1 | /* |
2 | * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #if ENABLE(ASSEMBLER) |
29 | |
30 | #include "JSCJSValue.h" |
31 | |
32 | #if CPU(ARM_THUMB2) |
33 | #define TARGET_ASSEMBLER ARMv7Assembler |
34 | #define TARGET_MACROASSEMBLER MacroAssemblerARMv7 |
35 | #include "MacroAssemblerARMv7.h" |
36 | namespace JSC { typedef MacroAssemblerARMv7 MacroAssemblerBase; }; |
37 | |
38 | #elif CPU(ARM64E) |
39 | #define TARGET_ASSEMBLER ARM64EAssembler |
40 | #define TARGET_MACROASSEMBLER MacroAssemblerARM64E |
41 | #include "MacroAssemblerARM64E.h" |
42 | |
43 | #elif CPU(ARM64) |
44 | #define TARGET_ASSEMBLER ARM64Assembler |
45 | #define TARGET_MACROASSEMBLER MacroAssemblerARM64 |
46 | #include "MacroAssemblerARM64.h" |
47 | |
48 | #elif CPU(MIPS) |
49 | #define TARGET_ASSEMBLER MIPSAssembler |
50 | #define TARGET_MACROASSEMBLER MacroAssemblerMIPS |
51 | #include "MacroAssemblerMIPS.h" |
52 | |
53 | #elif CPU(X86) |
54 | #define TARGET_ASSEMBLER X86Assembler |
55 | #define TARGET_MACROASSEMBLER MacroAssemblerX86 |
56 | #include "MacroAssemblerX86.h" |
57 | |
58 | #elif CPU(X86_64) |
59 | #define TARGET_ASSEMBLER X86Assembler |
60 | #define TARGET_MACROASSEMBLER MacroAssemblerX86_64 |
61 | #include "MacroAssemblerX86_64.h" |
62 | |
63 | #else |
64 | #error "The MacroAssembler is not supported on this platform." |
65 | #endif |
66 | |
67 | #include "MacroAssemblerHelpers.h" |
68 | |
69 | namespace WTF { |
70 | |
71 | template<typename FunctionType> |
72 | class ScopedLambda; |
73 | |
74 | } // namespace WTF |
75 | |
76 | namespace JSC { |
77 | |
78 | #if ENABLE(MASM_PROBE) |
79 | namespace Probe { |
80 | |
81 | class Context; |
82 | typedef void (*Function)(Context&); |
83 | |
84 | } // namespace Probe |
85 | #endif // ENABLE(MASM_PROBE) |
86 | |
87 | namespace Printer { |
88 | |
89 | struct PrintRecord; |
90 | typedef Vector<PrintRecord> PrintRecordList; |
91 | |
92 | } // namespace Printer |
93 | |
94 | using MacroAssemblerBase = TARGET_MACROASSEMBLER; |
95 | |
96 | class MacroAssembler : public MacroAssemblerBase { |
97 | public: |
98 | |
99 | static constexpr RegisterID nextRegister(RegisterID reg) |
100 | { |
101 | return static_cast<RegisterID>(reg + 1); |
102 | } |
103 | |
104 | static constexpr FPRegisterID nextFPRegister(FPRegisterID reg) |
105 | { |
106 | return static_cast<FPRegisterID>(reg + 1); |
107 | } |
108 | |
109 | static constexpr unsigned registerIndex(RegisterID reg) |
110 | { |
111 | return reg - firstRegister(); |
112 | } |
113 | |
114 | static constexpr unsigned fpRegisterIndex(FPRegisterID reg) |
115 | { |
116 | return reg - firstFPRegister(); |
117 | } |
118 | |
119 | static constexpr unsigned registerIndex(FPRegisterID reg) |
120 | { |
121 | return fpRegisterIndex(reg) + numberOfRegisters(); |
122 | } |
123 | |
124 | static constexpr unsigned totalNumberOfRegisters() |
125 | { |
126 | return numberOfRegisters() + numberOfFPRegisters(); |
127 | } |
128 | |
129 | using MacroAssemblerBase::pop; |
130 | using MacroAssemblerBase::jump; |
131 | using MacroAssemblerBase::branch32; |
132 | using MacroAssemblerBase::compare32; |
133 | using MacroAssemblerBase::move; |
134 | using MacroAssemblerBase::moveDouble; |
135 | using MacroAssemblerBase::add32; |
136 | using MacroAssemblerBase::mul32; |
137 | using MacroAssemblerBase::and32; |
138 | using MacroAssemblerBase::branchAdd32; |
139 | using MacroAssemblerBase::branchMul32; |
140 | #if CPU(ARM64) || CPU(ARM_THUMB2) || CPU(X86_64) || CPU(MIPS) |
141 | using MacroAssemblerBase::branchPtr; |
142 | #endif |
143 | using MacroAssemblerBase::branchSub32; |
144 | using MacroAssemblerBase::lshift32; |
145 | using MacroAssemblerBase::or32; |
146 | using MacroAssemblerBase::rshift32; |
147 | using MacroAssemblerBase::store32; |
148 | using MacroAssemblerBase::sub32; |
149 | using MacroAssemblerBase::urshift32; |
150 | using MacroAssemblerBase::xor32; |
151 | |
152 | static bool isPtrAlignedAddressOffset(ptrdiff_t value) |
153 | { |
154 | return value == static_cast<int32_t>(value); |
155 | } |
156 | |
157 | static const double twoToThe32; // This is super useful for some double code. |
158 | |
159 | // Utilities used by the DFG JIT. |
160 | using AbstractMacroAssemblerBase::invert; |
161 | using MacroAssemblerBase::invert; |
162 | |
163 | static DoubleCondition invert(DoubleCondition cond) |
164 | { |
165 | switch (cond) { |
166 | case DoubleEqual: |
167 | return DoubleNotEqualOrUnordered; |
168 | case DoubleNotEqual: |
169 | return DoubleEqualOrUnordered; |
170 | case DoubleGreaterThan: |
171 | return DoubleLessThanOrEqualOrUnordered; |
172 | case DoubleGreaterThanOrEqual: |
173 | return DoubleLessThanOrUnordered; |
174 | case DoubleLessThan: |
175 | return DoubleGreaterThanOrEqualOrUnordered; |
176 | case DoubleLessThanOrEqual: |
177 | return DoubleGreaterThanOrUnordered; |
178 | case DoubleEqualOrUnordered: |
179 | return DoubleNotEqual; |
180 | case DoubleNotEqualOrUnordered: |
181 | return DoubleEqual; |
182 | case DoubleGreaterThanOrUnordered: |
183 | return DoubleLessThanOrEqual; |
184 | case DoubleGreaterThanOrEqualOrUnordered: |
185 | return DoubleLessThan; |
186 | case DoubleLessThanOrUnordered: |
187 | return DoubleGreaterThanOrEqual; |
188 | case DoubleLessThanOrEqualOrUnordered: |
189 | return DoubleGreaterThan; |
190 | } |
191 | RELEASE_ASSERT_NOT_REACHED(); |
192 | return DoubleEqual; // make compiler happy |
193 | } |
194 | |
195 | static bool isInvertible(ResultCondition cond) |
196 | { |
197 | switch (cond) { |
198 | case Zero: |
199 | case NonZero: |
200 | case Signed: |
201 | case PositiveOrZero: |
202 | return true; |
203 | default: |
204 | return false; |
205 | } |
206 | } |
207 | |
208 | static ResultCondition invert(ResultCondition cond) |
209 | { |
210 | switch (cond) { |
211 | case Zero: |
212 | return NonZero; |
213 | case NonZero: |
214 | return Zero; |
215 | case Signed: |
216 | return PositiveOrZero; |
217 | case PositiveOrZero: |
218 | return Signed; |
219 | default: |
220 | RELEASE_ASSERT_NOT_REACHED(); |
221 | return Zero; // Make compiler happy for release builds. |
222 | } |
223 | } |
224 | |
225 | static RelationalCondition flip(RelationalCondition cond) |
226 | { |
227 | switch (cond) { |
228 | case Equal: |
229 | case NotEqual: |
230 | return cond; |
231 | case Above: |
232 | return Below; |
233 | case AboveOrEqual: |
234 | return BelowOrEqual; |
235 | case Below: |
236 | return Above; |
237 | case BelowOrEqual: |
238 | return AboveOrEqual; |
239 | case GreaterThan: |
240 | return LessThan; |
241 | case GreaterThanOrEqual: |
242 | return LessThanOrEqual; |
243 | case LessThan: |
244 | return GreaterThan; |
245 | case LessThanOrEqual: |
246 | return GreaterThanOrEqual; |
247 | } |
248 | |
249 | RELEASE_ASSERT_NOT_REACHED(); |
250 | return Equal; |
251 | } |
252 | |
253 | static bool isSigned(RelationalCondition cond) |
254 | { |
255 | return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond); |
256 | } |
257 | |
258 | static bool isUnsigned(RelationalCondition cond) |
259 | { |
260 | return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond); |
261 | } |
262 | |
263 | static bool isSigned(ResultCondition cond) |
264 | { |
265 | return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond); |
266 | } |
267 | |
268 | static bool isUnsigned(ResultCondition cond) |
269 | { |
270 | return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond); |
271 | } |
272 | |
273 | // Platform agnostic convenience functions, |
274 | // described in terms of other macro assembly methods. |
275 | void pop() |
276 | { |
277 | addPtr(TrustedImm32(sizeof(void*)), stackPointerRegister); |
278 | } |
279 | |
280 | void peek(RegisterID dest, int index = 0) |
281 | { |
