1 | /* |
2 | * Copyright (C) 2015-2017 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #if ENABLE(B3_JIT) |
29 | |
30 | #include "B3Type.h" |
31 | #include "B3Width.h" |
32 | #include <wtf/Optional.h> |
33 | #include <wtf/StdLibExtras.h> |
34 | |
35 | namespace JSC { namespace B3 { |
36 | |
37 | // Warning: In B3, an Opcode is just one part of a Kind. Kind is used the way that an opcode |
38 | // would be used in simple IRs. See B3Kind.h. |
39 | |
40 | enum Opcode : uint8_t { |
41 | // A no-op that returns Void, useful for when you want to remove a value. |
42 | Nop, |
43 | |
44 | // Polymorphic identity, usable with any value type. |
45 | Identity, |
46 | |
47 | // This is an identity, but we prohibit the compiler from realizing this until the bitter end. This can |
48 | // be used to block reassociation and other compiler reasoning, if we find that it's wrong or |
49 | // unprofitable and we need an escape hatch. |
50 | Opaque, |
51 | |
52 | // Constants. Use the ConstValue* classes. Constants exist in the control flow, so that we can |
53 | // reason about where we would construct them. Large constants are expensive to create. |
54 | Const32, |
55 | Const64, |
56 | ConstDouble, |
57 | ConstFloat, |
58 | |
59 | // B3 supports non-SSA variables. These are accessed using Get and Set opcodes. Use the |
60 | // VariableValue class. It's a good idea to run fixSSA() to turn these into SSA. The |
61 | // optimizer will do that eventually, but if your input tends to use these opcodes, you |
62 | // should run fixSSA() directly before launching the optimizer. |
63 | Set, |
64 | Get, |
65 | |
66 | // Gets the base address of a StackSlot. |
67 | SlotBase, |
68 | |
69 | // The magical argument register. This is viewed as executing at the top of the program |
70 | // regardless of where in control flow you put it, and the compiler takes care to ensure that we |
71 | // don't clobber the value by register allocation or calls (either by saving the argument to the |
72 | // stack or preserving it in a callee-save register). Use the ArgumentRegValue class. The return |
73 | // type is either pointer() (for GPRs) or Double (for FPRs). |
74 | ArgumentReg, |
75 | |
76 | // The frame pointer. You can put this anywhere in control flow but it will always yield the |
77 | // frame pointer, with a caveat: if our compiler changes the frame pointer temporarily for some |
78 | // silly reason, the FramePointer intrinsic will return where the frame pointer *should* be not |
79 | // where it happens to be right now. |
80 | FramePointer, |
81 | |
82 | // Polymorphic math, usable with any value type. |
83 | Add, |
84 | Sub, |
85 | Mul, |
86 | Div, // All bets are off as to what will happen when you execute this for -2^31/-1 and x/0. |
87 | UDiv, |
88 | Mod, // All bets are off as to what will happen when you execute this for -2^31%-1 and x%0. |
89 | UMod, |
90 | |
91 | // Polymorphic negation. Note that we only need this for floating point, since integer negation |
92 | // is exactly like Sub(0, x). But that's not true for floating point. Sub(0, 0) is 0, while |
93 | // Neg(0) is -0. Also, we canonicalize Sub(0, x) into Neg(x) in case of integers. |
94 | Neg, |
95 | |
96 | // Integer math. |
97 | BitAnd, |
98 | BitOr, |
99 | BitXor, |
100 | Shl, |
101 | SShr, // Arithmetic Shift. |
102 | ZShr, // Logical Shift. |
103 | RotR, // Rotate Right. |
104 | RotL, // Rotate Left. |
105 | Clz, // Count leading zeros. |
106 | |
107 | // Floating point math. |
108 | Abs, |
109 | Ceil, |
110 | Floor, |
111 | Sqrt, |
112 | |
113 | // Casts and such. |
114 | // Bitwise Cast of Double->Int64 or Int64->Double |
115 | BitwiseCast, |
116 | // Takes and returns Int32: |
117 | SExt8, |
