1 | /* |
2 | * Copyright (C) 2008, 2016 Apple Inc. All rights reserved. |
3 | * Copyright (C) 2009 Jian Li <[email protected]> |
4 | * Copyright (C) 2012 Patrick Gansterer <[email protected]> |
5 | * |
6 | * Redistribution and use in source and binary forms, with or without |
7 | * modification, are permitted provided that the following conditions |
8 | * are met: |
9 | * |
10 | * 1. Redistributions of source code must retain the above copyright |
11 | * notice, this list of conditions and the following disclaimer. |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the |
14 | * documentation and/or other materials provided with the distribution. |
15 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
16 | * its contributors may be used to endorse or promote products derived |
17 | * from this software without specific prior written permission. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
20 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
21 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
22 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
23 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
24 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
25 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
26 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
28 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | */ |
30 | |
31 | /* Thread local storage is implemented by using either pthread API or Windows |
32 | * native API. There is subtle semantic discrepancy for the cleanup function |
33 | * implementation as noted below: |
34 | * @ In pthread implementation, the destructor function will be called |
35 | * repeatedly if there is still non-NULL value associated with the function. |
36 | * @ In Windows native implementation, the destructor function will be called |
37 | * only once. |
38 | * This semantic discrepancy does not impose any problem because nowhere in |
39 | * WebKit the repeated call bahavior is utilized. |
40 | */ |
41 | |
42 | #pragma once |
43 | |
44 | #include <wtf/MainThread.h> |
45 | #include <wtf/Noncopyable.h> |
46 | #include <wtf/StdLibExtras.h> |
47 | #include <wtf/Threading.h> |
48 | |
49 | namespace WTF { |
50 | |
51 | enum class CanBeGCThread { |
52 | False, |
53 | True |
54 | }; |
55 | |
56 | template<typename T, CanBeGCThread canBeGCThread = CanBeGCThread::False> class ThreadSpecific { |
57 | WTF_MAKE_NONCOPYABLE(ThreadSpecific); |
58 | public: |
59 | ThreadSpecific(); |
60 | bool isSet(); // Useful as a fast check to see if this thread has set this value. |
61 | T* operator->(); |
62 | operator T*(); |
63 | T& operator*(); |
64 | |
65 | private: |
66 | // Not implemented. It's technically possible to destroy a thread specific key, but one would need |
67 | // to make sure that all values have been destroyed already (usually, that all threads that used it |
68 | // have exited). It's unlikely that any user of this call will be in that situation - and having |
69 | // a destructor defined can be confusing, given that it has such strong pre-requisites to work correctly. |
70 | ~ThreadSpecific(); |
71 | |
72 | struct Data { |
73 | WTF_MAKE_NONCOPYABLE(Data); |
74 | WTF_MAKE_FAST_ALLOCATED; |
75 | public: |
76 | using PointerType = typename std::remove_const<T>::type*; |
77 | |
78 | Data(ThreadSpecific<T, canBeGCThread>* owner) |
79 | : owner(owner) |
80 | { |
81 | // Set up thread-specific value's memory pointer before invoking constructor, in case any function it calls |
82 | // needs to access the value, to avoid recursion. |
83 | owner->setInTLS(this); |
84 | new (NotNull, storagePointer()) T(); |
85 | } |
86 | |
87 | ~Data() |
88 | { |
89 | storagePointer()->~T(); |
90 | owner->setInTLS(nullptr); |
91 | } |
92 | |
93 | PointerType storagePointer() const { return const_cast<PointerType>(reinterpret_cast<const T*>(&m_storage)); } |
94 | |
95 | typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type m_storage; |
96 | ThreadSpecific<T, canBeGCThread>* owner; |
97 | }; |
98 | |
99 | T* get(); |
100 | T* set(); |
101 | void setInTLS(Data*); |
102 | void static THREAD_SPECIFIC_CALL destroy(void* ptr); |
103 | |
104 | #if USE(PTHREADS) |
105 | pthread_key_t m_key { }; |
106 | #elif OS(WINDOWS) |
107 | int m_index; |
108 | #endif |
109 | }; |
110 | |
111 | #if USE(PTHREADS) |
112 | |
