1 | /* |
2 | * Copyright (C) 2007-2017 Apple Inc. All rights reserved. |
3 | * Copyright (C) 2007 Justin Haygood ([email protected]) |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * 2. Redistributions in binary form must reproduce the above copyright |
11 | * notice, this list of conditions and the following disclaimer in the |
12 | * documentation and/or other materials provided with the distribution. |
13 | * |
14 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
15 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
16 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
17 | * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
18 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
19 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
20 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
21 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
23 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #include <atomic> |
29 | #include <wtf/StdLibExtras.h> |
30 | |
31 | #if OS(WINDOWS) |
32 | #if !COMPILER(GCC_COMPATIBLE) |
33 | extern "C" void _ReadWriteBarrier(void); |
34 | #pragma intrinsic(_ReadWriteBarrier) |
35 | #endif |
36 | #include <windows.h> |
37 | #include <intrin.h> |
38 | #endif |
39 | |
40 | namespace WTF { |
41 | |
42 | ALWAYS_INLINE bool hasFence(std::memory_order order) |
43 | { |
44 | return order != std::memory_order_relaxed; |
45 | } |
46 | |
47 | // Atomic wraps around std::atomic with the sole purpose of making the compare_exchange |
48 | // operations not alter the expected value. This is more in line with how we typically |
49 | // use CAS in our code. |
50 | // |
51 | // Atomic is a struct without explicitly defined constructors so that it can be |
52 | // initialized at compile time. |
53 | |
54 | template<typename T> |
55 | struct Atomic { |
56 | // Don't pass a non-default value for the order parameter unless you really know |
57 | // what you are doing and have thought about it very hard. The cost of seq_cst |
58 | // is usually not high enough to justify the risk. |
59 | |
60 | ALWAYS_INLINE T load(std::memory_order order = std::memory_order_seq_cst) const { return value.load(order); } |
61 | |
62 | ALWAYS_INLINE T loadRelaxed() const { return load(std::memory_order_relaxed); } |
63 | |
64 | // This is a load that simultaneously does a full fence - neither loads nor stores will move |
65 | // above or below it. |
66 | ALWAYS_INLINE T loadFullyFenced() const |
67 | { |
68 | Atomic<T>* ptr = const_cast<Atomic<T>*>(this); |
69 | return ptr->exchangeAdd(T()); |
70 | } |
71 | |
72 | ALWAYS_INLINE void store(T desired, std::memory_order order = std::memory_order_seq_cst) { value.store(desired, order); } |
73 | |
74 | ALWAYS_INLINE void storeRelaxed(T desired) { store(desired, std::memory_order_relaxed); } |
75 | |
76 | // This is a store that simultaneously does a full fence - neither loads nor stores will move |
77 | // above or below it. |
78 | ALWAYS_INLINE void storeFullyFenced(T desired) |
79 | { |
80 | exchange(desired); |
81 | } |
82 | |
83 | ALWAYS_INLINE bool compareExchangeWeak(T expected, T desired, std::memory_order order = std::memory_order_seq_cst) |
84 | { |
85 | T expectedOrActual = expected; |
86 | return value.compare_exchange_weak(expectedOrActual, desired, order); |
87 | } |
88 | |
89 | ALWAYS_INLINE bool compareExchangeWeakRelaxed(T expected, T desired) |
90 | { |
91 | return compareExchangeWeak(expected, desired, std::memory_order_relaxed); |
92 | } |
93 | |
94 | ALWAYS_INLINE bool compareExchangeWeak(T expected, T desired, std::memory_order order_success, std::memory_order order_failure) |
95 | { |
96 | T expectedOrActual = expected; |
97 | return value.compare_exchange_weak(expectedOrActual, desired, order_success, order_failure); |
98 | } |
99 | |
100 | // WARNING: This does not have strong fencing guarantees when it fails. For example, stores could |
101 | // sink below it in that case. |
102 | ALWAYS_INLINE T compareExchangeStrong(T expected, T desired, std::memory_order order = std::memory_order_seq_cst) |
103 | { |
104 | T expectedOrActual = expected; |
105 | value.compare_exchange_strong(expectedOrActual, desired, order); |
106 | return expectedOrActual; |
107 | } |
108 | |