118 | SExt16, |
119 | // Takes Int32 and returns Int64: |
120 | SExt32, |
121 | ZExt32, |
122 | // Does a bitwise truncation of Int64->Int32 and Double->Float: |
123 | Trunc, |
124 | // Takes ints and returns floating point value. Note that we don't currently provide the opposite operation, |
125 | // because double-to-int conversions have weirdly different semantics on different platforms. Use |
126 | // a patchpoint if you need to do that. |
127 | IToD, |
128 | IToF, |
129 | // Convert between double and float. |
130 | FloatToDouble, |
131 | DoubleToFloat, |
132 | |
133 | // Polymorphic comparisons, usable with any value type. Returns int32 0 or 1. Note that "Not" |
134 | // is just Equal(x, 0), and "ToBoolean" is just NotEqual(x, 0). |
135 | Equal, |
136 | NotEqual, |
137 | LessThan, |
138 | GreaterThan, |
139 | LessEqual, |
140 | GreaterEqual, |
141 | |
142 | // Integer comparisons. Returns int32 0 or 1. |
143 | Above, |
144 | Below, |
145 | AboveEqual, |
146 | BelowEqual, |
147 | |
148 | // Unordered floating point compare: values are equal or either one is NaN. |
149 | EqualOrUnordered, |
150 | |
151 | // SSA form of conditional move. The first child is evaluated for truthiness. If true, the second child |
152 | // is returned. Otherwise, the third child is returned. |
153 | Select, |
154 | |
155 | // Memory loads. Opcode indicates how we load and the loaded type. These use MemoryValue. |
156 | // These return Int32: |
157 | Load8Z, |
158 | Load8S, |
159 | Load16Z, |
160 | Load16S, |
161 | // This returns whatever the return type is: |
162 | Load, |
163 | |
164 | // Memory stores. Opcode indicates how the value is stored. These use MemoryValue. |
165 | // These take an Int32 value: |
166 | Store8, |
167 | Store16, |
168 | // This is a polymorphic store for Int32, Int64, Float, and Double. |
169 | Store, |
170 | |
171 | // Atomic compare and swap that returns a boolean. May choose to do nothing and return false. You can |
172 | // usually assume that this is faster and results in less code than AtomicStrongCAS, though that's |
173 | // not necessarily true on Intel, if instruction selection does its job. Imagine that this opcode is |
174 | // as if you did this atomically: |
175 | // |
176 | // template<typename T> |
177 | // bool AtomicWeakCAS(T expectedValue, T newValue, T* ptr) |
178 | // { |
179 | // if (!rand()) |
180 | // return false; // Real world example of this: context switch on ARM while doing CAS. |
181 | // if (*ptr != expectedValue) |
182 | // return false; |
183 | // *ptr = newValue; |
184 | // return true; |
185 | // } |
186 | // |
187 | // Note that all atomics put the pointer last to be consistent with how loads and stores work. This |
188 | // is a goofy tradition, but it's harmless, and better than being inconsistent. |
189 | // |
190 | // Note that weak CAS has no fencing guarantees when it fails. This means that the following |
191 | // transformation is always valid: |
192 | // |
193 | // Before: |
194 | // |
195 | // Branch(AtomicWeakCAS(expected, new, ptr)) |
196 | // Successors: Then:#success, Else:#fail |
197 | // |
198 | // After: |
199 | // |
200 | // Branch(Equal(Load(ptr), expected)) |
201 | // Successors: Then:#attempt, Else:#fail |
202 | // BB#attempt: |
203 | // Branch(AtomicWeakCAS(expected, new, ptr)) |
204 | // Successors: Then:#success, Else:#fail |
205 | // |
206 | // Both kinds of CAS for non-canonical widths (Width8 and Width16) ignore the irrelevant bits of the |
207 | // input. |
208 | AtomicWeakCAS, |
209 | |
210 | // Atomic compare and swap that returns the old value. Does not have the nondeterminism of WeakCAS. |
211 | // This is a bit more code and a bit slower in some cases, though not by a lot. Imagine that this |
