHED(); |
3036 | }); |
3037 | |
3038 | convertToMakeRope(node); |
3039 | return true; |
3040 | } |
3041 | |
3042 | void fixupGetAndSetLocalsInBlock(BasicBlock* block) |
3043 | { |
3044 | if (!block) |
3045 | return; |
3046 | ASSERT(block->isReachable); |
3047 | m_block = block; |
3048 | for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) { |
3049 | Node* node = m_currentNode = block->at(m_indexInBlock); |
3050 | if (node->op() != SetLocal && node->op() != GetLocal) |
3051 | continue; |
3052 | |
3053 | VariableAccessData* variable = node->variableAccessData(); |
3054 | switch (node->op()) { |
3055 | case GetLocal: |
3056 | switch (variable->flushFormat()) { |
3057 | case FlushedDouble: |
3058 | node->setResult(NodeResultDouble); |
3059 | break; |
3060 | case FlushedInt52: |
3061 | node->setResult(NodeResultInt52); |
3062 | break; |
3063 | default: |
3064 | break; |
3065 | } |
3066 | break; |
3067 | |
3068 | case SetLocal: |
3069 | // NOTE: Any type checks we put here may get hoisted by fixupChecksInBlock(). So, if we |
3070 | // add new type checking use kind for SetLocals, we need to modify that code as well. |
3071 | |
3072 | switch (variable->flushFormat()) { |
3073 | case FlushedJSValue: |
3074 | break; |
3075 | case FlushedDouble: |
3076 | fixEdge<DoubleRepUse>(node->child1()); |
3077 | break; |
3078 | case FlushedInt32: |
3079 | fixEdge<Int32Use>(node->child1()); |
3080 | break; |
3081 | case FlushedInt52: |
3082 | fixEdge<Int52RepUse>(node->child1()); |
3083 | break; |
3084 | case FlushedCell: |
3085 | fixEdge<CellUse>(node->child1()); |
3086 | break; |
3087 | case FlushedBoolean: |
3088 | fixEdge<BooleanUse>(node->child1()); |
3089 | break; |
3090 | default: |
3091 | RELEASE_ASSERT_NOT_REACHED(); |
3092 | break; |
3093 | } |
3094 | break; |
3095 | |
3096 | default: |
3097 | RELEASE_ASSERT_NOT_REACHED(); |
3098 | break; |
3099 | } |
3100 | } |
3101 | m_insertionSet.execute(block); |
3102 | } |
3103 | |
3104 | void addStringReplacePrimordialChecks(Node* searchRegExp) |
3105 | { |
3106 | Node* node = m_currentNode; |
3107 | |
3108 | // Check that structure of searchRegExp is RegExp object |
3109 | m_insertionSet.insertNode( |
3110 | m_indexInBlock, SpecNone, Check, node->origin, |
3111 | Edge(searchRegExp, RegExpObjectUse)); |
3112 | |
3113 | auto emitPrimordialCheckFor = [&] (JSValue primordialProperty, UniquedStringImpl* propertyUID) { |
3114 | unsigned index = m_graph.identifiers().ensure(propertyUID); |
3115 | |
3116 | Node* actualProperty = m_insertionSet.insertNode( |
3117 | m_indexInBlock, SpecNone, TryGetById, node->origin, |
3118 | OpInfo(index), OpInfo(SpecFunction), Edge(searchRegExp, CellUse)); |
3119 | |
3120 | m_insertionSet.insertNode( |
3121 | m_indexInBlock, SpecNone, CheckCell, node->origin, |
3122 | OpInfo(m_graph.freeze(primordialProperty)), Edge(actualProperty, CellUse)); |
3123 | }; |
3124 | |
3125 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
3126 | |
3127 | // Check that searchRegExp.exec is the primordial RegExp.prototype.exec |
3128 | emitPrimordialCheckFor(globalObject->regExpProtoExecFunction(), vm().propertyNames->exec.impl()); |
3129 | // Check that searchRegExp.global is the primordial RegExp.prototype.global |
3130 | emitPrimordialCheckFor(globalObject->regExpProtoGlobalGetter(), vm().propertyNames->global.impl()); |
3131 | // Check that searchRegExp.unicode is the primordial RegExp.prototype.unicode |
3132 | emitPrimordialCheckFor(globalObject->regExpProtoUnicodeGetter(), vm().propertyNames->unicode.impl()); |
3133 | // Check that searchRegExp[Symbol.match] is the primordial RegExp.prototype[Symbol.replace] |
3134 | emitPrimordialCheckFor(globalObject->regExpProtoSymbolReplaceFunction(), vm().propertyNames->replaceSymbol.impl()); |
3135 | } |
3136 | |
3137 | Node* checkArray(ArrayMode arrayMode, const NodeOrigin& origin, Node* array, Node* index, bool (*storageCheck)(const ArrayMode&) = canCSEStorage) |
3138 | { |
3139 | ASSERT(arrayMode.isSpecific()); |
3140 | |
3141 | if (arrayMode.type() == Array::String) { |
3142 | m_insertionSet.insertNode( |
3143 | m_indexInBlock, SpecNone, Check, origin, Edge(array, StringUse)); |
3144 | } else { |
3145 | // Note that we only need to be using a structure check if we opt for SaneChain, since |
3146 | // that needs to protect against JSArray's __proto__ being changed. |
3147 | Structure* structure = arrayMode.originalArrayStructure(m_graph, origin.semantic); |
3148 | |
3149 | Edge indexEdge = index ? Edge(index, Int32Use) : Edge(); |
3150 | |
3151 | if (arrayMode.doesConversion()) { |
3152 | if (structure) { |
3153 | m_insertionSet.insertNode( |
3154 | m_indexInBlock, SpecNone, ArrayifyToStructure, origin, |
3155 | OpInfo(m_graph.registerStructure(structure)), OpInfo(arrayMode.asWord()), Edge(array, CellUse), indexEdge); |