109 | ALWAYS_INLINE T compareExchangeStrong(T expected, T desired, std::memory_order order_success, std::memory_order order_failure) |
110 | { |
111 | T expectedOrActual = expected; |
112 | value.compare_exchange_strong(expectedOrActual, desired, order_success, order_failure); |
113 | return expectedOrActual; |
114 | } |
115 | |
116 | template<typename U> |
117 | ALWAYS_INLINE T exchangeAdd(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_add(operand, order); } |
118 | |
119 | template<typename U> |
120 | ALWAYS_INLINE T exchangeAnd(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_and(operand, order); } |
121 | |
122 | template<typename U> |
123 | ALWAYS_INLINE T exchangeOr(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_or(operand, order); } |
124 | |
125 | template<typename U> |
126 | ALWAYS_INLINE T exchangeSub(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_sub(operand, order); } |
127 | |
128 | template<typename U> |
129 | ALWAYS_INLINE T exchangeXor(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_xor(operand, order); } |
130 | |
131 | ALWAYS_INLINE T exchange(T newValue, std::memory_order order = std::memory_order_seq_cst) { return value.exchange(newValue, order); } |
132 | |
133 | template<typename Func> |
134 | ALWAYS_INLINE bool transaction(const Func& func, std::memory_order order = std::memory_order_seq_cst) |
135 | { |
136 | for (;;) { |
137 | T oldValue = load(std::memory_order_relaxed); |
138 | T newValue = oldValue; |
139 | if (!func(newValue)) |
140 | return false; |
141 | if (compareExchangeWeak(oldValue, newValue, order)) |
142 | return true; |
143 | } |
144 | } |
145 | |
146 | template<typename Func> |
147 | ALWAYS_INLINE bool transactionRelaxed(const Func& func) |
148 | { |
149 | return transaction(func, std::memory_order_relaxed); |
150 | } |
151 | |
152 | Atomic() = default; |
153 | constexpr Atomic(T initial) |
154 | : value(std::forward<T>(initial)) |
155 | { |
156 | } |
157 | |
158 | std::atomic<T> value; |
159 | }; |
160 | |
161 | template<typename T> |
162 | inline T atomicLoad(T* location, std::memory_order order = std::memory_order_seq_cst) |
163 | { |
164 | return bitwise_cast<Atomic<T>*>(location)->load(order); |
165 | } |
166 | |
167 | template<typename T> |
168 | inline T atomicLoadFullyFenced(T* location) |
169 | { |
170 | return bitwise_cast<Atomic<T>*>(location)->loadFullyFenced(); |
171 | } |
172 | |
173 | template<typename T> |
174 | inline void atomicStore(T* location, T newValue, std::memory_order order = std::memory_order_seq_cst) |
175 | { |
176 | bitwise_cast<Atomic<T>*>(location)->store(newValue, order); |
177 | } |
178 | |
179 | template<typename T> |
180 | inline void atomicStoreFullyFenced(T* location, T newValue) |
181 | { |
182 | bitwise_cast<Atomic<T>*>(location)->storeFullyFenced(newValue); |
183 | } |
184 | |
185 | template<typename T> |
186 | inline bool atomicCompareExchangeWeak(T* location, T expected, T newValue, std::memory_order order = std::memory_order_seq_cst) |
187 | { |
188 | return bitwise_cast<Atomic<T>*>(location)->compareExchangeWeak(expected, newValue, order); |
189 | } |
190 | |
191 | template<typename T> |
192 | inline bool atomicCompareExchangeWeakRelaxed(T* location, T expected, T newValue) |
193 | { |
194 | return bitwise_cast<Atomic<T>*>(location)->compareExchangeWeakRelaxed(expected, newValue); |
195 | } |
196 | |
197 | template<typename T> |
198 | inline T atomicCompareExchangeStrong(T* location, T expected, T newValue, std::memory_order order = std::memory_order_seq_cst) |
199 | { |
200 | return bitwise_cast<Atomic<T>*>(location)->compareExchangeStrong(expected, newValue, order); |
201 | } |
202 | |
203 | template<typename T, typename U> |
204 | inline T atomicExchangeAdd(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
205 | { |
206 | return bitwise_cast<Atomic<T>*>(location)->exchangeAdd(operand, order); |
207 | } |
208 | |
209 | template<typename T, typename U> |
210 | inline T atomicExchangeAnd(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
211 | { |
212 | return bitwise_cast<Atomic<T>*>(location)->exchangeAnd(operand, order); |
213 | } |
214 | |
215 | template<typename T, typename U> |
216 | inline T atomicExchangeOr(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