212 | // opcode is as if you did this atomically: |
213 | // |
214 | // template<typename T> |
215 | // T AtomicStrongCAS(T expectedValue, T newValue, T* ptr) |
216 | // { |
217 | // T oldValue = *ptr; |
218 | // if (oldValue == expectedValue) |
219 | // *ptr = newValue; |
220 | // return oldValue |
221 | // } |
222 | // |
223 | // AtomicStrongCAS sign-extends its result for subwidth operations. |
224 | // |
225 | // Note that AtomicWeakCAS and AtomicStrongCAS sort of have this kind of equivalence: |
226 | // |
227 | // AtomicWeakCAS(@exp, @new, @ptr) == Equal(AtomicStrongCAS(@exp, @new, @ptr), @exp) |
228 | // |
229 | // Assuming that the WeakCAS does not spuriously fail, of course. |
230 | AtomicStrongCAS, |
231 | |
232 | // Atomically ___ a memory location and return the old value. Syntax: |
233 | // |
234 | // @oldValue = AtomicXchg___(@operand, @ptr) |
235 | // |
236 | // For non-canonical widths (Width8 and Width16), these return sign-extended results and ignore the |
237 | // irrelevant bits of their inputs. |
238 | AtomicXchgAdd, |
239 | AtomicXchgAnd, |
240 | AtomicXchgOr, |
241 | AtomicXchgSub, |
242 | AtomicXchgXor, |
243 | |
244 | // FIXME: Maybe we should have AtomicXchgNeg. |
245 | // https://bugs.webkit.org/show_bug.cgi?id=169252 |
246 | |
247 | // Atomically exchange a value with a memory location. Syntax: |
248 | // |
249 | // @oldValue = AtomicXchg(@newValue, @ptr) |
250 | AtomicXchg, |
251 | |
252 | // Introduce an invisible dependency for blocking motion of loads with respect to each other. Syntax: |
253 | // |
254 | // @result = Depend(@phantom) |
255 | // |
256 | // This is eventually codegenerated to have local semantics as if we did: |
257 | // |
258 | // @result = $0 |
259 | // |
260 | // But it ensures that the users of @result cannot execute until @phantom is computed. |
261 | // |
262 | // The compiler is not allowed to reason about the fact that Depend codegenerates this way. Any kind |
263 | // of transformation or analysis that relies on the insight that Depend is really zero is unsound, |
264 | // because it unlocks reordering of users of @result and @phantom. |
265 | // |
266 | // On X86, this is lowered to a load-load fence and @result folds to zero. |
267 | // |
268 | // On ARM, this is lowered as if like: |
269 | // |
270 | // @result = BitXor(@phantom, @phantom) |
271 | // |
272 | // Except that the compiler never gets an opportunity to simplify out the BitXor. |
273 | Depend, |
274 | |
275 | // This is used to compute the actual address of a Wasm memory operation. It takes an IntPtr |
276 | // and a pinned register then computes the appropriate IntPtr address. For the use-case of |
277 | // Wasm it is important that the first child initially be a ZExt32 so the top bits are cleared. |
278 | // We do WasmAddress(ZExt32(ptr), ...) so that we can avoid generating extraneous moves in Air. |
279 | WasmAddress, |
280 | |
281 | // This is used to represent standalone fences - i.e. fences that are not part of other |
282 | // instructions. It's expressive enough to expose mfence on x86 and dmb ish/ishst on ARM. On |
283 | // x86, it also acts as a compiler store-store fence in those cases where it would have been a |
284 | // dmb ishst on ARM. |
285 | Fence, |
286 | |
287 | // This is a regular ordinary C function call, using the system C calling convention. Make sure |
288 | // that the arguments are passed using the right types. The first argument is the callee. |
289 | CCall, |
290 | |
291 | // This is a patchpoint. Use the PatchpointValue class. This is viewed as behaving like a call, |
292 | // but only emits code via a code generation callback. That callback gets to emit code inline. |