3156 | } else { |
3157 | m_insertionSet.insertNode( |
3158 | m_indexInBlock, SpecNone, Arrayify, origin, |
3159 | OpInfo(arrayMode.asWord()), Edge(array, CellUse), indexEdge); |
3160 | } |
3161 | } else { |
3162 | if (structure) { |
3163 | m_insertionSet.insertNode( |
3164 | m_indexInBlock, SpecNone, CheckStructure, origin, |
3165 | OpInfo(m_graph.addStructureSet(structure)), Edge(array, CellUse)); |
3166 | } else { |
3167 | m_insertionSet.insertNode( |
3168 | m_indexInBlock, SpecNone, CheckArray, origin, |
3169 | OpInfo(arrayMode.asWord()), Edge(array, CellUse)); |
3170 | } |
3171 | } |
3172 | } |
3173 | |
3174 | if (!storageCheck(arrayMode)) |
3175 | return nullptr; |
3176 | |
3177 | if (arrayMode.usesButterfly()) { |
3178 | return m_insertionSet.insertNode( |
3179 | m_indexInBlock, SpecNone, GetButterfly, origin, Edge(array, CellUse)); |
3180 | } |
3181 | |
3182 | return m_insertionSet.insertNode( |
3183 | m_indexInBlock, SpecNone, GetIndexedPropertyStorage, origin, |
3184 | OpInfo(arrayMode.asWord()), Edge(array, KnownCellUse)); |
3185 | } |
3186 | |
3187 | void blessArrayOperation(Edge base, Edge index, Edge& storageChild) |
3188 | { |
3189 | Node* node = m_currentNode; |
3190 | |
3191 | switch (node->arrayMode().type()) { |
3192 | case Array::ForceExit: { |
3193 | m_insertionSet.insertNode( |
3194 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
3195 | return; |
3196 | } |
3197 | |
3198 | case Array::SelectUsingPredictions: |
3199 | case Array::Unprofiled: |
3200 | RELEASE_ASSERT_NOT_REACHED(); |
3201 | return; |
3202 | |
3203 | case Array::Generic: |
3204 | return; |
3205 | |
3206 | default: { |
3207 | Node* storage = checkArray(node->arrayMode(), node->origin, base.node(), index.node()); |
3208 | if (!storage) |
3209 | return; |
3210 | |
3211 | storageChild = Edge(storage); |
3212 | return; |
3213 | } } |
3214 | } |
3215 | |
3216 | bool alwaysUnboxSimplePrimitives() |
3217 | { |
3218 | #if USE(JSVALUE64) |
3219 | return false; |
3220 | #else |
3221 | // Any boolean, int, or cell value is profitable to unbox on 32-bit because it |
3222 | // reduces traffic. |
3223 | return true; |
3224 | #endif |
3225 | } |
3226 | |
3227 | template<UseKind useKind> |
3228 | void observeUseKindOnNode(Node* node) |
3229 | { |
3230 | if (useKind == UntypedUse) |
3231 | return; |
3232 | observeUseKindOnNode(node, useKind); |
3233 | } |
3234 | |
3235 | void observeUseKindOnEdge(Edge edge) |
3236 | { |
3237 | observeUseKindOnNode(edge.node(), edge.useKind()); |
3238 | } |
3239 | |
3240 | void observeUseKindOnNode(Node* node, UseKind useKind) |
3241 | { |
3242 | if (node->op() != GetLocal) |
3243 | return; |
3244 | |
3245 | // FIXME: The way this uses alwaysUnboxSimplePrimitives() is suspicious. |
3246 | // https://bugs.webkit.org/show_bug.cgi?id=121518 |
3247 | |
3248 | VariableAccessData* variable = node->variableAccessData(); |
3249 | switch (useKind) { |
3250 | case Int32Use: |
3251 | case KnownInt32Use: |
3252 | if (alwaysUnboxSimplePrimitives() |
3253 | || isInt32Speculation(variable->prediction())) |
3254 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
3255 | break; |
3256 | case NumberUse: |
3257 | case RealNumberUse: |
3258 | case DoubleRepUse: |
3259 | case DoubleRepRealUse: |
3260 | if (variable->doubleFormatState() == UsingDoubleFormat) |
3261 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
3262 | break; |
3263 | case BooleanUse: |
3264 | case KnownBooleanUse: |
3265 | if (alwaysUnboxSimplePrimitives() |
3266 | || isBooleanSpeculation(variable->prediction())) |
3267 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
3268 | break; |
3269 | case Int52RepUse: |
3270 | if (!isInt32Speculation(variable->prediction()) && isInt32OrInt52Speculation(variable->prediction())) |
3271 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
3272 | break; |
3273 | case CellUse: |
3274 | case KnownCellUse: |
3275 | case ObjectUse: |
3276 | case FunctionUse: |
3277 | case StringUse: |
3278 | case KnownStringUse: |
3279 | case SymbolUse: |
3280 | case BigIntUse: |
3281 | case StringObjectUse: |
3282 | case StringOrStringObjectUse: |
3283 | if (alwaysUnboxSimplePrimitives() |
3284 | || isCellSpeculation(variable->prediction())) |
3285 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
3286 | break; |
3287 | default: |
3288 | break; |
3289 | } |
3290 | } |
3291 | |
3292 | template<UseKind useKind> |
3293 | void fixEdge(Edge& edge) |
3294 | { |
3295 | observeUseKindOnNode<useKind>(edge.node()); |
3296 | edge.setUseKind(useKind); |
3297 | } |
3298 | |
3299 | unsigned indexForChecks() |
3300 | { |
3301 | unsigned index = m_indexInBlock; |
3302 | while (!m_block->at(index)->origin.exitOK) |
3303 | index--; |
3304 | return index; |
3305 | } |
3306 | |
3307 | NodeOrigin originForCheck(unsigned index) |