217 | { |
218 | return bitwise_cast<Atomic<T>*>(location)->exchangeOr(operand, order); |
219 | } |
220 | |
221 | template<typename T, typename U> |
222 | inline T atomicExchangeSub(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
223 | { |
224 | return bitwise_cast<Atomic<T>*>(location)->exchangeSub(operand, order); |
225 | } |
226 | |
227 | template<typename T, typename U> |
228 | inline T atomicExchangeXor(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
229 | { |
230 | return bitwise_cast<Atomic<T>*>(location)->exchangeXor(operand, order); |
231 | } |
232 | |
233 | template<typename T> |
234 | inline T atomicExchange(T* location, T newValue, std::memory_order order = std::memory_order_seq_cst) |
235 | { |
236 | return bitwise_cast<Atomic<T>*>(location)->exchange(newValue, order); |
237 | } |
238 | |
239 | // Just a compiler fence. Has no effect on the hardware, but tells the compiler |
240 | // not to move things around this call. Should not affect the compiler's ability |
241 | // to do things like register allocation and code motion over pure operations. |
242 | inline void compilerFence() |
243 | { |
244 | #if OS(WINDOWS) && !COMPILER(GCC_COMPATIBLE) |
245 | _ReadWriteBarrier(); |
246 | #else |
247 | asm volatile("" ::: "memory" ); |
248 | #endif |
249 | } |
250 | |
251 | #if CPU(ARM_THUMB2) || CPU(ARM64) |
252 | |
253 | // Full memory fence. No accesses will float above this, and no accesses will sink |
254 | // below it. |
255 | inline void arm_dmb() |
256 | { |
257 | asm volatile("dmb ish" ::: "memory" ); |
258 | } |
259 | |
260 | // Like the above, but only affects stores. |
261 | inline void arm_dmb_st() |
262 | { |
263 | asm volatile("dmb ishst" ::: "memory" ); |
264 | } |
265 | |
266 | inline void arm_isb() |
267 | { |
268 | asm volatile("isb" ::: "memory" ); |
269 | } |
270 | |
271 | inline void loadLoadFence() { arm_dmb(); } |
272 | inline void loadStoreFence() { arm_dmb(); } |
273 | inline void storeLoadFence() { arm_dmb(); } |
274 | inline void storeStoreFence() { arm_dmb_st(); } |
275 | inline void memoryBarrierAfterLock() { arm_dmb(); } |
276 | inline void memoryBarrierBeforeUnlock() { arm_dmb(); } |
277 | inline void crossModifyingCodeFence() { arm_isb(); } |
278 | |
279 | #elif CPU(X86) || CPU(X86_64) |
280 | |
281 | inline void x86_ortop() |
282 | { |
283 | #if OS(WINDOWS) |
284 | MemoryBarrier(); |
285 | #elif CPU(X86_64) |
286 | // This has acqrel semantics and is much cheaper than mfence. For exampe, in the JSC GC, using |
287 | // mfence as a store-load fence was a 9% slow-down on Octane/splay while using this was neutral. |
288 | asm volatile("lock; orl $0, (%%rsp)" ::: "memory" ); |
289 | #else |
290 | asm volatile("lock; orl $0, (%%esp)" ::: "memory" ); |
291 | #endif |
292 | } |
293 | |
294 | inline void x86_cpuid() |
295 | { |
296 | #if OS(WINDOWS) |
297 | int info[4]; |
298 | __cpuid(info, 0); |
299 | #else |
300 | intptr_t a = 0, b, c, d; |
301 | asm volatile( |
302 | "cpuid" |
303 | : "+a" (a), "=b" (b), "=c" (c), "=d" (d) |
304 | : |
305 | : "memory" ); |
306 | #endif |
307 | } |
308 | |
309 | inline void loadLoadFence() { compilerFence(); } |
310 | inline void loadStoreFence() { compilerFence(); } |
311 | inline void storeLoadFence() { x86_ortop(); } |
312 | inline void storeStoreFence() { compilerFence(); } |
313 | inline void memoryBarrierAfterLock() { compilerFence(); } |
314 | inline void memoryBarrierBeforeUnlock() { compilerFence(); } |
315 | inline void crossModifyingCodeFence() { x86_cpuid(); } |
316 | |
317 | #else |
318 | |
319 | inline void loadLoadFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
320 | inline void loadStoreFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
321 | inline void storeLoadFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
322 | inline void storeStoreFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
323 | inline void memoryBarrierAfterLock() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
324 | inline void memoryBarrierBeforeUnlock() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
325 | inline void crossModifyingCodeFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } // Probably not strong enough. |
326 | |
327 | #endif |
328 | |
329 | typedef unsigned InternalDependencyType; |
