1 | /* |
2 | * Copyright (C) 2016-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #ifndef LargeRange_h |
27 | #define LargeRange_h |
28 | |
29 | #include "BAssert.h" |
30 | #include "Range.h" |
31 | |
32 | namespace bmalloc { |
33 | |
34 | class LargeRange : public Range { |
35 | public: |
36 | LargeRange() |
37 | : Range() |
38 | , m_startPhysicalSize(0) |
39 | , m_totalPhysicalSize(0) |
40 | , m_isEligible(true) |
41 | , m_usedSinceLastScavenge(false) |
42 | { |
43 | } |
44 | |
45 | LargeRange(const Range& other, size_t startPhysicalSize, size_t totalPhysicalSize) |
46 | : Range(other) |
47 | , m_startPhysicalSize(startPhysicalSize) |
48 | , m_totalPhysicalSize(totalPhysicalSize) |
49 | , m_isEligible(true) |
50 | , m_usedSinceLastScavenge(false) |
51 | { |
52 | BASSERT(this->size() >= this->totalPhysicalSize()); |
53 | BASSERT(this->totalPhysicalSize() >= this->startPhysicalSize()); |
54 | } |
55 | |
56 | LargeRange(void* begin, size_t size, size_t startPhysicalSize, size_t totalPhysicalSize, bool usedSinceLastScavenge = false) |
57 | : Range(begin, size) |
58 | , m_startPhysicalSize(startPhysicalSize) |
59 | , m_totalPhysicalSize(totalPhysicalSize) |
60 | , m_isEligible(true) |
61 | , m_usedSinceLastScavenge(usedSinceLastScavenge) |
62 | { |
63 | BASSERT(this->size() >= this->totalPhysicalSize()); |
64 | BASSERT(this->totalPhysicalSize() >= this->startPhysicalSize()); |
65 | } |
66 | |
67 | // Returns a lower bound on physical size at the start of the range. Ranges that |
68 | // span non-physical fragments use this number to remember the physical size of |
69 | // the first fragment. |
70 | size_t startPhysicalSize() const { return m_startPhysicalSize; } |
71 | void setStartPhysicalSize(size_t startPhysicalSize) { m_startPhysicalSize = startPhysicalSize; } |
72 | |
73 | // This is accurate in the sense that if you take a range A and split it N ways |
74 | // and sum totalPhysicalSize over each of the N splits, you'll end up with A's |
75 | // totalPhysicalSize. This means if you take a LargeRange out of a LargeMap, split it, |
76 | // then insert the subsequent two ranges back into the LargeMap, the sum of the |
77 | // totalPhysicalSize of each LargeRange in the LargeMap will stay constant. This |
78 | // property is not true of startPhysicalSize. This invariant about totalPhysicalSize |
79 | // is good enough to get an accurate footprint estimate for memory used in bmalloc. |
80 | // The reason this is just an estimate is that splitting LargeRanges may lead to this |
81 | // number being rebalanced in arbitrary ways between the two resulting ranges. This |
82 | // is why the footprint is just an estimate. In practice, this arbitrary rebalance |
83 | // doesn't really affect accuracy. |
84 | size_t totalPhysicalSize() const { return m_totalPhysicalSize; } |
85 | void setTotalPhysicalSize(size_t totalPhysicalSize) { m_totalPhysicalSize = totalPhysicalSize; } |
86 | |
87 | std::pair<LargeRange, LargeRange> split(size_t) const; |
88 | |
89 | void setEligible(bool eligible) { m_isEligible = eligible; } |
90 | bool isEligibile() const { return m_isEligible; } |
91 | |
92 | bool usedSinceLastScavenge() const { return m_usedSinceLastScavenge; } |
93 | void clearUsedSinceLastScavenge() { m_usedSinceLastScavenge = false; } |
94 | void setUsedSinceLastScavenge() { m_usedSinceLastScavenge = true; } |
95 | |
96 | bool operator<(const void* other) const { return begin() < other; } |
97 | bool operator<(const LargeRange& other) const { return begin() < other.begin(); } |
98 | |
99 | private: |
100 | size_t m_startPhysicalSize; |
101 | size_t m_totalPhysicalSize; |
102 | unsigned m_isEligible: 1; |
103 | unsigned m_usedSinceLastScavenge: 1; |
104 | }; |
105 | |
106 | inline bool canMerge(const LargeRange& a, const LargeRange& b) |
107 | { |
108 | if (!a.isEligibile() || !b.isEligibile()) { |
109 | // FIXME: We can make this work if we find it's helpful as long as the merged |
110 | // range is only eligible if a and b are eligible. |
111 | return false; |
112 | } |
113 | |
114 | if (a.end() == b.begin()) |
115 | return true; |
116 | |
117 | if (b.end() == a.begin()) |
118 | return true; |
119 | |
120 | return false; |
121 | } |
122 | |
123 | inline LargeRange merge(const LargeRange& a, const LargeRange& b) |
124 | { |
125 | const LargeRange& left = std::min(a, b); |
126 | bool mergedUsedSinceLastScavenge = a.usedSinceLastScavenge() || b.usedSinceLastScavenge(); |
127 | if (left.size() == left.startPhysicalSize()) { |
128 | return LargeRange( |
129 | left.begin(), |
130 | a.size() + b.size(), |
131 | a.startPhysicalSize() + b.startPhysicalSize(), |
132 | a.totalPhysicalSize() + b.totalPhysicalSize(), |
133 | mergedUsedSinceLastScavenge); |
134 | } |
135 | |
136 | return LargeRange( |
137 | left.begin(), |
138 | a.size() + b.size(), |
139 | left.startPhysicalSize(), |
140 | a.totalPhysicalSize() + b.totalPhysicalSize(), |
141 | mergedUsedSinceLastScavenge); |
142 | } |
143 | |
144 | inline std::pair<LargeRange, LargeRange> LargeRange::split(size_t leftSize) const |
145 | { |
146 | BASSERT(leftSize <= this->size()); |
147 | size_t rightSize = this->size() - leftSize; |
148 | |
149 | if (leftSize <= startPhysicalSize()) { |
150 | BASSERT(totalPhysicalSize() >= leftSize); |
151 | LargeRange left(begin(), leftSize, leftSize, leftSize); |
152 | LargeRange right(left.end(), rightSize, startPhysicalSize() - leftSize, totalPhysicalSize() - leftSize); |
153 | return std::make_pair(left, right); |
154 | } |
155 | |
156 | double ratio = static_cast<double>(leftSize) / static_cast<double>(this->size()); |
157 | size_t leftTotalPhysicalSize = static_cast<size_t>(ratio * totalPhysicalSize()); |
158 | BASSERT(leftTotalPhysicalSize <= leftSize); |
159 | leftTotalPhysicalSize = std::max(startPhysicalSize(), leftTotalPhysicalSize); |
160 | size_t rightTotalPhysicalSize = totalPhysicalSize() - leftTotalPhysicalSize; |
161 | if (rightTotalPhysicalSize > rightSize) { // This may happen because of rounding. |
162 | leftTotalPhysicalSize += rightTotalPhysicalSize - rightSize; |
163 | BASSERT(leftTotalPhysicalSize <= leftSize); |
164 | rightTotalPhysicalSize = rightSize; |
165 | } |
166 | |
167 | LargeRange left(begin(), leftSize, startPhysicalSize(), leftTotalPhysicalSize); |
168 | LargeRange right(left.end(), rightSize, 0, rightTotalPhysicalSize); |
169 | return std::make_pair(left, right); |
170 | } |
171 | |
172 | } // namespace bmalloc |
173 | |
174 | #endif // LargeRange_h |
175 | |