3308 | { |
3309 | return m_block->at(index)->origin.withSemantic(m_currentNode->origin.semantic); |
3310 | } |
3311 | |
3312 | void speculateForBarrier(Edge value) |
3313 | { |
3314 | // Currently, the DFG won't take advantage of this speculation. But, we want to do it in |
3315 | // the DFG anyway because if such a speculation would be wrong, we want to know before |
3316 | // we do an expensive compile. |
3317 | |
3318 | if (value->shouldSpeculateInt32()) { |
3319 | insertCheck<Int32Use>(value.node()); |
3320 | return; |
3321 | } |
3322 | |
3323 | if (value->shouldSpeculateBoolean()) { |
3324 | insertCheck<BooleanUse>(value.node()); |
3325 | return; |
3326 | } |
3327 | |
3328 | if (value->shouldSpeculateOther()) { |
3329 | insertCheck<OtherUse>(value.node()); |
3330 | return; |
3331 | } |
3332 | |
3333 | if (value->shouldSpeculateNumber()) { |
3334 | insertCheck<NumberUse>(value.node()); |
3335 | return; |
3336 | } |
3337 | |
3338 | if (value->shouldSpeculateNotCell()) { |
3339 | insertCheck<NotCellUse>(value.node()); |
3340 | return; |
3341 | } |
3342 | } |
3343 | |
3344 | template<UseKind useKind> |
3345 | void insertCheck(Node* node) |
3346 | { |
3347 | observeUseKindOnNode<useKind>(node); |
3348 | unsigned index = indexForChecks(); |
3349 | m_insertionSet.insertNode(index, SpecNone, Check, originForCheck(index), Edge(node, useKind)); |
3350 | } |
3351 | |
3352 | void fixIntConvertingEdge(Edge& edge) |
3353 | { |
3354 | Node* node = edge.node(); |
3355 | if (node->shouldSpeculateInt32OrBoolean()) { |
3356 | fixIntOrBooleanEdge(edge); |
3357 | return; |
3358 | } |
3359 | |
3360 | UseKind useKind; |
3361 | if (node->shouldSpeculateInt52()) |
3362 | useKind = Int52RepUse; |
3363 | else if (node->shouldSpeculateNumber()) |
3364 | useKind = DoubleRepUse; |
3365 | else |
3366 | useKind = NotCellUse; |
3367 | Node* newNode = m_insertionSet.insertNode( |
3368 | m_indexInBlock, SpecInt32Only, ValueToInt32, m_currentNode->origin, |
3369 | Edge(node, useKind)); |
3370 | observeUseKindOnNode(node, useKind); |
3371 | |
3372 | edge = Edge(newNode, KnownInt32Use); |
3373 | } |
3374 | |
3375 | void fixIntOrBooleanEdge(Edge& edge) |
3376 | { |
3377 | Node* node = edge.node(); |
3378 | if (!node->sawBooleans()) { |
3379 | fixEdge<Int32Use>(edge); |
3380 | return; |
3381 | } |
3382 | |
3383 | UseKind useKind; |
3384 | if (node->shouldSpeculateBoolean()) |
3385 | useKind = BooleanUse; |
3386 | else |
3387 | useKind = UntypedUse; |
3388 | Node* newNode = m_insertionSet.insertNode( |
3389 | m_indexInBlock, SpecInt32Only, BooleanToNumber, m_currentNode->origin, |
3390 | Edge(node, useKind)); |
3391 | observeUseKindOnNode(node, useKind); |
3392 | |
3393 | edge = Edge(newNode, Int32Use); |
3394 | } |
3395 | |
3396 | void fixDoubleOrBooleanEdge(Edge& edge) |
3397 | { |
3398 | Node* node = edge.node(); |
3399 | if (!node->sawBooleans()) { |
3400 | fixEdge<DoubleRepUse>(edge); |
3401 | return; |
3402 | } |
3403 | |
3404 | UseKind useKind; |
3405 | if (node->shouldSpeculateBoolean()) |
3406 | useKind = BooleanUse; |
3407 | else |
3408 | useKind = UntypedUse; |
3409 | Node* newNode = m_insertionSet.insertNode( |
3410 | m_indexInBlock, SpecInt32Only, BooleanToNumber, m_currentNode->origin, |
3411 | Edge(node, useKind)); |
3412 | observeUseKindOnNode(node, useKind); |
3413 | |
3414 | edge = Edge(newNode, DoubleRepUse); |
3415 | } |
3416 | |
3417 | void truncateConstantToInt32(Edge& edge) |
3418 | { |
3419 | Node* oldNode = edge.node(); |
3420 | |
3421 | JSValue value = oldNode->asJSValue(); |
3422 | if (value.isInt32()) |
3423 | return; |
3424 | |
3425 | value = jsNumber(JSC::toInt32(value.asNumber())); |
3426 | ASSERT(value.isInt32()); |
3427 | edge.setNode(m_insertionSet.insertNode( |
3428 | m_indexInBlock, SpecInt32Only, JSConstant, m_currentNode->origin, |
3429 | OpInfo(m_graph.freeze(value)))); |
3430 | } |
3431 | |
3432 | void truncateConstantsIfNecessary(Node* node, AddSpeculationMode mode) |
3433 | { |
3434 | if (mode != SpeculateInt32AndTruncateConstants) |
3435 | return; |
3436 | |
3437 | ASSERT(node->child1()->hasConstant() || node->child2()->hasConstant()); |
3438 | if (node->child1()->hasConstant()) |
3439 | truncateConstantToInt32(node->child1()); |
3440 | else |
3441 | truncateConstantToInt32(node->child2()); |
3442 | } |
3443 | |
3444 | bool attemptToMakeIntegerAdd(Node* node) |
3445 | { |
3446 | AddSpeculationMode mode = m_graph.addSpeculationMode(node, FixupPass); |
3447 | if (mode != DontSpeculateInt32) { |
3448 | truncateConstantsIfNecessary(node, mode); |
3449 | fixIntOrBooleanEdge(node->child1()); |
3450 | fixIntOrBooleanEdge(node->child2()); |
3451 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
3452 | node->setArithMode(Arith::Unchecked); |
3453 | else |
