1 | /* |
2 | * Copyright (C) 2016 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #include <wtf/ListDump.h> |
29 | #include <wtf/MathExtras.h> |
30 | #include <wtf/StdLibExtras.h> |
31 | #include <wtf/Vector.h> |
32 | |
33 | namespace WTF { |
34 | |
35 | // A RangeSet is a set of numerical ranges. A value belongs to the set if it is within any of the |
36 | // ranges. A range belongs to the set if every value in the range belongs to the set. A range overlaps |
37 | // the set if any value in the range belongs to the set. You can add ranges and query range |
38 | // membership. The internal representation is a list of ranges that gets periodically compacted. This |
39 | // representation is optimal so long as the number of distinct ranges tends to be small, and the |
40 | // number of range sets tends to be small as well. This works reasonably well in a bunch of compiler |
41 | // algorithms, where the top range ends up being used a lot. |
42 | // |
43 | // The initial user of this is JSC::B3::HeapRange, which is used to perform alias analysis. You can |
44 | // model new users on that class. Basically, you need to define: |
45 | // |
46 | // T::Type - the type of the members of the range. HeapRange uses unsigned. |
47 | // T(T::Type begin, T::Type end) - construct a new range. |
48 | // T::Type T::begin() const - instance method giving the inclusive beginning of the range. |
49 | // T::Type T::end() const - instance method giving the exclusive end of the range. |
50 | // void T::dump(PrintStream&) const - some kind of dumping. |
51 | |
52 | template<typename RangeType> |
53 | class RangeSet { |
54 | public: |
55 | typedef RangeType Range; |
56 | typedef typename Range::Type Type; |
57 | |
58 | typedef Vector<Range, 8> VectorType; |
59 | |
60 | RangeSet() |
61 | { |
62 | } |
63 | |
64 | ~RangeSet() |
65 | { |
66 | } |
67 | |
68 | void add(const Range& range) |
69 | { |
70 | if (range.begin() == range.end()) |
71 | return; |
72 | |
73 | // We expect the range set to become top in a lot of cases. We also expect the same range to |
74 | // be added repeatedly. That's why this is here. |
75 | if (!m_ranges.isEmpty() && subsumesNonEmpty(m_ranges.last(), range)) |
76 | return; |
77 | |
78 | m_isCompact = false; |
79 | |
80 | // We append without compacting only if doing so is guaranteed not to resize the vector. |
81 | // FIXME: This heuristic is almost certainly wrong, because we don't control the capacity. I |
82 | // think that this means that we will sometimes be rage-compacting when we are just shy of the |
83 | // capacity. |
84 | // https://bugs.webkit.org/show_bug.cgi?id=170308 |
85 | if (m_ranges.size() + 1 < m_ranges.capacity()) { |
86 | m_ranges.append(range); |
87 | return; |
88 | } |
89 | |
90 | m_ranges.append(range); |
91 | compact(); |
92 | } |
93 | |
94 | bool contains(const Range& range) const |
95 | { |
96 | if (range.begin() == range.end()) |
97 | return false; |
98 | |
99 | unsigned index = findRange(range); |
100 | if (index != UINT_MAX) |
101 | return subsumesNonEmpty(m_ranges[index], range); |
102 | return false; |
103 | } |
104 | |
105 | bool overlaps(const Range& range) const |
106 | { |
107 | if (range.begin() == range.end()) |
108 | return false; |
109 | |
110 | return findRange(range) != UINT_MAX; |
111 | } |
112 | |
113 | void clear() |
114 | { |
115 | m_ranges.clear(); |
116 | m_isCompact = true; |
117 | } |
118 | |
119 | void dump(PrintStream& out) const |
120 | { |
121 | const_cast<RangeSet*>(this)->compact(); |
122 | out.print(listDump(m_ranges)); |
123 | } |
124 | |
125 | void dumpRaw(PrintStream& out) const |
126 | { |
127 | out.print("{" , listDump(m_ranges), ", isCompact = " , m_isCompact, "}" ); |
128 | } |
129 | |
130 | typename VectorType::const_iterator begin() const |
131 | { |
132 | return m_ranges.begin(); |
133 | } |
134 | |
135 | typename VectorType::const_iterator end() const |
136 | { |
137 | return m_ranges.end(); |
138 | } |
139 | |
140 | void addAll(const RangeSet& other) |
141 | { |
142 | for (Range range : other) |
143 | add(range); |
144 | } |
145 | |
146 | void compact() |
147 | { |
148 | if (m_isCompact) |
149 | return; |
150 | |
151 | if (m_ranges.isEmpty()) { |
152 | m_isCompact = true; |
153 | return; |
154 | } |
155 | |
156 | std::sort( |
157 | m_ranges.begin(), m_ranges.end(), |
158 | [&] (const Range& a, const Range& b) -> bool { |
159 | return a.begin() < b.begin(); |
160 | }); |
161 | |
162 | unsigned srcIndex = 1; |
163 | unsigned dstIndex = 1; |
164 | Range* lastRange = &m_ranges[0]; |
165 | while (srcIndex < m_ranges.size()) { |
166 | Range range = m_ranges[srcIndex++]; |
167 | ASSERT(range.begin() >= lastRange->begin()); |
168 | if (range.end() <= lastRange->end()) |
169 | continue; |
170 | if (range.begin() <= lastRange->end()) { |
171 | *lastRange = Range(lastRange->begin(), range.end()); |
172 | continue; |
173 | } |
174 | ASSERT(!overlapsNonEmpty(*lastRange, range)); |
175 | lastRange = &m_ranges[dstIndex++]; |
176 | *lastRange = range; |
177 | } |
178 | m_ranges.shrink(dstIndex); |
179 | |
180 | m_isCompact = true; |
181 | } |
182 | |
183 | private: |
184 | static bool overlapsNonEmpty(const Range& a, const Range& b) |
185 | { |
186 | return nonEmptyRangesOverlap(a.begin(), a.end(), b.begin(), b.end()); |
187 | } |
188 | |
189 | static bool subsumesNonEmpty(const Range& a, const Range& b) |
190 | { |
191 | return a.begin() <= b.begin() && a.end() >= b.end(); |
192 | } |
193 | |
194 | unsigned findRange(const Range& range) const |
195 | { |
196 | const_cast<RangeSet*>(this)->compact(); |
197 | |
198 | // FIXME: Once we start using this in anger, we will want this to be a binary search. |
199 | for (unsigned i = 0; i < m_ranges.size(); ++i) { |
200 | if (overlapsNonEmpty(m_ranges[i], range)) |
201 | return i; |
202 | } |
203 | |
204 | return UINT_MAX; |
205 | } |
206 | |
207 | VectorType m_ranges; |
208 | bool m_isCompact { true }; |
209 | }; |
210 | |
211 | } // namespace WTF |
212 | |
213 | using WTF::RangeSet; |
214 | |