293 | // You can pass a stackmap along with constraints on how each stackmap argument must be passed. |
294 | // It's legal to request that a stackmap argument is in some register and it's legal to request |
295 | // that a stackmap argument is at some offset from the top of the argument passing area on the |
296 | // stack. |
297 | Patchpoint, |
298 | |
299 | // Checked math. Use the CheckValue class. Like a Patchpoint, this takes a code generation |
300 | // callback. That callback gets to emit some code after the epilogue, and gets to link the jump |
301 | // from the check, and the choice of registers. You also get to supply a stackmap. Note that you |
302 | // are not allowed to jump back into the mainline code from your slow path, since the compiler |
303 | // will assume that the execution of these instructions proves that overflow didn't happen. For |
304 | // example, if you have two CheckAdd's: |
305 | // |
306 | // a = CheckAdd(x, y) |
307 | // b = CheckAdd(x, y) |
308 | // |
309 | // Then it's valid to change this to: |
310 | // |
311 | // a = CheckAdd(x, y) |
312 | // b = Identity(a) |
313 | // |
314 | // This is valid regardless of the callbacks used by the two CheckAdds. They may have different |
315 | // callbacks. Yet, this transformation is valid even if they are different because we know that |
316 | // after the first CheckAdd executes, the second CheckAdd could not have possibly taken slow |
317 | // path. Therefore, the second CheckAdd's callback is irrelevant. |
318 | // |
319 | // Note that the first two children of these operations have ValueRep's as input constraints but do |
320 | // not have output constraints. |
321 | CheckAdd, |
322 | CheckSub, |
323 | CheckMul, |
324 | |
325 | // Check that side-exits. Use the CheckValue class. Like CheckAdd and friends, this has a |
326 | // stackmap with a generation callback. This takes an int argument that this branches on, with |
327 | // full branch fusion in the instruction selector. A true value jumps to the generator's slow |
328 | // path. Note that the predicate child is has both an input ValueRep. The input constraint must be |
329 | // WarmAny. It will not have an output constraint. |
330 | Check, |
331 | |
332 | // Special Wasm opcode that takes a Int32, a special pinned gpr and an offset. This node exists |
333 | // to allow us to CSE WasmBoundsChecks if both use the same pointer and one dominates the other. |
334 | // Without some such node B3 would not have enough information about the inner workings of wasm |
335 | // to be able to perform such optimizations. |
336 | WasmBoundsCheck, |
337 | |
338 | // SSA support, in the style of DFG SSA. |
339 | Upsilon, // This uses the UpsilonValue class. |
340 | Phi, |
341 | |
342 | // Jump. |
343 | Jump, |
344 | |
345 | // Polymorphic branch, usable with any integer type. Branches if not equal to zero. The 0-index |
346 | // successor is the true successor. |
347 | Branch, |
348 | |
349 | // Switch. Switches over either Int32 or Int64. Uses the SwitchValue class. |
350 | Switch, |
351 | |
352 | // Multiple entrypoints are supported via the EntrySwitch operation. Place this in the root |
353 | // block and list the entrypoints as the successors. All blocks backwards-reachable from |
354 | // EntrySwitch are duplicated for each entrypoint. |
355 | EntrySwitch, |
356 | |
357 | // Return. Note that B3 procedures don't know their return type, so this can just return any |
358 | // type. |
359 | Return, |
360 | |
361 | // This is a terminal that indicates that we will never get here. |
362 | Oops |
363 | }; |
364 | |
365 | inline bool isCheckMath(Opcode opcode) |
366 | { |
367 | switch (opcode) { |
368 | case CheckAdd: |
369 | case CheckSub: |