3454 | node->setArithMode(Arith::CheckOverflow); |
3455 | return true; |
3456 | } |
3457 | |
3458 | if (m_graph.addShouldSpeculateInt52(node)) { |
3459 | fixEdge<Int52RepUse>(node->child1()); |
3460 | fixEdge<Int52RepUse>(node->child2()); |
3461 | node->setArithMode(Arith::CheckOverflow); |
3462 | node->setResult(NodeResultInt52); |
3463 | return true; |
3464 | } |
3465 | |
3466 | return false; |
3467 | } |
3468 | |
3469 | bool attemptToMakeGetArrayLength(Node* node) |
3470 | { |
3471 | if (!isInt32Speculation(node->prediction())) |
3472 | return false; |
3473 | CodeBlock* profiledBlock = m_graph.baselineCodeBlockFor(node->origin.semantic); |
3474 | ArrayProfile* arrayProfile = |
3475 | profiledBlock->getArrayProfile(node->origin.semantic.bytecodeIndex()); |
3476 | ArrayMode arrayMode = ArrayMode(Array::SelectUsingPredictions, Array::Read); |
3477 | if (arrayProfile) { |
3478 | ConcurrentJSLocker locker(profiledBlock->m_lock); |
3479 | arrayProfile->computeUpdatedPrediction(locker, profiledBlock); |
3480 | arrayMode = ArrayMode::fromObserved(locker, arrayProfile, Array::Read, false); |
3481 | if (arrayMode.type() == Array::Unprofiled) { |
3482 | // For normal array operations, it makes sense to treat Unprofiled |
3483 | // accesses as ForceExit and get more data rather than using |
3484 | // predictions and then possibly ending up with a Generic. But here, |
3485 | // we treat anything that is Unprofiled as Generic and keep the |
3486 | // GetById. I.e. ForceExit = Generic. So, there is no harm - and only |
3487 | // profit - from treating the Unprofiled case as |
3488 | // SelectUsingPredictions. |
3489 | arrayMode = ArrayMode(Array::SelectUsingPredictions, Array::Read); |
3490 | } |
3491 | } |
3492 | |
3493 | arrayMode = arrayMode.refine( |
3494 | m_graph, node, node->child1()->prediction(), node->prediction()); |
3495 | |
3496 | if (arrayMode.type() == Array::Generic) { |
3497 | // Check if the input is something that we can't get array length for, but for which we |
3498 | // could insert some conversions in order to transform it into something that we can do it |
3499 | // for. |
3500 | if (node->child1()->shouldSpeculateStringObject()) |
3501 | attemptToForceStringArrayModeByToStringConversion<StringObjectUse>(arrayMode, node); |
3502 | else if (node->child1()->shouldSpeculateStringOrStringObject()) |
3503 | attemptToForceStringArrayModeByToStringConversion<StringOrStringObjectUse>(arrayMode, node); |
3504 | } |
3505 | |
3506 | if (!arrayMode.supportsSelfLength()) |
3507 | return false; |
3508 | |
3509 | convertToGetArrayLength(node, arrayMode); |
3510 | return true; |
3511 | } |
3512 | |
3513 | void convertToGetArrayLength(Node* node, ArrayMode arrayMode) |
3514 | { |
3515 | node->setOp(GetArrayLength); |
3516 | node->clearFlags(NodeMustGenerate); |
3517 | fixEdge<KnownCellUse>(node->child1()); |
3518 | node->setArrayMode(arrayMode); |
3519 | |
3520 | Node* storage = checkArray(arrayMode, node->origin, node->child1().node(), 0, lengthNeedsStorage); |
3521 | if (!storage) |
3522 | return; |
3523 | |
3524 | node->child2() = Edge(storage); |
3525 | } |
3526 | |
3527 | Node* prependGetArrayLength(NodeOrigin origin, Node* child, ArrayMode arrayMode) |
3528 | { |
3529 | Node* storage = checkArray(arrayMode, origin, child, 0, lengthNeedsStorage); |
3530 | return m_insertionSet.insertNode( |
3531 | m_indexInBlock, SpecInt32Only, GetArrayLength, origin, |
3532 | OpInfo(arrayMode.asWord()), Edge(child, KnownCellUse), Edge(storage)); |
3533 | } |
3534 | |
3535 | void convertToHasIndexedProperty(Node* node) |
3536 | { |
3537 | node->setOp(HasIndexedProperty); |
3538 | node->clearFlags(NodeMustGenerate); |
3539 | |
3540 | { |
3541 | unsigned firstChild = m_graph.m_varArgChildren.size(); |
3542 | unsigned numChildren = 3; |
3543 | m_graph.m_varArgChildren.append(node->child1()); |
3544 | m_graph.m_varArgChildren.append(node->child2()); |
3545 | m_graph.m_varArgChildren.append(Edge()); |
3546 | node->mergeFlags(NodeHasVarArgs); |
3547 | node->children = AdjacencyList(AdjacencyList::Variable, firstChild, numChildren); |
3548 | } |
3549 | |
3550 | node->setArrayMode( |
3551 | node->arrayMode().refine( |
3552 | m_graph, node, |
3553 | m_graph.varArgChild(node, 0)->prediction(), |
3554 | m_graph.varArgChild(node, 1)->prediction(), |
3555 | SpecNone)); |
3556 | node->setInternalMethodType(PropertySlot::InternalMethodType::HasProperty); |
3557 | |
3558 | blessArrayOperation(m_graph.varArgChild(node, 0), m_graph.varArgChild(node, 1), m_graph.varArgChild(node, 2)); |
3559 | |
3560 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); |
3561 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
3562 | } |
3563 | |
3564 | void fixupNormalizeMapKey(Node* node) |
3565 | { |
3566 | if (node->child1()->shouldSpeculateBoolean()) { |