113 | template<typename T, CanBeGCThread canBeGCThread> |
114 | inline ThreadSpecific<T, canBeGCThread>::ThreadSpecific() |
115 | { |
116 | int error = pthread_key_create(&m_key, destroy); |
117 | if (error) |
118 | CRASH(); |
119 | } |
120 | |
121 | template<typename T, CanBeGCThread canBeGCThread> |
122 | inline T* ThreadSpecific<T, canBeGCThread>::get() |
123 | { |
124 | Data* data = static_cast<Data*>(pthread_getspecific(m_key)); |
125 | if (data) |
126 | return data->storagePointer(); |
127 | return nullptr; |
128 | } |
129 | |
130 | template<typename T, CanBeGCThread canBeGCThread> |
131 | inline void ThreadSpecific<T, canBeGCThread>::setInTLS(Data* data) |
132 | { |
133 | pthread_setspecific(m_key, data); |
134 | } |
135 | |
136 | #elif OS(WINDOWS) |
137 | |
138 | // The maximum number of FLS keys that can be created. For simplification, we assume that: |
139 | // 1) Once the instance of ThreadSpecific<> is created, it will not be destructed until the program dies. |
140 | // 2) We do not need to hold many instances of ThreadSpecific<> data. This fixed number should be far enough. |
141 | static constexpr int maxFlsKeySize = 128; |
142 | |
143 | WTF_EXPORT_PRIVATE long& flsKeyCount(); |
144 | WTF_EXPORT_PRIVATE DWORD* flsKeys(); |
145 | |
146 | template<typename T, CanBeGCThread canBeGCThread> |
147 | inline ThreadSpecific<T, canBeGCThread>::ThreadSpecific() |
148 | : m_index(-1) |
149 | { |
150 | DWORD flsKey = FlsAlloc(destroy); |
151 | if (flsKey == FLS_OUT_OF_INDEXES) |
152 | CRASH(); |
153 | |
154 | m_index = InterlockedIncrement(&flsKeyCount()) - 1; |
155 | if (m_index >= maxFlsKeySize) |
156 | CRASH(); |
157 | flsKeys()[m_index] = flsKey; |
158 | } |
159 | |
160 | template<typename T, CanBeGCThread canBeGCThread> |
161 | inline ThreadSpecific<T, canBeGCThread>::~ThreadSpecific() |
162 | { |
163 | FlsFree(flsKeys()[m_index]); |
164 | } |
165 | |
166 | template<typename T, CanBeGCThread canBeGCThread> |
167 | inline T* ThreadSpecific<T, canBeGCThread>::get() |
168 | { |
169 | Data* data = static_cast<Data*>(FlsGetValue(flsKeys()[m_index])); |
170 | if (data) |
171 | return data->storagePointer(); |
172 | return nullptr; |
173 | } |
174 | |
175 | template<typename T, CanBeGCThread canBeGCThread> |
176 | inline void ThreadSpecific<T, canBeGCThread>::setInTLS(Data* data) |
177 | { |
178 | FlsSetValue(flsKeys()[m_index], data); |
179 | } |
180 | |
181 | #else |
182 | #error ThreadSpecific is not implemented for this platform. |
183 | #endif |
184 | |
185 | template<typename T, CanBeGCThread canBeGCThread> |
186 | inline void THREAD_SPECIFIC_CALL ThreadSpecific<T, canBeGCThread>::destroy(void* ptr) |
187 | { |
188 | Data* data = static_cast<Data*>(ptr); |
189 | |
190 | #if USE(PTHREADS) |
191 | // We want get() to keep working while data destructor works, because it can be called indirectly by the destructor. |
192 | // Some pthreads implementations zero out the pointer before calling destroy(), so we temporarily reset it. |
193 | pthread_setspecific(data->owner->m_key, ptr); |
194 | #endif |
195 | |
196 | delete data; |
197 | } |
198 | |
199 | template<typename T, CanBeGCThread canBeGCThread> |
200 | inline T* ThreadSpecific<T, canBeGCThread>::set() |
201 | { |
202 | RELEASE_ASSERT(canBeGCThread == CanBeGCThread::True || !Thread::mayBeGCThread()); |
203 | ASSERT(!get()); |
204 | Data* data = new Data(this); // Data will set itself into TLS. |
205 | ASSERT(get() == data->storagePointer()); |
206 | return data->storagePointer(); |
207 | } |
208 | |
209 | template<typename T, CanBeGCThread canBeGCThread> |
210 | inline bool ThreadSpecific<T, canBeGCThread>::isSet() |
211 | { |
212 | return !!get(); |
213 | } |
214 | |
215 | template<typename T, CanBeGCThread canBeGCThread> |
216 | inline ThreadSpecific<T, canBeGCThread>::operator T*() |
217 | { |
218 | if (T* ptr = get()) |
219 | return ptr; |
220 | return set(); |
221 | } |
222 | |
223 | template<typename T, CanBeGCThread canBeGCThread> |
224 | inline T* ThreadSpecific<T, canBeGCThread>::operator->() |
225 | { |
226 | return operator T*(); |
227 | } |
228 | |
229 | template<typename T, CanBeGCThread canBeGCThread> |
230 | inline T& ThreadSpecific<T, canBeGCThread>::operator*() |
231 | { |
232 | return *operator T*(); |
233 | } |
234 | |
235 | } // namespace WTF |
236 | |
237 | using WTF::ThreadSpecific; |
238 | |