282 | loadPtr(Address(stackPointerRegister, (index * sizeof(void*))), dest); |
283 | } |
284 | |
285 | Address addressForPoke(int index) |
286 | { |
287 | return Address(stackPointerRegister, (index * sizeof(void*))); |
288 | } |
289 | |
290 | void poke(RegisterID src, int index = 0) |
291 | { |
292 | storePtr(src, addressForPoke(index)); |
293 | } |
294 | |
295 | void poke(TrustedImm32 value, int index = 0) |
296 | { |
297 | store32(value, addressForPoke(index)); |
298 | } |
299 | |
300 | void poke(TrustedImmPtr imm, int index = 0) |
301 | { |
302 | storePtr(imm, addressForPoke(index)); |
303 | } |
304 | |
305 | void poke(FPRegisterID src, int index = 0) |
306 | { |
307 | storeDouble(src, addressForPoke(index)); |
308 | } |
309 | |
310 | #if !CPU(ARM64) |
311 | void pushToSave(RegisterID src) |
312 | { |
313 | push(src); |
314 | } |
315 | void pushToSaveImmediateWithoutTouchingRegisters(TrustedImm32 imm) |
316 | { |
317 | push(imm); |
318 | } |
319 | void popToRestore(RegisterID dest) |
320 | { |
321 | pop(dest); |
322 | } |
323 | void pushToSave(FPRegisterID src) |
324 | { |
325 | subPtr(TrustedImm32(sizeof(double)), stackPointerRegister); |
326 | storeDouble(src, stackPointerRegister); |
327 | } |
328 | void popToRestore(FPRegisterID dest) |
329 | { |
330 | loadDouble(stackPointerRegister, dest); |
331 | addPtr(TrustedImm32(sizeof(double)), stackPointerRegister); |
332 | } |
333 | |
334 | static ptrdiff_t pushToSaveByteOffset() { return sizeof(void*); } |
335 | #endif // !CPU(ARM64) |
336 | |
337 | #if CPU(X86_64) || CPU(ARM64) |
338 | void peek64(RegisterID dest, int index = 0) |
339 | { |
340 | load64(Address(stackPointerRegister, (index * sizeof(void*))), dest); |
341 | } |
342 | |
343 | void poke(TrustedImm64 value, int index = 0) |
344 | { |
345 | store64(value, addressForPoke(index)); |
346 | } |
347 | |
348 | void poke64(RegisterID src, int index = 0) |
349 | { |
350 | store64(src, addressForPoke(index)); |
351 | } |
352 | #endif |
353 | |
354 | // Immediate shifts only have 5 controllable bits |
355 | // so we'll consider them safe for now. |
356 | TrustedImm32 trustedImm32ForShift(Imm32 imm) |
357 | { |
358 | return TrustedImm32(imm.asTrustedImm32().m_value & 31); |
359 | } |
360 | |
361 | // Backwards banches, these are currently all implemented using existing forwards branch mechanisms. |
362 | void branchPtr(RelationalCondition cond, RegisterID op1, TrustedImmPtr imm, Label target) |
363 | { |
364 | branchPtr(cond, op1, imm).linkTo(target, this); |
365 | } |
366 | void branchPtr(RelationalCondition cond, RegisterID op1, ImmPtr imm, Label target) |
367 | { |
368 | branchPtr(cond, op1, imm).linkTo(target, this); |
369 | } |
370 | |
371 | Jump branch32(RelationalCondition cond, RegisterID left, AbsoluteAddress right) |
372 | { |
373 | return branch32(flip(cond), right, left); |
374 | } |
375 | |
376 | void branch32(RelationalCondition cond, RegisterID op1, RegisterID op2, Label target) |
377 | { |
378 | branch32(cond, op1, op2).linkTo(target, this); |
379 | } |
380 | |
381 | void branch32(RelationalCondition cond, RegisterID op1, TrustedImm32 imm, Label target) |
382 | { |
383 | branch32(cond, op1, imm).linkTo(target, this); |
384 | } |
385 | |
386 | void branch32(RelationalCondition cond, RegisterID op1, Imm32 imm, Label target) |
387 | { |
388 | branch32(cond, op1, imm).linkTo(target, this); |
389 | } |
390 | |
391 | void branch32(RelationalCondition cond, RegisterID left, Address right, Label target) |
392 | { |
393 | branch32(cond, left, right).linkTo(target, this); |
394 | } |
395 | |
396 | Jump branch32(RelationalCondition cond, TrustedImm32 left, RegisterID right) |
397 | { |
398 | return branch32(commute(cond), right, left); |
399 | } |
400 | |
401 | Jump branch32(RelationalCondition cond, Imm32 left, RegisterID right) |
402 | { |
403 | return branch32(commute(cond), right, left); |
404 | } |
405 | |
406 | void compare32(RelationalCondition cond, Imm32 left, RegisterID right, RegisterID dest) |
407 | { |
408 | compare32(commute(cond), right, left, dest); |
409 | } |
410 | |
411 | void branchTestPtr(ResultCondition cond, RegisterID reg, Label target) |
412 | { |
413 | branchTestPtr(cond, reg).linkTo(target, this); |
414 | } |
415 | |
416 | #if !CPU(ARM_THUMB2) && !CPU(ARM64) |
417 | PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right = TrustedImmPtr(nullptr)) |
418 | { |
419 | return PatchableJump(branchPtr(cond, left, right)); |
420 | } |
421 | |
422 | PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr)) |
423 | { |
424 | return PatchableJump(branchPtrWithPatch(cond, left, dataLabel, initialRightValue)); |
425 | } |
426 | |
427 | PatchableJump patchableBranch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0)) |
428 | { |
429 | return PatchableJump(branch32WithPatch(cond, left, dataLabel, initialRightValue)); |
430 | } |
431 | |
432 | PatchableJump patchableJump() |
433 | { |
434 | return PatchableJump(jump()); |
435 | } |
436 | |
437 | PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
438 | { |
439 | return PatchableJump(branchTest32(cond, reg, mask)); |
440 | } |
441 | |
442 | PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm) |
443 | { |
444 | return PatchableJump(branch32(cond, reg, imm)); |
445 | } |
446 | |
447 | PatchableJump patchableBranch8(RelationalCondition cond, Address address, TrustedImm32 imm) |
448 | { |
449 | return PatchableJump(branch8(cond, address, imm)); |
450 | } |
451 | |
452 | PatchableJump patchableBranch32(RelationalCondition cond, Address address, TrustedImm32 imm) |
453 | { |
454 | return PatchableJump(branch32(cond, address, imm)); |
455 | } |
456 | #endif |
457 | |
458 | void jump(Label target) |
459 | { |
460 | jump().linkTo(target, this); |
461 | } |
462 | |
463 | // Commute a relational condition, returns a new condition that will produce |
464 | // the same results given the same inputs but with their positions exchanged. |
465 | static RelationalCondition commute(RelationalCondition condition) |
466 | { |
467 | switch (condition) { |
468 | case Above: |
469 | return Below; |
470 | case AboveOrEqual: |
471 | return BelowOrEqual; |
472 | case Below: |
473 | return Above; |
474 | case BelowOrEqual: |
475 | return AboveOrEqual; |
476 | case GreaterThan: |
477 | return LessThan; |
478 | case GreaterThanOrEqual: |
479 | return LessThanOrEqual; |
480 | case LessThan: |
481 | return GreaterThan; |
482 | case LessThanOrEqual: |
483 | return GreaterThanOrEqual; |
484 | default: |
485 | break; |
486 | } |
487 | |
488 | ASSERT(condition == Equal || condition == NotEqual); |
489 | return condition; |
490 | } |
491 | |
492 | void oops() |
493 | { |
494 | abortWithReason(B3Oops); |
495 | } |
496 | |
497 | // B3 has additional pseudo-opcodes for returning, when it wants to signal that the return |
498 | // consumes some register in some way. |
499 | void retVoid() { ret(); } |
500 | void ret32(RegisterID) { ret(); } |
501 | void ret64(RegisterID) { ret(); } |
502 | void retFloat(FPRegisterID) { ret(); } |
503 | void retDouble(FPRegisterID) { ret(); } |
504 | |
505 | static const unsigned BlindingModulus = 64; |
506 | bool shouldConsiderBlinding() |
507 | { |
508 | return !(random() & (BlindingModulus - 1)); |
509 | } |
510 | |
511 | void move(Address src, Address dest, RegisterID scratch) |
512 | { |
513 | loadPtr(src, scratch); |
514 | storePtr(scratch, dest); |
515 | } |
516 | |
517 | void move32(Address src, Address dest, RegisterID scratch) |
518 | { |
519 | load32(src, scratch); |
520 | store32(scratch, dest); |
521 | } |
522 | |
523 | void moveFloat(Address src, Address dest, FPRegisterID scratch) |
524 | { |
525 | loadFloat(src, scratch); |
526 | storeFloat(scratch, dest); |
527 | } |