370 | case CheckMul: |
371 | return true; |
372 | default: |
373 | return false; |
374 | } |
375 | } |
376 | |
377 | Optional<Opcode> invertedCompare(Opcode, Type); |
378 | |
379 | inline Opcode constPtrOpcode() |
380 | { |
381 | if (is64Bit()) |
382 | return Const64; |
383 | return Const32; |
384 | } |
385 | |
386 | inline bool isConstant(Opcode opcode) |
387 | { |
388 | switch (opcode) { |
389 | case Const32: |
390 | case Const64: |
391 | case ConstDouble: |
392 | case ConstFloat: |
393 | return true; |
394 | default: |
395 | return false; |
396 | } |
397 | } |
398 | |
399 | inline Opcode opcodeForConstant(Type type) |
400 | { |
401 | switch (type) { |
402 | case Int32: return Const32; |
403 | case Int64: return Const64; |
404 | case Float: return ConstFloat; |
405 | case Double: return ConstDouble; |
406 | default: |
407 | RELEASE_ASSERT_NOT_REACHED(); |
408 | } |
409 | } |
410 | |
411 | inline bool isDefinitelyTerminal(Opcode opcode) |
412 | { |
413 | switch (opcode) { |
414 | case Jump: |
415 | case Branch: |
416 | case Switch: |
417 | case Oops: |
418 | case Return: |
419 | return true; |
420 | default: |
421 | return false; |
422 | } |
423 | } |
424 | |
425 | inline bool isLoad(Opcode opcode) |
426 | { |
427 | switch (opcode) { |
428 | case Load8Z: |
429 | case Load8S: |
430 | case Load16Z: |
431 | case Load16S: |
432 | case Load: |
433 | return true; |
434 | default: |
435 | return false; |
436 | } |
437 | } |
438 | |
439 | inline bool isStore(Opcode opcode) |
440 | { |
441 | switch (opcode) { |
442 | case Store8: |
443 | case Store16: |
444 | case Store: |
445 | return true; |
446 | default: |
447 | return false; |
448 | } |
449 | } |
450 | |
451 | inline bool isLoadStore(Opcode opcode) |
452 | { |
453 | switch (opcode) { |
454 | case Load8Z: |
455 | case Load8S: |
456 | case Load16Z: |
457 | case Load16S: |
458 | case Load: |
459 | case Store8: |
460 | case Store16: |
461 | case Store: |
462 | return true; |
463 | default: |
464 | return false; |
465 | } |
466 | } |
467 | |
468 | inline bool isAtom(Opcode opcode) |
469 | { |
470 | switch (opcode) { |
471 | case AtomicWeakCAS: |
472 | case AtomicStrongCAS: |
473 | case AtomicXchgAdd: |
474 | case AtomicXchgAnd: |
475 | case AtomicXchgOr: |
476 | case AtomicXchgSub: |
477 | case AtomicXchgXor: |
478 | case AtomicXchg: |
479 | return true; |
480 | default: |
481 | return false; |
482 | } |
483 | } |
484 | |
485 | inline bool isAtomicCAS(Opcode opcode) |
486 | { |
487 | switch (opcode) { |
488 | case AtomicWeakCAS: |
489 | case AtomicStrongCAS: |
490 | return true; |
491 | default: |
492 | return false; |
493 | } |
494 | } |
495 | |
496 | inline bool isAtomicXchg(Opcode opcode) |
497 | { |
498 | switch (opcode) { |
499 | case AtomicXchgAdd: |
500 | case AtomicXchgAnd: |
501 | case AtomicXchgOr: |
502 | case AtomicXchgSub: |
503 | case AtomicXchgXor: |
504 | case AtomicXchg: |
505 | return true; |
506 | default: |
507 | return false; |
508 | } |
509 | } |
510 | |
511 | inline bool isMemoryAccess(Opcode opcode) |
512 | { |
513 | return isAtom(opcode) || isLoadStore(opcode); |
514 | } |
515 | |
516 | inline Opcode signExtendOpcode(Width width) |
517 | { |
518 | switch (width) { |
519 | case Width8: |
520 | return SExt8; |
521 | case Width16: |
522 | return SExt16; |
523 | default: |
524 | RELEASE_ASSERT_NOT_REACHED(); |
525 | return Oops; |
526 | } |
527 | } |
528 | |
529 | JS_EXPORT_PRIVATE Opcode storeOpcode(Bank bank, Width width); |
530 | |
531 | } } // namespace JSC::B3 |
532 | |
533 | namespace WTF { |
534 | |
535 | class PrintStream; |
536 | |
537 | JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Opcode); |
538 | |
539 | } // namespace WTF |
540 | |
541 | #endif // ENABLE(B3_JIT) |
542 | |