330 | |
331 | inline InternalDependencyType opaqueMixture() |
332 | { |
333 | return 0; |
334 | } |
335 | |
336 | template<typename... Arguments, typename T> |
337 | inline InternalDependencyType opaqueMixture(T value, Arguments... arguments) |
338 | { |
339 | union { |
340 | InternalDependencyType copy; |
341 | T value; |
342 | } u; |
343 | u.copy = 0; |
344 | u.value = value; |
345 | return opaqueMixture(arguments...) + u.copy; |
346 | } |
347 | |
348 | class Dependency { |
349 | public: |
350 | Dependency() |
351 | : m_value(0) |
352 | { |
353 | } |
354 | |
355 | // On TSO architectures, this is a load-load fence and the value it returns is not meaningful (it's |
356 | // zero). The load-load fence is usually just a compiler fence. On ARM, this is a self-xor that |
357 | // produces zero, but it's concealed from the compiler. The CPU understands this dummy op to be a |
358 | // phantom dependency. |
359 | template<typename... Arguments> |
360 | static Dependency fence(Arguments... arguments) |
361 | { |
362 | InternalDependencyType input = opaqueMixture(arguments...); |
363 | InternalDependencyType output; |
364 | #if CPU(ARM64) |
365 | // Create a magical zero value through inline assembly, whose computation |
366 | // isn't visible to the optimizer. This zero is then usable as an offset in |
367 | // further address computations: adding zero does nothing, but the compiler |
368 | // doesn't know it. It's magical because it creates an address dependency |
369 | // from the load of `location` to the uses of the dependency, which triggers |
370 | // the ARM ISA's address dependency rule, a.k.a. the mythical C++ consume |
371 | // ordering. This forces weak memory order CPUs to observe `location` and |
372 | // dependent loads in their store order without the reader using a barrier |
373 | // or an acquire load. |
374 | asm("eor %w[out], %w[in], %w[in]" |
375 | : [out] "=r" (output) |
376 | : [in] "r" (input)); |
377 | #elif CPU(ARM) |
378 | asm("eor %[out], %[in], %[in]" |
379 | : [out] "=r" (output) |
380 | : [in] "r" (input)); |
381 | #else |
382 | // No dependency is needed for this architecture. |
383 | loadLoadFence(); |
384 | output = 0; |
385 | UNUSED_PARAM(input); |
386 | #endif |
387 | Dependency result; |
388 | result.m_value = output; |
389 | return result; |
390 | } |
391 | |
392 | // On TSO architectures, this just returns the pointer you pass it. On ARM, this produces a new |
393 | // pointer that is dependent on this dependency and the input pointer. |
394 | template<typename T> |
395 | T* consume(T* pointer) |
396 | { |
397 | #if CPU(ARM64) || CPU(ARM) |
398 | return bitwise_cast<T*>(bitwise_cast<char*>(pointer) + m_value); |
399 | #else |
400 | UNUSED_PARAM(m_value); |
401 | return pointer; |
402 | #endif |
403 | } |
404 | |
405 | private: |
406 | InternalDependencyType m_value; |
407 | }; |
408 | |
409 | template<typename InputType, typename ValueType> |
410 | struct InputAndValue { |
411 | InputAndValue() { } |
412 | |
413 | InputAndValue(InputType input, ValueType value) |
414 | : input(input) |
415 | , value(value) |
416 | { |
417 | } |
418 | |
419 | InputType input; |
420 | ValueType value; |
421 | }; |
422 | |
423 | template<typename InputType, typename ValueType> |
424 | InputAndValue<InputType, ValueType> inputAndValue(InputType input, ValueType value) |
425 | { |
426 | return InputAndValue<InputType, ValueType>(input, value); |
427 | } |
428 | |
429 | template<typename T, typename Func> |
430 | ALWAYS_INLINE T& ensurePointer(Atomic<T*>& pointer, const Func& func) |
431 | { |
432 | for (;;) { |
433 | T* oldValue = pointer.load(std::memory_order_relaxed); |
434 | if (oldValue) { |
435 | // On all sensible CPUs, we get an implicit dependency-based load-load barrier when |
436 | // loading this. |
437 | return *oldValue; |
438 | } |
439 | T* newValue = func(); |
440 | if (pointer.compareExchangeWeak(oldValue, newValue)) |
441 | return *newValue; |
442 | delete newValue; |
443 | } |
444 | } |
445 | |
446 | } // namespace WTF |
447 | |
448 | using WTF::Atomic; |
449 | using WTF::Dependency; |
450 | using WTF::InputAndValue; |
451 | using WTF::inputAndValue; |
452 | using WTF::ensurePointer; |
453 | using WTF::opaqueMixture; |
454 | |