528 | |
529 | // Overload mostly for use in templates. |
530 | void move(FPRegisterID src, FPRegisterID dest) |
531 | { |
532 | moveDouble(src, dest); |
533 | } |
534 | |
535 | void moveDouble(Address src, Address dest, FPRegisterID scratch) |
536 | { |
537 | loadDouble(src, scratch); |
538 | storeDouble(scratch, dest); |
539 | } |
540 | |
541 | // Ptr methods |
542 | // On 32-bit platforms (i.e. x86), these methods directly map onto their 32-bit equivalents. |
543 | // FIXME: should this use a test for 32-bitness instead of this specific exception? |
544 | #if !CPU(X86_64) && !CPU(ARM64) |
545 | void addPtr(Address src, RegisterID dest) |
546 | { |
547 | add32(src, dest); |
548 | } |
549 | |
550 | void addPtr(AbsoluteAddress src, RegisterID dest) |
551 | { |
552 | add32(src, dest); |
553 | } |
554 | |
555 | void addPtr(RegisterID src, RegisterID dest) |
556 | { |
557 | add32(src, dest); |
558 | } |
559 | |
560 | void addPtr(RegisterID left, RegisterID right, RegisterID dest) |
561 | { |
562 | add32(left, right, dest); |
563 | } |
564 | |
565 | void addPtr(TrustedImm32 imm, RegisterID srcDest) |
566 | { |
567 | add32(imm, srcDest); |
568 | } |
569 | |
570 | void addPtr(TrustedImmPtr imm, RegisterID dest) |
571 | { |
572 | add32(TrustedImm32(imm), dest); |
573 | } |
574 | |
575 | void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
576 | { |
577 | add32(imm, src, dest); |
578 | } |
579 | |
580 | void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
581 | { |
582 | add32(imm, address); |
583 | } |
584 | |
585 | void andPtr(RegisterID src, RegisterID dest) |
586 | { |
587 | and32(src, dest); |
588 | } |
589 | |
590 | void andPtr(TrustedImm32 imm, RegisterID srcDest) |
591 | { |
592 | and32(imm, srcDest); |
593 | } |
594 | |
595 | void andPtr(TrustedImmPtr imm, RegisterID srcDest) |
596 | { |
597 | and32(TrustedImm32(imm), srcDest); |
598 | } |
599 | |
600 | void lshiftPtr(Imm32 imm, RegisterID srcDest) |
601 | { |
602 | lshift32(trustedImm32ForShift(imm), srcDest); |
603 | } |
604 | |
605 | void lshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
606 | { |
607 | lshift32(imm, srcDest); |
608 | } |
609 | |
610 | void rshiftPtr(Imm32 imm, RegisterID srcDest) |
611 | { |
612 | rshift32(trustedImm32ForShift(imm), srcDest); |
613 | } |
614 | |
615 | void rshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
616 | { |
617 | rshift32(imm, srcDest); |
618 | } |
619 | |
620 | void urshiftPtr(Imm32 imm, RegisterID srcDest) |
621 | { |
622 | urshift32(trustedImm32ForShift(imm), srcDest); |
623 | } |
624 | |
625 | void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest) |
626 | { |
627 | urshift32(shiftAmmount, srcDest); |
628 | } |
629 | |
630 | void negPtr(RegisterID dest) |
631 | { |
632 | neg32(dest); |
633 | } |
634 | |
635 | void negPtr(RegisterID src, RegisterID dest) |
636 | { |
637 | neg32(src, dest); |
638 | } |
639 | |
640 | void orPtr(RegisterID src, RegisterID dest) |
641 | { |
642 | or32(src, dest); |
643 | } |
644 | |
645 | void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
646 | { |
647 | or32(op1, op2, dest); |
648 | } |
649 | |
650 | void orPtr(TrustedImmPtr imm, RegisterID dest) |
651 | { |
652 | or32(TrustedImm32(imm), dest); |
653 | } |
654 | |
655 | void orPtr(TrustedImm32 imm, RegisterID dest) |
656 | { |
657 | or32(imm, dest); |
658 | } |
659 | |
660 | void subPtr(RegisterID src, RegisterID dest) |
661 | { |
662 | sub32(src, dest); |
663 | } |
664 | |
665 | void subPtr(TrustedImm32 imm, RegisterID dest) |
666 | { |
667 | sub32(imm, dest); |
668 | } |
669 | |
670 | void subPtr(TrustedImmPtr imm, RegisterID dest) |
671 | { |
672 | sub32(TrustedImm32(imm), dest); |
673 | } |
674 | |
675 | void xorPtr(RegisterID src, RegisterID dest) |
676 | { |
677 | xor32(src, dest); |
678 | } |
679 | |
680 | void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
681 | { |
682 | xor32(imm, srcDest); |
683 | } |
684 | |
685 | void xorPtr(TrustedImmPtr imm, RegisterID srcDest) |
686 | { |
687 | xor32(TrustedImm32(imm), srcDest); |
688 | } |
689 | |
690 | void xorPtr(Address src, RegisterID dest) |
691 | { |
692 | xor32(src, dest); |
693 | } |
694 | |
695 | void loadPtr(ImplicitAddress address, RegisterID dest) |
696 | { |
697 | load32(address, dest); |
698 | } |
699 | |
700 | void loadPtr(BaseIndex address, RegisterID dest) |
701 | { |
702 | load32(address, dest); |
703 | } |
704 | |
705 | void loadPtr(const void* address, RegisterID dest) |
706 | { |
707 | load32(address, dest); |
708 | } |
709 | |
710 | #if ENABLE(FAST_TLS_JIT) |
711 | void loadFromTLSPtr(uint32_t offset, RegisterID dst) |
712 | { |
713 | loadFromTLS32(offset, dst); |
714 | } |
715 | |
716 | void storeToTLSPtr(RegisterID src, uint32_t offset) |
717 | { |
718 | storeToTLS32(src, offset); |
719 | } |
720 | #endif |
721 | |
722 | DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
723 | { |
724 | return load32WithAddressOffsetPatch(address, dest); |
725 | } |
726 | |
727 | DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
728 | { |
729 | return load32WithCompactAddressOffsetPatch(address, dest); |
730 | } |
731 | |
732 | void move(ImmPtr imm, RegisterID dest) |
733 | { |
734 | move(Imm32(imm.asTrustedImmPtr()), dest); |
735 | } |
736 | |
737 | void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
738 | { |
739 | compare32(cond, left, right, dest); |
740 | } |
741 | |
742 | void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
743 | { |
744 | compare32(cond, left, right, dest); |
745 | } |
746 | |
747 | void storePtr(RegisterID src, ImplicitAddress address) |
748 | { |
749 | store32(src, address); |
750 | } |
751 | |
752 | void storePtr(RegisterID src, BaseIndex address) |
753 | { |
754 | store32(src, address); |
755 | } |
756 | |
757 | void storePtr(RegisterID src, void* address) |
758 | { |
759 | store32(src, address); |
760 | } |
761 | |
762 | void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
763 | { |
764 | store32(TrustedImm32(imm), address); |
765 | } |
766 | |
767 | void storePtr(ImmPtr imm, Address address) |
768 | { |
769 | store32(Imm32(imm.asTrustedImmPtr()), address); |
770 | } |
771 | |
772 | void storePtr(TrustedImmPtr imm, void* address) |
773 | { |
774 | store32(TrustedImm32(imm), address); |
775 | } |
776 | |
777 | void storePtr(TrustedImm32 imm, ImplicitAddress address) |
778 | { |
779 | store32(imm, address); |
780 | } |
781 | |
782 | void storePtr(TrustedImmPtr imm, BaseIndex address) |
783 | { |
784 | store32(TrustedImm32(imm), address); |
785 | } |
786 | |
787 | DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
788 | { |
789 | return store32WithAddressOffsetPatch(src, address); |
790 | } |
791 | |
792 | Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
793 | { |
794 | return branch32(cond, left, right); |
795 | } |
796 | |
797 | Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
798 | { |
799 | return branch32(cond, left, TrustedImm32(right)); |
800 | } |
801 | |
802 | Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
803 | { |
804 | return branch32(cond, left, Imm32(right.asTrustedImmPtr())); |
805 | } |
806 | |
807 | Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
808 | { |
809 | return branch32(cond, left, right); |
810 | } |
811 | |
812 | Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
813 | { |
814 | return branch32(cond, left, right); |
815 | } |
816 | |
817 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
818 | { |
819 | return branch32(cond, left, right); |
820 | } |
821 | |
822 | Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
823 | { |
824 | return branch32(cond, left, TrustedImm32(right)); |
825 | } |
826 | |
827 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, TrustedImmPtr right) |