3567 | fixEdge<BooleanUse>(node->child1()); |
3568 | node->convertToIdentity(); |
3569 | return; |
3570 | } |
3571 | |
3572 | if (node->child1()->shouldSpeculateInt32()) { |
3573 | fixEdge<Int32Use>(node->child1()); |
3574 | node->convertToIdentity(); |
3575 | return; |
3576 | } |
3577 | |
3578 | if (node->child1()->shouldSpeculateSymbol()) { |
3579 | fixEdge<SymbolUse>(node->child1()); |
3580 | node->convertToIdentity(); |
3581 | return; |
3582 | } |
3583 | |
3584 | if (node->child1()->shouldSpeculateObject()) { |
3585 | fixEdge<ObjectUse>(node->child1()); |
3586 | node->convertToIdentity(); |
3587 | return; |
3588 | } |
3589 | |
3590 | if (node->child1()->shouldSpeculateString()) { |
3591 | fixEdge<StringUse>(node->child1()); |
3592 | node->convertToIdentity(); |
3593 | return; |
3594 | } |
3595 | |
3596 | if (node->child1()->shouldSpeculateCell()) { |
3597 | fixEdge<CellUse>(node->child1()); |
3598 | node->convertToIdentity(); |
3599 | return; |
3600 | } |
3601 | |
3602 | fixEdge<UntypedUse>(node->child1()); |
3603 | } |
3604 | |
3605 | bool attemptToMakeCallDOM(Node* node) |
3606 | { |
3607 | if (m_graph.hasExitSite(node->origin.semantic, BadType)) |
3608 | return false; |
3609 | |
3610 | const DOMJIT::Signature* signature = node->signature(); |
3611 | if (!signature) |
3612 | return false; |
3613 | |
3614 | { |
3615 | unsigned index = 0; |
3616 | bool shouldConvertToCallDOM = true; |
3617 | m_graph.doToChildren(node, [&](Edge& edge) { |
3618 | // Callee. Ignore this. DFGByteCodeParser already emit appropriate checks. |
3619 | if (!index) |
3620 | return; |
3621 | |
3622 | if (index == 1) { |
3623 | // DOM node case. |
3624 | if (edge->shouldSpeculateNotCell()) |
3625 | shouldConvertToCallDOM = false; |
3626 | } else { |
3627 | switch (signature->arguments[index - 2]) { |
3628 | case SpecString: |
3629 | if (edge->shouldSpeculateNotString()) |
3630 | shouldConvertToCallDOM = false; |
3631 | break; |
3632 | case SpecInt32Only: |
3633 | if (edge->shouldSpeculateNotInt32()) |
3634 | shouldConvertToCallDOM = false; |
3635 | break; |
3636 | case SpecBoolean: |
3637 | if (edge->shouldSpeculateNotBoolean()) |
3638 | shouldConvertToCallDOM = false; |
3639 | break; |
3640 | default: |
3641 | RELEASE_ASSERT_NOT_REACHED(); |
3642 | break; |
3643 | } |
3644 | } |
3645 | ++index; |
3646 | }); |
3647 | if (!shouldConvertToCallDOM) |
3648 | return false; |
3649 | } |
3650 | |
3651 | Node* thisNode = m_graph.varArgChild(node, 1).node(); |
3652 | Node* checkSubClass = m_insertionSet.insertNode(m_indexInBlock, SpecNone, CheckSubClass, node->origin, OpInfo(signature->classInfo), Edge(thisNode)); |
3653 | node->convertToCallDOM(m_graph); |
3654 | fixupCheckSubClass(checkSubClass); |
3655 | fixupCallDOM(node); |
3656 | return true; |
3657 | } |
3658 | |
3659 | void fixupCheckSubClass(Node* node) |
3660 | { |
3661 | fixEdge<CellUse>(node->child1()); |
3662 | } |
3663 | |
3664 | void fixupCallDOM(Node* node) |
3665 | { |
3666 | const DOMJIT::Signature* signature = node->signature(); |
3667 | auto fixup = [&](Edge& edge, unsigned argumentIndex) { |
3668 | if (!edge) |
3669 | return; |
3670 | switch (signature->arguments[argumentIndex]) { |
3671 | case SpecString: |
3672 | fixEdge<StringUse>(edge); |
3673 | break; |
3674 | case SpecInt32Only: |
3675 | fixEdge<Int32Use>(edge); |
3676 | break; |
3677 | case SpecBoolean: |
3678 | fixEdge<BooleanUse>(edge); |
3679 | break; |
3680 | default: |
3681 | RELEASE_ASSERT_NOT_REACHED(); |
3682 | break; |
3683 | } |
3684 | }; |
3685 | fixEdge<CellUse>(node->child1()); // DOM. |
3686 | fixup(node->child2(), 0); |
3687 | fixup(node->child3(), 1); |
3688 | } |
3689 | |
3690 | void fixupArrayIndexOf(Node* node) |
3691 | { |
3692 | Edge& array = m_graph.varArgChild(node, 0); |
3693 | Edge& storage = m_graph.varArgChild(node, node->numChildren() == 3 ? 2 : 3); |
3694 | blessArrayOperation(array, Edge(), storage); |
3695 | ASSERT_WITH_MESSAGE(storage.node(), "blessArrayOperation for ArrayIndexOf must set Butterfly for storage edge." ); |
3696 | |
3697 | Edge& searchElement = m_graph.varArgChild(node, 1); |
3698 | |
3699 | // Constant folding. |
3700 | switch (node->arrayMode().type()) { |
3701 | case Array::Double: |
3702 | case Array::Int32: { |
3703 | if (searchElement->shouldSpeculateCell()) { |
3704 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, Edge(searchElement.node(), CellUse)); |
3705 | m_graph.convertToConstant(node, jsNumber(-1)); |
3706 | observeUseKindOnNode<CellUse>(searchElement.node()); |
3707 | return; |
3708 | } |
3709 | |
3710 | if (searchElement->shouldSpeculateOther()) { |
3711 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, Edge(searchElement.node(), OtherUse)); |
3712 | m_graph.convertToConstant(node, jsNumber(-1)); |
