1 | /* |
2 | * Copyright (C) 2013-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #if ENABLE(DFG_JIT) |
29 | |
30 | #include "DFGAbstractValue.h" |
31 | #include "DFGGraph.h" |
32 | #include "DFGNode.h" |
33 | #include "DFGNodeFlowProjection.h" |
34 | #include "DFGPhiChildren.h" |
35 | |
36 | namespace JSC { namespace DFG { |
37 | |
38 | template<typename AbstractStateType> |
39 | class AbstractInterpreter { |
40 | public: |
41 | AbstractInterpreter(Graph&, AbstractStateType&); |
42 | ~AbstractInterpreter(); |
43 | |
44 | ALWAYS_INLINE AbstractValue& forNode(NodeFlowProjection node) |
45 | { |
46 | return m_state.forNode(node); |
47 | } |
48 | |
49 | ALWAYS_INLINE AbstractValue& forNode(Edge edge) |
50 | { |
51 | return forNode(edge.node()); |
52 | } |
53 | |
54 | ALWAYS_INLINE void clearForNode(NodeFlowProjection node) |
55 | { |
56 | m_state.clearForNode(node); |
57 | } |
58 | |
59 | ALWAYS_INLINE void clearForNode(Edge edge) |
60 | { |
61 | clearForNode(edge.node()); |
62 | } |
63 | |
64 | template<typename... Arguments> |
65 | ALWAYS_INLINE void setForNode(NodeFlowProjection node, Arguments&&... arguments) |
66 | { |
67 | m_state.setForNode(node, std::forward<Arguments>(arguments)...); |
68 | } |
69 | |
70 | template<typename... Arguments> |
71 | ALWAYS_INLINE void setForNode(Edge edge, Arguments&&... arguments) |
72 | { |
73 | setForNode(edge.node(), std::forward<Arguments>(arguments)...); |
74 | } |
75 | |
76 | template<typename... Arguments> |
77 | ALWAYS_INLINE void setTypeForNode(NodeFlowProjection node, Arguments&&... arguments) |
78 | { |
79 | m_state.setTypeForNode(node, std::forward<Arguments>(arguments)...); |
80 | } |
81 | |
82 | template<typename... Arguments> |
83 | ALWAYS_INLINE void setTypeForNode(Edge edge, Arguments&&... arguments) |
84 | { |
85 | setTypeForNode(edge.node(), std::forward<Arguments>(arguments)...); |
86 | } |
87 | |
88 | template<typename... Arguments> |
89 | ALWAYS_INLINE void setNonCellTypeForNode(NodeFlowProjection node, Arguments&&... arguments) |
90 | { |
91 | m_state.setNonCellTypeForNode(node, std::forward<Arguments>(arguments)...); |
92 | } |
93 | |
94 | template<typename... Arguments> |
95 | ALWAYS_INLINE void setNonCellTypeForNode(Edge edge, Arguments&&... arguments) |
96 | { |
97 | setNonCellTypeForNode(edge.node(), std::forward<Arguments>(arguments)...); |
98 | } |
99 | |
100 | ALWAYS_INLINE void makeBytecodeTopForNode(NodeFlowProjection node) |
101 | { |
102 | m_state.makeBytecodeTopForNode(node); |
103 | } |
104 | |
105 | ALWAYS_INLINE void makeBytecodeTopForNode(Edge edge) |
106 | { |
107 | makeBytecodeTopForNode(edge.node()); |
108 | } |
109 | |
110 | ALWAYS_INLINE void makeHeapTopForNode(NodeFlowProjection node) |
111 | { |
112 | m_state.makeHeapTopForNode(node); |
113 | } |
114 | |
115 | ALWAYS_INLINE void makeHeapTopForNode(Edge edge) |
116 | { |
117 | makeHeapTopForNode(edge.node()); |
118 | } |
119 | |
120 | bool needsTypeCheck(Node* node, SpeculatedType typesPassedThrough) |
121 | { |
122 | return !forNode(node).isType(typesPassedThrough); |
123 | } |
124 | |
125 | bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough) |
126 | { |
127 | return needsTypeCheck(edge.node(), typesPassedThrough); |
128 | } |
129 | |
130 | bool needsTypeCheck(Edge edge) |
131 | { |
132 | return needsTypeCheck(edge, typeFilterFor(edge.useKind())); |
133 | } |
134 | |
135 | // Abstractly executes the given node. The new abstract state is stored into an |
136 | // abstract stack stored in *this. Loads of local variables (that span |
137 | // basic blocks) interrogate the basic block's notion of the state at the head. |
138 | // Stores to local variables are handled in endBasicBlock(). This returns true |
139 | // if execution should continue past this node. Notably, it will return true |
140 | // for block terminals, so long as those terminals are not Return or Unreachable. |
141 | // |
142 | // This is guaranteed to be equivalent to doing: |
143 | // |
144 | // state.startExecuting() |
145 | // state.executeEdges(node); |
146 | // result = state.executeEffects(index); |
147 | bool execute(unsigned indexInBlock); |
148 | bool execute(Node*); |
149 | |
150 | // Indicate the start of execution of a node. It resets any state in the node |