828 | { |
829 | return branch32(cond, left, TrustedImm32(right)); |
830 | } |
831 | |
832 | Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
833 | { |
834 | return branchSub32(cond, src, dest); |
835 | } |
836 | |
837 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
838 | { |
839 | return branchTest32(cond, reg, mask); |
840 | } |
841 | |
842 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
843 | { |
844 | return branchTest32(cond, reg, mask); |
845 | } |
846 | |
847 | Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
848 | { |
849 | return branchTest32(cond, address, mask); |
850 | } |
851 | |
852 | Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
853 | { |
854 | return branchTest32(cond, address, mask); |
855 | } |
856 | |
857 | Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
858 | { |
859 | return branchAdd32(cond, src, dest); |
860 | } |
861 | |
862 | Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
863 | { |
864 | return branchSub32(cond, imm, dest); |
865 | } |
866 | using MacroAssemblerBase::branchTest8; |
867 | Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
868 | { |
869 | return MacroAssemblerBase::branchTest8(cond, Address(address.base, address.offset), mask); |
870 | } |
871 | |
872 | #else // !CPU(X86_64) && !CPU(ARM64) |
873 | |
874 | void addPtr(RegisterID src, RegisterID dest) |
875 | { |
876 | add64(src, dest); |
877 | } |
878 | |
879 | void addPtr(RegisterID left, RegisterID right, RegisterID dest) |
880 | { |
881 | add64(left, right, dest); |
882 | } |
883 | |
884 | void addPtr(Address src, RegisterID dest) |
885 | { |
886 | add64(src, dest); |
887 | } |
888 | |
889 | void addPtr(TrustedImm32 imm, RegisterID srcDest) |
890 | { |
891 | add64(imm, srcDest); |
892 | } |
893 | |
894 | void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
895 | { |
896 | add64(imm, src, dest); |
897 | } |
898 | |
899 | void addPtr(TrustedImm32 imm, Address address) |
900 | { |
901 | add64(imm, address); |
902 | } |
903 | |
904 | void addPtr(AbsoluteAddress src, RegisterID dest) |
905 | { |
906 | add64(src, dest); |
907 | } |
908 | |
909 | void addPtr(TrustedImmPtr imm, RegisterID dest) |
910 | { |
911 | add64(TrustedImm64(imm), dest); |
912 | } |
913 | |
914 | void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
915 | { |
916 | add64(imm, address); |
917 | } |
918 | |
919 | void andPtr(RegisterID src, RegisterID dest) |
920 | { |
921 | and64(src, dest); |
922 | } |
923 | |
924 | void andPtr(TrustedImm32 imm, RegisterID srcDest) |
925 | { |
926 | and64(imm, srcDest); |
927 | } |
928 | |
929 | void andPtr(TrustedImmPtr imm, RegisterID srcDest) |
930 | { |
931 | and64(imm, srcDest); |
932 | } |
933 | |
934 | void lshiftPtr(Imm32 imm, RegisterID srcDest) |
935 | { |
936 | lshift64(trustedImm32ForShift(imm), srcDest); |
937 | } |
938 | |
939 | void lshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
940 | { |
941 | lshift64(imm, srcDest); |
942 | } |
943 | |
944 | void rshiftPtr(Imm32 imm, RegisterID srcDest) |
945 | { |
946 | rshift64(trustedImm32ForShift(imm), srcDest); |
947 | } |
948 | |
949 | void rshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
950 | { |
951 | rshift64(imm, srcDest); |
952 | } |
953 | |
954 | void urshiftPtr(Imm32 imm, RegisterID srcDest) |
955 | { |
956 | urshift64(trustedImm32ForShift(imm), srcDest); |
957 | } |
958 | |
959 | void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest) |
960 | { |
961 | urshift64(shiftAmmount, srcDest); |
962 | } |
963 | |
964 | void negPtr(RegisterID dest) |
965 | { |
966 | neg64(dest); |
967 | } |
968 | |
969 | void negPtr(RegisterID src, RegisterID dest) |
970 | { |
971 | neg64(src, dest); |
972 | } |
973 | |
974 | void orPtr(RegisterID src, RegisterID dest) |
975 | { |
976 | or64(src, dest); |
977 | } |
978 | |
979 | void orPtr(TrustedImm32 imm, RegisterID dest) |
980 | { |
981 | or64(imm, dest); |
982 | } |
983 | |
984 | void orPtr(TrustedImmPtr imm, RegisterID dest) |
985 | { |
986 | or64(TrustedImm64(imm), dest); |
987 | } |
988 | |
989 | void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
990 | { |
991 | or64(op1, op2, dest); |
992 | } |
993 | |
994 | void orPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
995 | { |
996 | or64(imm, src, dest); |
997 | } |
998 | |
999 | void rotateRightPtr(TrustedImm32 imm, RegisterID srcDst) |
1000 | { |
1001 | rotateRight64(imm, srcDst); |
1002 | } |
1003 | |
1004 | void subPtr(RegisterID src, RegisterID dest) |
1005 | { |
1006 | sub64(src, dest); |
1007 | } |
1008 | |
1009 | void subPtr(TrustedImm32 imm, RegisterID dest) |
1010 | { |
1011 | sub64(imm, dest); |
1012 | } |
1013 | |
1014 | void subPtr(TrustedImmPtr imm, RegisterID dest) |
1015 | { |
1016 | sub64(TrustedImm64(imm), dest); |
1017 | } |
1018 | |
1019 | void xorPtr(RegisterID src, RegisterID dest) |
1020 | { |
1021 | xor64(src, dest); |
1022 | } |
1023 | |
1024 | void xorPtr(Address src, RegisterID dest) |
1025 | { |
1026 | xor64(src, dest); |
1027 | } |
1028 | |
1029 | void xorPtr(RegisterID src, Address dest) |
1030 | { |
1031 | xor64(src, dest); |
1032 | } |
1033 | |
1034 | void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
1035 | { |
1036 | xor64(imm, srcDest); |
1037 | } |
1038 | |
1039 | // FIXME: Look into making the need for a scratch register explicit, or providing the option to specify a scratch register. |
1040 | void xorPtr(TrustedImmPtr imm, RegisterID srcDest) |
1041 | { |
1042 | xor64(TrustedImm64(imm), srcDest); |
1043 | } |
1044 | |
1045 | void loadPtr(ImplicitAddress address, RegisterID dest) |
1046 | { |
1047 | load64(address, dest); |
1048 | } |
1049 | |
1050 | void loadPtr(BaseIndex address, RegisterID dest) |
1051 | { |
1052 | load64(address, dest); |
1053 | } |
1054 | |
1055 | void loadPtr(const void* address, RegisterID dest) |
1056 | { |
1057 | load64(address, dest); |
1058 | } |
1059 | |
1060 | #if ENABLE(FAST_TLS_JIT) |
1061 | void loadFromTLSPtr(uint32_t offset, RegisterID dst) |
1062 | { |
1063 | loadFromTLS64(offset, dst); |
1064 | } |
1065 | void storeToTLSPtr(RegisterID src, uint32_t offset) |
1066 | { |
1067 | storeToTLS64(src, offset); |
1068 | } |
1069 | #endif |
1070 | |
1071 | DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
1072 | { |
1073 | return load64WithAddressOffsetPatch(address, dest); |
1074 | } |
1075 | |
1076 | DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
1077 | { |
1078 | return load64WithCompactAddressOffsetPatch(address, dest); |
1079 | } |
1080 | |
1081 | void storePtr(RegisterID src, ImplicitAddress address) |
1082 | { |
1083 | store64(src, address); |
1084 | } |
1085 | |
1086 | void storePtr(RegisterID src, BaseIndex address) |
1087 | { |
1088 | store64(src, address); |
1089 | } |
1090 | |
1091 | void storePtr(RegisterID src, void* address) |
1092 | { |
1093 | store64(src, address); |
1094 | } |
1095 | |
1096 | void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
1097 | { |
1098 | store64(TrustedImm64(imm), address); |
1099 | } |
1100 | |
1101 | void storePtr(TrustedImm32 imm, ImplicitAddress address) |
1102 | { |
1103 | store64(imm, address); |
1104 | } |
1105 | |
1106 | void storePtr(TrustedImmPtr imm, BaseIndex address) |
1107 | { |
1108 | store64(TrustedImm64(imm), address); |
1109 | } |
1110 | |
1111 | DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
1112 | { |
1113 | return store64WithAddressOffsetPatch(src, address); |
1114 | } |
1115 | |
1116 | void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
1117 | { |
1118 | compare64(cond, left, right, dest); |
1119 | } |
1120 | |
1121 | void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
1122 | { |
1123 | compare64(cond, left, right, dest); |
1124 | } |
1125 | |