3713 | observeUseKindOnNode<OtherUse>(searchElement.node()); |
3714 | return; |
3715 | } |
3716 | |
3717 | if (searchElement->shouldSpeculateBoolean()) { |
3718 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, Edge(searchElement.node(), BooleanUse)); |
3719 | m_graph.convertToConstant(node, jsNumber(-1)); |
3720 | observeUseKindOnNode<BooleanUse>(searchElement.node()); |
3721 | return; |
3722 | } |
3723 | break; |
3724 | } |
3725 | default: |
3726 | break; |
3727 | } |
3728 | |
3729 | fixEdge<KnownCellUse>(array); |
3730 | if (node->numChildren() == 4) |
3731 | fixEdge<Int32Use>(m_graph.varArgChild(node, 2)); |
3732 | |
3733 | switch (node->arrayMode().type()) { |
3734 | case Array::Double: { |
3735 | if (searchElement->shouldSpeculateNumber()) |
3736 | fixEdge<DoubleRepUse>(searchElement); |
3737 | return; |
3738 | } |
3739 | case Array::Int32: { |
3740 | if (searchElement->shouldSpeculateInt32()) |
3741 | fixEdge<Int32Use>(searchElement); |
3742 | return; |
3743 | } |
3744 | case Array::Contiguous: { |
3745 | if (searchElement->shouldSpeculateString()) |
3746 | fixEdge<StringUse>(searchElement); |
3747 | else if (searchElement->shouldSpeculateSymbol()) |
3748 | fixEdge<SymbolUse>(searchElement); |
3749 | else if (searchElement->shouldSpeculateOther()) |
3750 | fixEdge<OtherUse>(searchElement); |
3751 | else if (searchElement->shouldSpeculateObject()) |
3752 | fixEdge<ObjectUse>(searchElement); |
3753 | return; |
3754 | } |
3755 | default: |
3756 | RELEASE_ASSERT_NOT_REACHED(); |
3757 | return; |
3758 | } |
3759 | } |
3760 | |
3761 | void fixupCompareStrictEqAndSameValue(Node* node) |
3762 | { |
3763 | ASSERT(node->op() == SameValue || node->op() == CompareStrictEq); |
3764 | |
3765 | if (Node::shouldSpeculateBoolean(node->child1().node(), node->child2().node())) { |
3766 | fixEdge<BooleanUse>(node->child1()); |
3767 | fixEdge<BooleanUse>(node->child2()); |
3768 | node->setOpAndDefaultFlags(CompareStrictEq); |
3769 | return; |
3770 | } |
3771 | if (Node::shouldSpeculateInt32(node->child1().node(), node->child2().node())) { |
3772 | fixEdge<Int32Use>(node->child1()); |
3773 | fixEdge<Int32Use>(node->child2()); |
3774 | node->setOpAndDefaultFlags(CompareStrictEq); |
3775 | return; |
3776 | } |
3777 | if (Node::shouldSpeculateInt52(node->child1().node(), node->child2().node())) { |
3778 | fixEdge<Int52RepUse>(node->child1()); |
3779 | fixEdge<Int52RepUse>(node->child2()); |
3780 | node->setOpAndDefaultFlags(CompareStrictEq); |
3781 | return; |
3782 | } |
3783 | if (Node::shouldSpeculateNumber(node->child1().node(), node->child2().node())) { |
3784 | fixEdge<DoubleRepUse>(node->child1()); |
3785 | fixEdge<DoubleRepUse>(node->child2()); |
3786 | // Do not convert SameValue to CompareStrictEq in this case since SameValue(NaN, NaN) and SameValue(-0, +0) |
3787 | // are not the same to CompareStrictEq(NaN, NaN) and CompareStrictEq(-0, +0). |
3788 | return; |
3789 | } |
3790 | if (Node::shouldSpeculateSymbol(node->child1().node(), node->child2().node())) { |
3791 | fixEdge<SymbolUse>(node->child1()); |
3792 | fixEdge<SymbolUse>(node->child2()); |
3793 | node->setOpAndDefaultFlags(CompareStrictEq); |
3794 | return; |
3795 | } |
3796 | if (Node::shouldSpeculateBigInt(node->child1().node(), node->child2().node())) { |
3797 | fixEdge<BigIntUse>(node->child1()); |
3798 | fixEdge<BigIntUse>(node->child2()); |
3799 | node->setOpAndDefaultFlags(CompareStrictEq); |
3800 | return; |
3801 | } |
3802 | if (node->child1()->shouldSpeculateStringIdent() && node->child2()->shouldSpeculateStringIdent()) { |
3803 | fixEdge<StringIdentUse>(node->child1()); |
3804 | fixEdge<StringIdentUse>(node->child2()); |
3805 | node->setOpAndDefaultFlags(CompareStrictEq); |
3806 | return; |
3807 | } |
3808 | if (node->child1()->shouldSpeculateString() && node->child2()->shouldSpeculateString() && ((GPRInfo::numberOfRegisters >= 7) || m_graph.m_plan.isFTL())) { |
3809 | fixEdge<StringUse>(node->child1()); |
3810 | fixEdge<StringUse>(node->child2()); |
3811 | node->setOpAndDefaultFlags(CompareStrictEq); |
3812 | return; |
3813 | } |
3814 | |
3815 | if (node->op() == SameValue) { |
3816 | if (node->child1()->shouldSpeculateObject()) { |
3817 | fixEdge<ObjectUse>(node->child1()); |
3818 | node->setOpAndDefaultFlags(CompareStrictEq); |
3819 | return; |
3820 | } |
3821 | if (node->child2()->shouldSpeculateObject()) { |
3822 | fixEdge<ObjectUse>(node->child2()); |
3823 | node->setOpAndDefaultFlags(CompareStrictEq); |
3824 | return; |
3825 | } |
3826 | } else { |
3827 | WatchpointSet* masqueradesAsUndefinedWatchpoint = m_graph.globalObjectFor(node->origin.semantic)->masqueradesAsUndefinedWatchpoint(); |
3828 | if (masqueradesAsUndefinedWatchpoint->isStillValid()) { |
3829 | if (node->child1()->shouldSpeculateObject()) { |
3830 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