151 | // that is progressively built up by executeEdges() and executeEffects(). |
152 | void startExecuting(); |
153 | |
154 | // Abstractly execute the edges of the given node. This runs filterEdgeByUse() |
155 | // on all edges of the node. You can skip this step, if you have already used |
156 | // filterEdgeByUse() (or some equivalent) on each edge. |
157 | void executeEdges(Node*); |
158 | |
159 | void executeKnownEdgeTypes(Node*); |
160 | |
161 | ALWAYS_INLINE void filterEdgeByUse(Edge& edge) |
162 | { |
163 | UseKind useKind = edge.useKind(); |
164 | if (useKind == UntypedUse) |
165 | return; |
166 | filterByType(edge, typeFilterFor(useKind)); |
167 | } |
168 | |
169 | // Abstractly execute the effects of the given node. This changes the abstract |
170 | // state assuming that edges have already been filtered. |
171 | bool executeEffects(unsigned indexInBlock); |
172 | bool executeEffects(unsigned clobberLimit, Node*); |
173 | |
174 | void dump(PrintStream& out) const; |
175 | void dump(PrintStream& out); |
176 | |
177 | template<typename T> |
178 | FiltrationResult filter(T node, const RegisteredStructureSet& set, SpeculatedType admittedTypes = SpecNone) |
179 | { |
180 | return filter(forNode(node), set, admittedTypes); |
181 | } |
182 | |
183 | template<typename T> |
184 | FiltrationResult filterArrayModes(T node, ArrayModes arrayModes) |
185 | { |
186 | return filterArrayModes(forNode(node), arrayModes); |
187 | } |
188 | |
189 | template<typename T> |
190 | FiltrationResult filter(T node, SpeculatedType type) |
191 | { |
192 | return filter(forNode(node), type); |
193 | } |
194 | |
195 | template<typename T> |
196 | FiltrationResult filterByValue(T node, FrozenValue value) |
197 | { |
198 | return filterByValue(forNode(node), value); |
199 | } |
200 | |
201 | template<typename T> |
202 | FiltrationResult filterClassInfo(T node, const ClassInfo* classInfo) |
203 | { |
204 | return filterClassInfo(forNode(node), classInfo); |
205 | } |
206 | |
207 | FiltrationResult filter(AbstractValue&, const RegisteredStructureSet&, SpeculatedType admittedTypes = SpecNone); |
208 | FiltrationResult filterArrayModes(AbstractValue&, ArrayModes); |
209 | FiltrationResult filter(AbstractValue&, SpeculatedType); |
210 | FiltrationResult filterByValue(AbstractValue&, FrozenValue); |
211 | FiltrationResult filterClassInfo(AbstractValue&, const ClassInfo*); |
212 | |
213 | PhiChildren* phiChildren() { return m_phiChildren.get(); } |
214 | |
215 | void filterICStatus(Node*); |
216 | |
217 | private: |
218 | void clobberWorld(); |
219 | void didFoldClobberWorld(); |
220 | |
221 | template<typename Functor> |
222 | void forAllValues(unsigned indexInBlock, Functor&); |
223 | |
224 | void clobberStructures(); |
225 | void didFoldClobberStructures(); |
226 | |
227 | void observeTransition(unsigned indexInBlock, RegisteredStructure from, RegisteredStructure to); |
228 | void observeTransitions(unsigned indexInBlock, const TransitionVector&); |
229 | |
230 | enum BooleanResult { |
231 | UnknownBooleanResult, |
232 | DefinitelyFalse, |
233 | DefinitelyTrue |
234 | }; |
235 | BooleanResult booleanResult(Node*, AbstractValue&); |
236 | |
237 | void setBuiltInConstant(Node* node, FrozenValue value) |
238 | { |
239 | AbstractValue& abstractValue = forNode(node); |
240 | abstractValue.set(m_graph, value, m_state.structureClobberState()); |
241 | abstractValue.fixTypeForRepresentation(m_graph, node); |
242 | } |
243 | |
244 | void setConstant(Node* node, FrozenValue value) |
245 | { |
246 | setBuiltInConstant(node, value); |
247 | m_state.setFoundConstants(true); |
248 | } |
249 | |
250 | ALWAYS_INLINE void filterByType(Edge& edge, SpeculatedType type); |
251 | |
252 | void verifyEdge(Node*, Edge); |
253 | void verifyEdges(Node*); |
254 | void executeDoubleUnaryOpEffects(Node*, double(*equivalentFunction)(double)); |
255 | |
256 | bool handleConstantDivOp(Node*); |
257 | |
258 | CodeBlock* m_codeBlock; |
259 | Graph& m_graph; |
260 | VM& m_vm; |
261 | AbstractStateType& m_state; |
262 | std::unique_ptr<PhiChildren> m_phiChildren; |
263 | }; |
264 | |
265 | } } // namespace JSC::DFG |
266 | |
267 | #endif // ENABLE(DFG_JIT) |
268 | |