1126 | void testPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) |
1127 | { |
1128 | test64(cond, reg, mask, dest); |
1129 | } |
1130 | |
1131 | void testPtr(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest) |
1132 | { |
1133 | test64(cond, reg, mask, dest); |
1134 | } |
1135 | |
1136 | Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
1137 | { |
1138 | return branch64(cond, left, right); |
1139 | } |
1140 | |
1141 | Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
1142 | { |
1143 | return branch64(cond, left, TrustedImm64(right)); |
1144 | } |
1145 | |
1146 | Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
1147 | { |
1148 | return branch64(cond, left, right); |
1149 | } |
1150 | |
1151 | Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
1152 | { |
1153 | return branch64(cond, left, right); |
1154 | } |
1155 | |
1156 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
1157 | { |
1158 | return branch64(cond, left, right); |
1159 | } |
1160 | |
1161 | Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
1162 | { |
1163 | return branch64(cond, left, TrustedImm64(right)); |
1164 | } |
1165 | |
1166 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
1167 | { |
1168 | return branchTest64(cond, reg, mask); |
1169 | } |
1170 | |
1171 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
1172 | { |
1173 | return branchTest64(cond, reg, mask); |
1174 | } |
1175 | |
1176 | Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
1177 | { |
1178 | return branchTest64(cond, address, mask); |
1179 | } |
1180 | |
1181 | Jump branchTestPtr(ResultCondition cond, Address address, RegisterID reg) |
1182 | { |
1183 | return branchTest64(cond, address, reg); |
1184 | } |
1185 | |
1186 | Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
1187 | { |
1188 | return branchTest64(cond, address, mask); |
1189 | } |
1190 | |
1191 | Jump branchTestPtr(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
1192 | { |
1193 | return branchTest64(cond, address, mask); |
1194 | } |
1195 | |
1196 | Jump branchAddPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
1197 | { |
1198 | return branchAdd64(cond, imm, dest); |
1199 | } |
1200 | |
1201 | Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
1202 | { |
1203 | return branchAdd64(cond, src, dest); |
1204 | } |
1205 | |
1206 | Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
1207 | { |
1208 | return branchSub64(cond, imm, dest); |
1209 | } |
1210 | |
1211 | Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
1212 | { |
1213 | return branchSub64(cond, src, dest); |
1214 | } |
1215 | |
1216 | Jump branchSubPtr(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest) |
1217 | { |
1218 | return branchSub64(cond, src1, src2, dest); |
1219 | } |
1220 | |
1221 | using MacroAssemblerBase::and64; |
1222 | using MacroAssemblerBase::convertInt32ToDouble; |
1223 | using MacroAssemblerBase::store64; |
1224 | bool shouldBlindDouble(double value) |
1225 | { |
1226 | // Don't trust NaN or +/-Infinity |
1227 | if (!std::isfinite(value)) |
1228 | return shouldConsiderBlinding(); |
1229 | |
1230 | // Try to force normalisation, and check that there's no change |
1231 | // in the bit pattern |
1232 | if (bitwise_cast<uint64_t>(value * 1.0) != bitwise_cast<uint64_t>(value)) |
1233 | return shouldConsiderBlinding(); |
1234 | |
1235 | value = fabs(value); |
1236 | // Only allow a limited set of fractional components |
1237 | double scaledValue = value * 8; |
1238 | if (scaledValue / 8 != value) |
1239 | return shouldConsiderBlinding(); |
1240 | double frac = scaledValue - floor(scaledValue); |
1241 | if (frac != 0.0) |
1242 | return shouldConsiderBlinding(); |
1243 | |
1244 | return value > 0xff; |
1245 | } |
1246 | |
1247 | bool shouldBlindPointerForSpecificArch(uintptr_t value) |
1248 | { |
1249 | if (sizeof(void*) == 4) |
1250 | return shouldBlindForSpecificArch(static_cast<uint32_t>(value)); |
1251 | return shouldBlindForSpecificArch(static_cast<uint64_t>(value)); |
1252 | } |
1253 | |
1254 | bool shouldBlind(ImmPtr imm) |
1255 | { |
1256 | if (!canBlind()) |
1257 | return false; |
1258 | |
1259 | #if ENABLE(FORCED_JIT_BLINDING) |
1260 | UNUSED_PARAM(imm); |
1261 | // Debug always blind all constants, if only so we know |
1262 | // if we've broken blinding during patch development. |
1263 | return true; |
1264 | #endif |
1265 | |
1266 | // First off we'll special case common, "safe" values to avoid hurting |
1267 | // performance too much |
1268 | uint64_t value = imm.asTrustedImmPtr().asIntptr(); |
1269 | switch (value) { |
1270 | case 0xffff: |
1271 | case 0xffffff: |
1272 | case 0xffffffffL: |
1273 | case 0xffffffffffL: |
1274 | case 0xffffffffffffL: |
1275 | case 0xffffffffffffffL: |
1276 | case 0xffffffffffffffffL: |
1277 | return false; |
1278 | default: { |
1279 | if (value <= 0xff) |
1280 | return false; |
1281 | if (~value <= 0xff) |
1282 | return false; |
1283 | } |
1284 | } |
1285 | |
1286 | if (!shouldConsiderBlinding()) |
1287 | return false; |
1288 | |
1289 | return shouldBlindPointerForSpecificArch(static_cast<uintptr_t>(value)); |
1290 | } |
1291 | |
1292 | uint8_t generateRotationSeed(size_t widthInBits) |
1293 | { |
1294 | // Generate the seed in [1, widthInBits - 1]. We should not generate widthInBits or 0 |
1295 | // since it leads to `<< widthInBits` or `>> widthInBits`, which cause undefined behaviors. |
1296 | return (random() % (widthInBits - 1)) + 1; |
1297 | } |
1298 | |
1299 | struct RotatedImmPtr { |
1300 | RotatedImmPtr(uintptr_t v1, uint8_t v2) |
1301 | : value(v1) |
1302 | , rotation(v2) |
1303 | { |
1304 | } |
1305 | TrustedImmPtr value; |
1306 | TrustedImm32 rotation; |
1307 | }; |
1308 | |
1309 | RotatedImmPtr rotationBlindConstant(ImmPtr imm) |
1310 | { |
1311 | uint8_t rotation = generateRotationSeed(sizeof(void*) * 8); |
1312 | uintptr_t value = imm.asTrustedImmPtr().asIntptr(); |
1313 | value = (value << rotation) | (value >> (sizeof(void*) * 8 - rotation)); |
1314 | return RotatedImmPtr(value, rotation); |
1315 | } |
1316 | |
1317 | void loadRotationBlindedConstant(RotatedImmPtr constant, RegisterID dest) |
1318 | { |
1319 | move(constant.value, dest); |
1320 | rotateRightPtr(constant.rotation, dest); |
1321 | } |
1322 | |
1323 | bool shouldBlind(Imm64 imm) |
1324 | { |
1325 | #if ENABLE(FORCED_JIT_BLINDING) |
1326 | UNUSED_PARAM(imm); |
1327 | // Debug always blind all constants, if only so we know |
1328 | // if we've broken blinding during patch development. |
1329 | return true; |
1330 | #endif |
1331 | |
1332 | // First off we'll special case common, "safe" values to avoid hurting |
1333 | // performance too much |
1334 | uint64_t value = imm.asTrustedImm64().m_value; |
1335 | switch (value) { |
1336 | case 0xffff: |
1337 | case 0xffffff: |
1338 | case 0xffffffffL: |
1339 | case 0xffffffffffL: |
1340 | case 0xffffffffffffL: |
1341 | case 0xffffffffffffffL: |
1342 | case 0xffffffffffffffffL: |
1343 | return false; |
1344 | default: { |
1345 | if (value <= 0xff) |
1346 | return false; |
1347 | if (~value <= 0xff) |
1348 | return false; |
1349 | |
1350 | JSValue jsValue = JSValue::decode(value); |
1351 | if (jsValue.isInt32()) |
1352 | return shouldBlind(Imm32(jsValue.asInt32())); |
1353 | if (jsValue.isDouble() && !shouldBlindDouble(jsValue.asDouble())) |
1354 | return false; |
1355 | |
1356 | if (!shouldBlindDouble(bitwise_cast<double>(value))) |
1357 | return false; |
1358 | } |
1359 | } |
1360 | |
1361 | if (!shouldConsiderBlinding()) |
1362 | return false; |
1363 | |
1364 | return shouldBlindForSpecificArch(value); |
1365 | } |
1366 | |
1367 | struct RotatedImm64 { |
1368 | RotatedImm64(uint64_t v1, uint8_t v2) |
1369 | : value(v1) |
1370 | , rotation(v2) |
1371 | { |
1372 | } |