3831 | fixEdge<ObjectUse>(node->child1()); |
3832 | return; |
3833 | } |
3834 | if (node->child2()->shouldSpeculateObject()) { |
3835 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
3836 | fixEdge<ObjectUse>(node->child2()); |
3837 | return; |
3838 | } |
3839 | } else if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObject()) { |
3840 | fixEdge<ObjectUse>(node->child1()); |
3841 | fixEdge<ObjectUse>(node->child2()); |
3842 | return; |
3843 | } |
3844 | } |
3845 | |
3846 | if (node->child1()->shouldSpeculateSymbol()) { |
3847 | fixEdge<SymbolUse>(node->child1()); |
3848 | node->setOpAndDefaultFlags(CompareStrictEq); |
3849 | return; |
3850 | } |
3851 | if (node->child2()->shouldSpeculateSymbol()) { |
3852 | fixEdge<SymbolUse>(node->child2()); |
3853 | node->setOpAndDefaultFlags(CompareStrictEq); |
3854 | return; |
3855 | } |
3856 | if (node->child1()->shouldSpeculateMisc()) { |
3857 | fixEdge<MiscUse>(node->child1()); |
3858 | node->setOpAndDefaultFlags(CompareStrictEq); |
3859 | return; |
3860 | } |
3861 | if (node->child2()->shouldSpeculateMisc()) { |
3862 | fixEdge<MiscUse>(node->child2()); |
3863 | node->setOpAndDefaultFlags(CompareStrictEq); |
3864 | return; |
3865 | } |
3866 | if (node->child1()->shouldSpeculateStringIdent() |
3867 | && node->child2()->shouldSpeculateNotStringVar()) { |
3868 | fixEdge<StringIdentUse>(node->child1()); |
3869 | fixEdge<NotStringVarUse>(node->child2()); |
3870 | node->setOpAndDefaultFlags(CompareStrictEq); |
3871 | return; |
3872 | } |
3873 | if (node->child2()->shouldSpeculateStringIdent() |
3874 | && node->child1()->shouldSpeculateNotStringVar()) { |
3875 | fixEdge<StringIdentUse>(node->child2()); |
3876 | fixEdge<NotStringVarUse>(node->child1()); |
3877 | node->setOpAndDefaultFlags(CompareStrictEq); |
3878 | return; |
3879 | } |
3880 | if (node->child1()->shouldSpeculateString() && ((GPRInfo::numberOfRegisters >= 8) || m_graph.m_plan.isFTL())) { |
3881 | fixEdge<StringUse>(node->child1()); |
3882 | node->setOpAndDefaultFlags(CompareStrictEq); |
3883 | return; |
3884 | } |
3885 | if (node->child2()->shouldSpeculateString() && ((GPRInfo::numberOfRegisters >= 8) || m_graph.m_plan.isFTL())) { |
3886 | fixEdge<StringUse>(node->child2()); |
3887 | node->setOpAndDefaultFlags(CompareStrictEq); |
3888 | return; |
3889 | } |
3890 | } |
3891 | |
3892 | void fixupChecksInBlock(BasicBlock* block) |
3893 | { |
3894 | if (!block) |
3895 | return; |
3896 | ASSERT(block->isReachable); |
3897 | m_block = block; |
3898 | unsigned indexForChecks = UINT_MAX; |
3899 | NodeOrigin originForChecks; |
3900 | for (unsigned indexInBlock = 0; indexInBlock < block->size(); ++indexInBlock) { |
3901 | Node* node = block->at(indexInBlock); |
3902 | |
3903 | // If this is a node at which we could exit, then save its index. If nodes after this one |
3904 | // cannot exit, then we will hoist checks to here. |
3905 | if (node->origin.exitOK) { |
3906 | indexForChecks = indexInBlock; |
3907 | originForChecks = node->origin; |
3908 | } |
3909 | |
3910 | originForChecks = originForChecks.withSemantic(node->origin.semantic); |
3911 | |
3912 | // First, try to relax the representational demands of each node, in order to have |
3913 | // fewer conversions. |
3914 | switch (node->op()) { |
3915 | case MovHint: |
3916 | case Check: |
3917 | case CheckVarargs: |
3918 | m_graph.doToChildren( |
3919 | node, |
3920 | [&] (Edge& edge) { |
3921 | switch (edge.useKind()) { |
3922 | case DoubleRepUse: |
3923 | case DoubleRepRealUse: |
3924 | if (edge->hasDoubleResult()) |
3925 | break; |
3926 | |
3927 | if (edge->hasInt52Result()) |
3928 | edge.setUseKind(Int52RepUse); |
3929 | else if (edge.useKind() == DoubleRepUse) |
3930 | edge.setUseKind(NumberUse); |
3931 | break; |
3932 | |
3933 | case Int52RepUse: |
3934 | // Nothing we can really do. |
3935 | break; |
3936 | |
3937 | case UntypedUse: |
3938 | case NumberUse: |
3939 | if (edge->hasDoubleResult()) |
3940 | edge.setUseKind(DoubleRepUse); |
3941 | else if (edge->hasInt52Result()) |
3942 | edge.setUseKind(Int52RepUse); |
3943 | break; |
3944 | |
3945 | case RealNumberUse: |
3946 | if (edge->hasDoubleResult()) |
3947 | edge.setUseKind(DoubleRepRealUse); |
3948 | else if (edge->hasInt52Result()) |
3949 | edge.setUseKind(Int52RepUse); |
3950 | break; |
3951 | |
3952 | default: |
3953 | break; |
3954 | } |
3955 | }); |
3956 | break; |
3957 | |
3958 | case ValueToInt32: |
3959 | if (node->child1().useKind() == DoubleRepUse |
3960 | && !node->child1()->hasDoubleResult()) { |
3961 | node->child1().setUseKind(NumberUse); |
3962 | break; |
3963 | } |
3964 | break; |
3965 | |
3966 | default: |
3967 | break; |
3968 | } |
3969 | |
3970 | // Now, insert type conversions if necessary. |
3971 | m_graph.doToChildren( |
3972 | node, |