1373 | TrustedImm64 value; |
1374 | TrustedImm32 rotation; |
1375 | }; |
1376 | |
1377 | RotatedImm64 rotationBlindConstant(Imm64 imm) |
1378 | { |
1379 | uint8_t rotation = generateRotationSeed(sizeof(int64_t) * 8); |
1380 | uint64_t value = imm.asTrustedImm64().m_value; |
1381 | value = (value << rotation) | (value >> (sizeof(int64_t) * 8 - rotation)); |
1382 | return RotatedImm64(value, rotation); |
1383 | } |
1384 | |
1385 | void loadRotationBlindedConstant(RotatedImm64 constant, RegisterID dest) |
1386 | { |
1387 | move(constant.value, dest); |
1388 | rotateRight64(constant.rotation, dest); |
1389 | } |
1390 | |
1391 | void convertInt32ToDouble(Imm32 imm, FPRegisterID dest) |
1392 | { |
1393 | if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
1394 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
1395 | loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister); |
1396 | convertInt32ToDouble(scratchRegister, dest); |
1397 | } else |
1398 | convertInt32ToDouble(imm.asTrustedImm32(), dest); |
1399 | } |
1400 | |
1401 | void move(ImmPtr imm, RegisterID dest) |
1402 | { |
1403 | if (shouldBlind(imm)) |
1404 | loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
1405 | else |
1406 | move(imm.asTrustedImmPtr(), dest); |
1407 | } |
1408 | |
1409 | void move(Imm64 imm, RegisterID dest) |
1410 | { |
1411 | if (shouldBlind(imm)) |
1412 | loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
1413 | else |
1414 | move(imm.asTrustedImm64(), dest); |
1415 | } |
1416 | |
1417 | #if CPU(X86_64) || CPU(ARM64) |
1418 | void moveDouble(Imm64 imm, FPRegisterID dest) |
1419 | { |
1420 | move(imm, scratchRegister()); |
1421 | move64ToDouble(scratchRegister(), dest); |
1422 | } |
1423 | #endif |
1424 | |
1425 | void and64(Imm32 imm, RegisterID dest) |
1426 | { |
1427 | if (shouldBlind(imm)) { |
1428 | BlindedImm32 key = andBlindedConstant(imm); |
1429 | and64(key.value1, dest); |
1430 | and64(key.value2, dest); |
1431 | } else |
1432 | and64(imm.asTrustedImm32(), dest); |
1433 | } |
1434 | |
1435 | Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
1436 | { |
1437 | if (shouldBlind(right) && haveScratchRegisterForBlinding()) { |
1438 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
1439 | loadRotationBlindedConstant(rotationBlindConstant(right), scratchRegister); |
1440 | return branchPtr(cond, left, scratchRegister); |
1441 | } |
1442 | return branchPtr(cond, left, right.asTrustedImmPtr()); |
1443 | } |
1444 | |
1445 | void storePtr(ImmPtr imm, Address dest) |
1446 | { |
1447 | if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
1448 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
1449 | loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
1450 | storePtr(scratchRegister, dest); |
1451 | } else |
1452 | storePtr(imm.asTrustedImmPtr(), dest); |
1453 | } |
1454 | |
1455 | void store64(Imm64 imm, Address dest) |
1456 | { |
1457 | if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
1458 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
1459 | loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
1460 | store64(scratchRegister, dest); |
1461 | } else |
1462 | store64(imm.asTrustedImm64(), dest); |
1463 | } |
1464 | |
1465 | #endif // !CPU(X86_64) |
1466 | |
1467 | #if !CPU(X86) && !CPU(X86_64) && !CPU(ARM64) |
1468 | // We should implement this the right way eventually, but for now, it's fine because it arises so |
1469 | // infrequently. |
1470 | void compareDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest) |
1471 | { |
1472 | move(TrustedImm32(0), dest); |
1473 | Jump falseCase = branchDouble(invert(cond), left, right); |
1474 | move(TrustedImm32(1), dest); |
1475 | falseCase.link(this); |
1476 | } |
1477 | #endif |
1478 | |
1479 | void lea32(Address address, RegisterID dest) |
1480 | { |
1481 | add32(TrustedImm32(address.offset), address.base, dest); |
1482 | } |
1483 | |
1484 | #if CPU(X86_64) || CPU(ARM64) |
1485 | void lea64(Address address, RegisterID dest) |
1486 | { |
1487 | add64(TrustedImm32(address.offset), address.base, dest); |
1488 | } |
1489 | #endif // CPU(X86_64) || CPU(ARM64) |
1490 | |
1491 | bool shouldBlind(Imm32 imm) |
1492 | { |
1493 | #if ENABLE(FORCED_JIT_BLINDING) |
1494 | UNUSED_PARAM(imm); |
1495 | // Debug always blind all constants, if only so we know |
1496 | // if we've broken blinding during patch development. |
1497 | return true; |
1498 | #else // ENABLE(FORCED_JIT_BLINDING) |
1499 | |
1500 | // First off we'll special case common, "safe" values to avoid hurting |
1501 | // performance too much |
1502 | uint32_t value = imm.asTrustedImm32().m_value; |
1503 | switch (value) { |
1504 | case 0xffff: |
1505 | case 0xffffff: |
1506 | case 0xffffffff: |
1507 | return false; |
1508 | default: |
1509 | if (value <= 0xff) |
1510 | return false; |
1511 | if (~value <= 0xff) |
1512 | return false; |
1513 | } |
1514 | |
1515 | if (!shouldConsiderBlinding()) |
1516 | return false; |
1517 | |
1518 | return shouldBlindForSpecificArch(value); |
1519 | #endif // ENABLE(FORCED_JIT_BLINDING) |
1520 | } |
1521 | |
1522 | struct BlindedImm32 { |
1523 | BlindedImm32(int32_t v1, int32_t v2) |
1524 | : value1(v1) |
1525 | , value2(v2) |
1526 | { |
1527 | } |
1528 | TrustedImm32 value1; |
1529 | TrustedImm32 value2; |
1530 | }; |
1531 | |
1532 | uint32_t keyForConstant(uint32_t value, uint32_t& mask) |
1533 | { |
1534 | uint32_t key = random(); |
1535 | if (value <= 0xff) |
1536 | mask = 0xff; |
1537 | else if (value <= 0xffff) |
1538 | mask = 0xffff; |
1539 | else if (value <= 0xffffff) |
1540 | mask = 0xffffff; |
1541 | else |
1542 | mask = 0xffffffff; |
1543 | return key & mask; |
1544 | } |
1545 | |
1546 | uint32_t keyForConstant(uint32_t value) |
1547 | { |
1548 | uint32_t mask = 0; |
1549 | return keyForConstant(value, mask); |
1550 | } |
1551 | |
1552 | BlindedImm32 xorBlindConstant(Imm32 imm) |
1553 | { |
1554 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
1555 | uint32_t key = keyForConstant(baseValue); |
1556 | return BlindedImm32(baseValue ^ key, key); |
1557 | } |
1558 | |
1559 | BlindedImm32 additionBlindedConstant(Imm32 imm) |
1560 | { |
1561 | // The addition immediate may be used as a pointer offset. Keep aligned based on "imm". |
1562 | static const uint32_t maskTable[4] = { 0xfffffffc, 0xffffffff, 0xfffffffe, 0xffffffff }; |
1563 | |
1564 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
1565 | uint32_t key = keyForConstant(baseValue) & maskTable[baseValue & 3]; |
1566 | if (key > baseValue) |
1567 | key = key - baseValue; |
1568 | return BlindedImm32(baseValue - key, key); |
1569 | } |
1570 | |
1571 | BlindedImm32 andBlindedConstant(Imm32 imm) |
1572 | { |
1573 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
1574 | uint32_t mask = 0; |
1575 | uint32_t key = keyForConstant(baseValue, mask); |
1576 | ASSERT((baseValue & mask) == baseValue); |
1577 | return BlindedImm32(((baseValue & key) | ~key) & mask, ((baseValue & ~key) | key) & mask); |
1578 | } |
1579 | |
1580 | BlindedImm32 orBlindedConstant(Imm32 imm) |
1581 | { |
1582 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
1583 | uint32_t mask = 0; |
1584 | uint32_t key = keyForConstant(baseValue, mask); |
1585 | ASSERT((baseValue & mask) == baseValue); |
1586 | return BlindedImm32((baseValue & key) & mask, (baseValue & ~key) & mask); |
1587 | } |
1588 | |
1589 | void loadXorBlindedConstant(BlindedImm32 constant, RegisterID dest) |
1590 | { |
1591 | move(constant.value1, dest); |
1592 | xor32(constant.value2, dest); |
1593 | } |
1594 | |
1595 | void add32(Imm32 imm, RegisterID dest) |
1596 | { |
1597 | if (shouldBlind(imm)) { |
1598 | BlindedImm32 key = additionBlindedConstant(imm); |
1599 | add32(key.value1, dest); |
1600 | add32(key.value2, dest); |
1601 | } else |
1602 | add32(imm.asTrustedImm32(), dest); |
1603 | } |
1604 | |
1605 | void add32(Imm32 imm, RegisterID src, RegisterID dest) |
1606 | { |
1607 | if (shouldBlind(imm)) { |
1608 | BlindedImm32 key = additionBlindedConstant(imm); |
1609 | add32(key.value1, src, dest); |
1610 | add32(key.value2, dest); |
1611 | } else |
1612 | add32(imm.asTrustedImm32(), src, dest); |
1613 | } |
1614 | |
1615 | void addPtr(Imm32 imm, RegisterID dest) |
1616 | { |
1617 | if (shouldBlind(imm)) { |
1618 | BlindedImm32 key = additionBlindedConstant(imm); |
1619 | addPtr(key.value1, dest); |
1620 | addPtr(key.value2, dest); |
1621 | } else |
1622 | addPtr(imm.asTrustedImm32(), dest); |
1623 | } |
1624 | |
1625 | void mul32(Imm32 imm, RegisterID src, RegisterID dest) |
1626 | { |
1627 | if (shouldBlind(imm)) { |
1628 | if (src != dest || haveScratchRegisterForBlinding()) { |
1629 | if (src == dest) { |
1630 | move(src, scratchRegisterForBlinding()); |
1631 | src = scratchRegisterForBlinding(); |
1632 | } |
1633 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1634 | mul32(src, dest); |
1635 | return; |
1636 | } |
1637 | // If we don't have a scratch register available for use, we'll just |
1638 | // place a random number of nops. |
1639 | uint32_t nopCount = random() & 3; |
1640 | while (nopCount--) |
1641 | nop(); |
1642 | } |
1643 | mul32(imm.asTrustedImm32(), src, dest); |
1644 | } |
1645 | |
1646 | void and32(Imm32 imm, RegisterID dest) |
1647 | { |
1648 | if (shouldBlind(imm)) { |
1649 | BlindedImm32 key = andBlindedConstant(imm); |
1650 | and32(key.value1, dest); |
1651 | and32(key.value2, dest); |
1652 | } else |
1653 | and32(imm.asTrustedImm32(), dest); |
1654 | } |
1655 | |
1656 | void andPtr(Imm32 imm, RegisterID dest) |
1657 | { |
1658 | if (shouldBlind(imm)) { |
1659 | BlindedImm32 key = andBlindedConstant(imm); |
1660 | andPtr(key.value1, dest); |
1661 | andPtr(key.value2, dest); |
1662 | } else |
1663 | andPtr(imm.asTrustedImm32(), dest); |
1664 | } |
1665 | |
1666 | void and32(Imm32 imm, RegisterID src, RegisterID dest) |
1667 | { |
1668 | if (shouldBlind(imm)) { |
1669 | if (src == dest) |
1670 | return and32(imm.asTrustedImm32(), dest); |
1671 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1672 | and32(src, dest); |
1673 | } else |
1674 | and32(imm.asTrustedImm32(), src, dest); |
1675 | } |
1676 | |
1677 | void move(Imm32 imm, RegisterID dest) |
1678 | { |
1679 | if (shouldBlind(imm)) |
1680 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1681 | else |
1682 | move(imm.asTrustedImm32(), dest); |
1683 | } |
1684 | |
1685 | void or32(Imm32 imm, RegisterID src, RegisterID dest) |
1686 | { |
1687 | if (shouldBlind(imm)) { |
1688 | if (src == dest) |
1689 | return or32(imm, dest); |
1690 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1691 | or32(src, dest); |
1692 | } else |
1693 | or32(imm.asTrustedImm32(), src, dest); |
1694 | } |
1695 | |
1696 | void or32(Imm32 imm, RegisterID dest) |
1697 | { |
1698 | if (shouldBlind(imm)) { |
1699 | BlindedImm32 key = orBlindedConstant(imm); |
1700 | or32(key.value1, dest); |
1701 | or32(key.value2, dest); |
1702 | } else |
1703 | or32(imm.asTrustedImm32(), dest); |
1704 | } |
1705 | |
1706 | void poke(Imm32 value, int index = 0) |
1707 | { |
1708 | store32(value, addressForPoke(index)); |
1709 | } |
1710 | |
1711 | void poke(ImmPtr value, int index = 0) |
1712 | { |
1713 | storePtr(value, addressForPoke(index)); |
1714 | } |
1715 | |
1716 | #if CPU(X86_64) || CPU(ARM64) |
1717 | void poke(Imm64 value, int index = 0) |
1718 | { |
1719 | store64(value, addressForPoke(index)); |
1720 | } |
1721 | #endif // CPU(X86_64) |
1722 | |
1723 | void store32(Imm32 imm, Address dest) |
1724 | { |
1725 | if (shouldBlind(imm)) { |
1726 | #if CPU(X86) || CPU(X86_64) |
1727 | BlindedImm32 blind = xorBlindConstant(imm); |
1728 | store32(blind.value1, dest); |
1729 | xor32(blind.value2, dest); |
1730 | #else // CPU(X86) || CPU(X86_64) |
1731 | if (haveScratchRegisterForBlinding()) { |
1732 | loadXorBlindedConstant(xorBlindConstant(imm), scratchRegisterForBlinding()); |
1733 | store32(scratchRegisterForBlinding(), dest); |
1734 | } else { |
1735 | // If we don't have a scratch register available for use, we'll just |
1736 | // place a random number of nops. |
1737 | uint32_t nopCount = random() & 3; |
1738 | while (nopCount--) |
1739 | nop(); |
1740 | store32(imm.asTrustedImm32(), dest); |
1741 | } |
1742 | #endif // CPU(X86) || CPU(X86_64) |
1743 | } else |
1744 | store32(imm.asTrustedImm32(), dest); |
1745 | } |
1746 | |
1747 | void sub32(Imm32 imm, RegisterID dest) |
1748 | { |
1749 | if (shouldBlind(imm)) { |
1750 | BlindedImm32 key = additionBlindedConstant(imm); |
1751 | sub32(key.value1, dest); |
1752 | sub32(key.value2, dest); |
1753 | } else |
1754 | sub32(imm.asTrustedImm32(), dest); |
1755 | } |
1756 | |
1757 | void subPtr(Imm32 imm, RegisterID dest) |
1758 | { |
1759 | if (shouldBlind(imm)) { |
1760 | BlindedImm32 key = additionBlindedConstant(imm); |
1761 | subPtr(key.value1, dest); |
1762 | subPtr(key.value2, dest); |
1763 | } else |
1764 | subPtr(imm.asTrustedImm32(), dest); |
1765 | } |
1766 | |
1767 | void xor32(Imm32 imm, RegisterID src, RegisterID dest) |
1768 | { |
1769 | if (shouldBlind(imm)) { |
1770 | BlindedImm32 blind = xorBlindConstant(imm); |
1771 | xor32(blind.value1, src, dest); |
1772 | xor32(blind.value2, dest); |
1773 | } else |
1774 | xor32(imm.asTrustedImm32(), src, dest); |
1775 | } |
1776 | |
1777 | void xor32(Imm32 imm, RegisterID dest) |
1778 | { |
1779 | if (shouldBlind(imm)) { |
1780 | BlindedImm32 blind = xorBlindConstant(imm); |
1781 | xor32(blind.value1, dest); |
1782 | xor32(blind.value2, dest); |
1783 | } else |
1784 | xor32(imm.asTrustedImm32(), dest); |
1785 | } |
1786 | |
1787 | Jump branch32(RelationalCondition cond, RegisterID left, Imm32 right) |
1788 | { |
1789 | if (shouldBlind(right)) { |
1790 | if (haveScratchRegisterForBlinding()) { |
1791 | loadXorBlindedConstant(xorBlindConstant(right), scratchRegisterForBlinding()); |
1792 | return branch32(cond, left, scratchRegisterForBlinding()); |
1793 | } |
1794 | // If we don't have a scratch register available for use, we'll just |
1795 | // place a random number of nops. |
1796 | uint32_t nopCount = random() & 3; |
1797 | while (nopCount--) |
1798 | nop(); |
1799 | return branch32(cond, left, right.asTrustedImm32()); |
1800 | } |
1801 | |
1802 | return branch32(cond, left, right.asTrustedImm32()); |
1803 | } |
1804 | |
1805 | void compare32(RelationalCondition cond, RegisterID left, Imm32 right, RegisterID dest) |
1806 | { |
1807 | if (shouldBlind(right)) { |
1808 | if (left != dest || haveScratchRegisterForBlinding()) { |
1809 | RegisterID blindedConstantReg = dest; |
1810 | if (left == dest) |
1811 | blindedConstantReg = scratchRegisterForBlinding(); |
1812 | loadXorBlindedConstant(xorBlindConstant(right), blindedConstantReg); |
1813 | compare32(cond, left, blindedConstantReg, dest); |
1814 | return; |
1815 | } |
1816 | // If we don't have a scratch register available for use, we'll just |
1817 | // place a random number of nops. |
1818 | uint32_t nopCount = random() & 3; |
1819 | while (nopCount--) |
1820 | nop(); |
1821 | compare32(cond, left, right.asTrustedImm32(), dest); |
1822 | return; |
1823 | } |
1824 | |
1825 | compare32(cond, left, right.asTrustedImm32(), dest); |
1826 | } |
1827 | |
1828 | Jump branchAdd32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest) |
1829 | { |
1830 | if (shouldBlind(imm)) { |
1831 | if (src != dest || haveScratchRegisterForBlinding()) { |
1832 | if (src == dest) { |
1833 | move(src, scratchRegisterForBlinding()); |
1834 | src = scratchRegisterForBlinding(); |