3973 | [&] (Edge& edge) { |
3974 | Node* result = nullptr; |
3975 | |
3976 | switch (edge.useKind()) { |
3977 | case DoubleRepUse: |
3978 | case DoubleRepRealUse: |
3979 | case DoubleRepAnyIntUse: { |
3980 | if (edge->hasDoubleResult()) |
3981 | break; |
3982 | |
3983 | ASSERT(indexForChecks != UINT_MAX); |
3984 | if (edge->isNumberConstant()) { |
3985 | result = m_insertionSet.insertNode( |
3986 | indexForChecks, SpecBytecodeDouble, DoubleConstant, originForChecks, |
3987 | OpInfo(m_graph.freeze(jsDoubleNumber(edge->asNumber())))); |
3988 | } else if (edge->hasInt52Result()) { |
3989 | result = m_insertionSet.insertNode( |
3990 | indexForChecks, SpecAnyIntAsDouble, DoubleRep, originForChecks, |
3991 | Edge(edge.node(), Int52RepUse)); |
3992 | } else { |
3993 | UseKind useKind; |
3994 | if (edge->shouldSpeculateDoubleReal()) |
3995 | useKind = RealNumberUse; |
3996 | else if (edge->shouldSpeculateNumber()) |
3997 | useKind = NumberUse; |
3998 | else |
3999 | useKind = NotCellUse; |
4000 | |
4001 | result = m_insertionSet.insertNode( |
4002 | indexForChecks, SpecBytecodeDouble, DoubleRep, originForChecks, |
4003 | Edge(edge.node(), useKind)); |
4004 | } |
4005 | |
4006 | edge.setNode(result); |
4007 | break; |
4008 | } |
4009 | |
4010 | case Int52RepUse: { |
4011 | if (edge->hasInt52Result()) |
4012 | break; |
4013 | |
4014 | ASSERT(indexForChecks != UINT_MAX); |
4015 | if (edge->isAnyIntConstant()) { |
4016 | result = m_insertionSet.insertNode( |
4017 | indexForChecks, SpecInt52Any, Int52Constant, originForChecks, |
4018 | OpInfo(edge->constant())); |
4019 | } else if (edge->hasDoubleResult()) { |
4020 | result = m_insertionSet.insertNode( |
4021 | indexForChecks, SpecInt52Any, Int52Rep, originForChecks, |
4022 | Edge(edge.node(), DoubleRepAnyIntUse)); |
4023 | } else if (edge->shouldSpeculateInt32ForArithmetic()) { |
4024 | result = m_insertionSet.insertNode( |
4025 | indexForChecks, SpecInt32Only, Int52Rep, originForChecks, |
4026 | Edge(edge.node(), Int32Use)); |
4027 | } else { |
4028 | result = m_insertionSet.insertNode( |
4029 | indexForChecks, SpecInt52Any, Int52Rep, originForChecks, |
4030 | Edge(edge.node(), AnyIntUse)); |
4031 | } |
4032 | |
4033 | edge.setNode(result); |
4034 | break; |
4035 | } |
4036 | |
4037 | default: { |
4038 | if (!edge->hasDoubleResult() && !edge->hasInt52Result()) |
4039 | break; |
4040 | |
4041 | ASSERT(indexForChecks != UINT_MAX); |
4042 | if (edge->hasDoubleResult()) { |
4043 | result = m_insertionSet.insertNode( |
4044 | indexForChecks, SpecBytecodeDouble, ValueRep, originForChecks, |
4045 | Edge(edge.node(), DoubleRepUse)); |
4046 | } else { |
4047 | result = m_insertionSet.insertNode( |
4048 | indexForChecks, SpecInt32Only | SpecAnyIntAsDouble, ValueRep, |
4049 | originForChecks, Edge(edge.node(), Int52RepUse)); |
4050 | } |
4051 | |
4052 | edge.setNode(result); |
4053 | break; |
4054 | } } |
4055 | |
4056 | // It's remotely possible that this node cannot do type checks, but we now have a |
4057 | // type check on this node. We don't have to handle the general form of this |
4058 | // problem. It only arises when ByteCodeParser emits an immediate SetLocal, rather |
4059 | // than a delayed one. So, we only worry about those checks that we may have put on |
4060 | // a SetLocal. Note that "indexForChecks != indexInBlock" is just another way of |
4061 | // saying "!node->origin.exitOK". |
4062 | if (indexForChecks != indexInBlock && mayHaveTypeCheck(edge.useKind())) { |
4063 | UseKind knownUseKind; |
4064 | |
4065 | switch (edge.useKind()) { |
4066 | case Int32Use: |
4067 | knownUseKind = KnownInt32Use; |
4068 | break; |
4069 | case CellUse: |
4070 | knownUseKind = KnownCellUse; |
4071 | break; |
4072 | case BooleanUse: |
4073 | knownUseKind = KnownBooleanUse; |
4074 | break; |
4075 | default: |
4076 | // This can only arise if we have a Check node, and in that case, we can |
4077 | // just remove the original check. |
4078 | DFG_ASSERT(m_graph, node, node->op() == Check, node->op(), edge.useKind()); |
4079 | knownUseKind = UntypedUse; |
4080 | break; |
4081 | } |
4082 | |
4083 | ASSERT(indexForChecks != UINT_MAX); |
4084 | m_insertionSet.insertNode( |
4085 | indexForChecks, SpecNone, Check, originForChecks, edge); |
4086 | |
4087 | edge.setUseKind(knownUseKind); |
4088 | } |
4089 | }); |
4090 | } |
4091 | |
4092 | m_insertionSet.execute(block); |
4093 | } |
4094 | |
4095 | BasicBlock* m_block; |
4096 | unsigned m_indexInBlock; |
4097 | Node* m_currentNode; |
4098 | InsertionSet m_insertionSet; |
4099 | bool m_profitabilityChanged; |
4100 | }; |
4101 | |
4102 | bool performFixup(Graph& graph) |
4103 | { |
4104 | return runPhase<FixupPhase>(graph); |
4105 | } |
4106 | |
4107 | } } // namespace JSC::DFG |
4108 | |
4109 | #endif // ENABLE(DFG_JIT) |
4110 | |
4111 | |