1835 | } |
1836 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1837 | return branchAdd32(cond, src, dest); |
1838 | } |
1839 | // If we don't have a scratch register available for use, we'll just |
1840 | // place a random number of nops. |
1841 | uint32_t nopCount = random() & 3; |
1842 | while (nopCount--) |
1843 | nop(); |
1844 | } |
1845 | return branchAdd32(cond, src, imm.asTrustedImm32(), dest); |
1846 | } |
1847 | |
1848 | Jump branchMul32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest) |
1849 | { |
1850 | if (src == dest) |
1851 | ASSERT(haveScratchRegisterForBlinding()); |
1852 | |
1853 | if (shouldBlind(imm)) { |
1854 | if (src == dest) { |
1855 | move(src, scratchRegisterForBlinding()); |
1856 | src = scratchRegisterForBlinding(); |
1857 | } |
1858 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1859 | return branchMul32(cond, src, dest); |
1860 | } |
1861 | return branchMul32(cond, src, imm.asTrustedImm32(), dest); |
1862 | } |
1863 | |
1864 | // branchSub32 takes a scratch register as 32 bit platforms make use of this, |
1865 | // with src == dst, and on x86-32 we don't have a platform scratch register. |
1866 | Jump branchSub32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest, RegisterID scratch) |
1867 | { |
1868 | if (shouldBlind(imm)) { |
1869 | ASSERT(scratch != dest); |
1870 | ASSERT(scratch != src); |
1871 | loadXorBlindedConstant(xorBlindConstant(imm), scratch); |
1872 | return branchSub32(cond, src, scratch, dest); |
1873 | } |
1874 | return branchSub32(cond, src, imm.asTrustedImm32(), dest); |
1875 | } |
1876 | |
1877 | void lshift32(Imm32 imm, RegisterID dest) |
1878 | { |
1879 | lshift32(trustedImm32ForShift(imm), dest); |
1880 | } |
1881 | |
1882 | void lshift32(RegisterID src, Imm32 amount, RegisterID dest) |
1883 | { |
1884 | lshift32(src, trustedImm32ForShift(amount), dest); |
1885 | } |
1886 | |
1887 | void rshift32(Imm32 imm, RegisterID dest) |
1888 | { |
1889 | rshift32(trustedImm32ForShift(imm), dest); |
1890 | } |
1891 | |
1892 | void rshift32(RegisterID src, Imm32 amount, RegisterID dest) |
1893 | { |
1894 | rshift32(src, trustedImm32ForShift(amount), dest); |
1895 | } |
1896 | |
1897 | void urshift32(Imm32 imm, RegisterID dest) |
1898 | { |
1899 | urshift32(trustedImm32ForShift(imm), dest); |
1900 | } |
1901 | |
1902 | void urshift32(RegisterID src, Imm32 amount, RegisterID dest) |
1903 | { |
1904 | urshift32(src, trustedImm32ForShift(amount), dest); |
1905 | } |
1906 | |
1907 | void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest) |
1908 | { |
1909 | if (hasOneBitSet(imm.m_value)) { |
1910 | lshift32(src, TrustedImm32(getLSBSet(imm.m_value)), dest); |
1911 | return; |
1912 | } |
1913 | MacroAssemblerBase::mul32(imm, src, dest); |
1914 | } |
1915 | |
1916 | // If the result jump is taken that means the assert passed. |
1917 | void jitAssert(const WTF::ScopedLambda<Jump(void)>&); |
1918 | |
1919 | #if ENABLE(MASM_PROBE) |
1920 | // This function emits code to preserve the CPUState (e.g. registers), |
1921 | // call a user supplied probe function, and restore the CPUState before |
1922 | // continuing with other JIT generated code. |
1923 | // |
1924 | // The user supplied probe function will be called with a single pointer to |
1925 | // a Probe::State struct (defined below) which contains, among other things, |
1926 | // the preserved CPUState. This allows the user probe function to inspect |
1927 | // the CPUState at that point in the JIT generated code. |
1928 | // |
1929 | // If the user probe function alters the register values in the Probe::State, |
1930 | // the altered values will be loaded into the CPU registers when the probe |
1931 | // returns. |
1932 | // |
1933 | // The Probe::State is stack allocated and is only valid for the duration |
1934 | // of the call to the user probe function. |
1935 | // |
1936 | // The probe function may choose to move the stack pointer (in any direction). |
1937 | // To do this, the probe function needs to set the new sp value in the CPUState. |
1938 | // |
1939 | // The probe function may also choose to fill stack space with some values. |
1940 | // To do this, the probe function must first: |
1941 | // 1. Set the new sp value in the Probe::State's CPUState. |
1942 | // 2. Set the Probe::State's initializeStackFunction to a Probe::Function callback |
1943 | // which will do the work of filling in the stack values after the probe |
1944 | // trampoline has adjusted the machine stack pointer. |
1945 | // 3. Set the Probe::State's initializeStackArgs to any value that the client wants |
1946 | // to pass to the initializeStackFunction callback. |
1947 | // 4. Return from the probe function. |
1948 | // |
1949 | // Upon returning from the probe function, the probe trampoline will adjust the |
1950 | // the stack pointer based on the sp value in CPUState. If initializeStackFunction |
1951 | // is not set, the probe trampoline will restore registers and return to its caller. |
1952 | // |
1953 | // If initializeStackFunction is set, the trampoline will move the Probe::State |
1954 | // beyond the range of the stack pointer i.e. it will place the new Probe::State at |
1955 | // an address lower than where CPUState.sp() points. This ensures that the |
1956 | // Probe::State will not be trashed by the initializeStackFunction when it writes to |
1957 | // the stack. Then, the trampoline will call back to the initializeStackFunction |
1958 | // Probe::Function to let it fill in the stack values as desired. The |
1959 | // initializeStackFunction Probe::Function will be passed the moved Probe::State at |
1960 | // the new location. |
1961 | // |
1962 | // initializeStackFunction may now write to the stack at addresses greater or |
1963 | // equal to CPUState.sp(), but not below that. initializeStackFunction is also |
1964 | // not allowed to change CPUState.sp(). If the initializeStackFunction does not |
1965 | // abide by these rules, then behavior is undefined, and bad things may happen. |
1966 | // |
1967 | // Note: this version of probe() should be implemented by the target specific |
1968 | // MacroAssembler. |
1969 | void probe(Probe::Function, void* arg); |
1970 | |
1971 | JS_EXPORT_PRIVATE void probe(Function<void(Probe::Context&)>); |
1972 | |
1973 | // Let's you print from your JIT generated code. |
1974 | // See comments in MacroAssemblerPrinter.h for examples of how to use this. |
1975 | template<typename... Arguments> |
1976 | void print(Arguments&&... args); |
1977 | |
1978 | void print(Printer::PrintRecordList*); |
1979 | #endif // ENABLE(MASM_PROBE) |
1980 | }; |
1981 | |
1982 | } // namespace JSC |
1983 | |
1984 | namespace WTF { |
1985 | |
1986 | class PrintStream; |
1987 | |
1988 | void printInternal(PrintStream&, JSC::MacroAssembler::RelationalCondition); |
1989 | void printInternal(PrintStream&, JSC::MacroAssembler::ResultCondition); |
1990 | void printInternal(PrintStream&, JSC::MacroAssembler::DoubleCondition); |
1991 | |
1992 | } // namespace WTF |
1993 | |
1994 | #else // ENABLE(ASSEMBLER) |
1995 | |
1996 | namespace JSC { |
1997 | |
1998 | // If there is no assembler for this platform, at least allow code to make references to |
1999 | // some of the things it would otherwise define, albeit without giving that code any way |
2000 | // of doing anything useful. |
2001 | class MacroAssembler { |
2002 | private: |
2003 | MacroAssembler() { } |
2004 | |
2005 | public: |
2006 | |
2007 | enum RegisterID : int8_t { NoRegister, InvalidGPRReg = -1 }; |
2008 | enum FPRegisterID : int8_t { NoFPRegister, InvalidFPRReg = -1 }; |
2009 | }; |
2010 | |
2011 | } // namespace JSC |
2012 | |
2013 | #endif // ENABLE(ASSEMBLER) |
2014 | |