1 | // Special functions -*- C++ -*- |
2 | |
3 | // Copyright (C) 2006-2019 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | // |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | // |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file tr1/modified_bessel_func.tcc |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{tr1/cmath} |
28 | */ |
29 | |
30 | // |
31 | // ISO C++ 14882 TR1: 5.2 Special functions |
32 | // |
33 | |
34 | // Written by Edward Smith-Rowland. |
35 | // |
36 | // References: |
37 | // (1) Handbook of Mathematical Functions, |
38 | // Ed. Milton Abramowitz and Irene A. Stegun, |
39 | // Dover Publications, |
40 | // Section 9, pp. 355-434, Section 10 pp. 435-478 |
41 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
42 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
43 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
44 | // 2nd ed, pp. 246-249. |
45 | |
46 | #ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC |
47 | #define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1 |
48 | |
49 | #include <tr1/special_function_util.h> |
50 | |
51 | namespace std _GLIBCXX_VISIBILITY(default) |
52 | { |
53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
54 | |
55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS |
56 | #elif defined(_GLIBCXX_TR1_CMATH) |
57 | namespace tr1 |
58 | { |
59 | #else |
60 | # error do not include this header directly, use <cmath> or <tr1/cmath> |
61 | #endif |
62 | // [5.2] Special functions |
63 | |
64 | // Implementation-space details. |
65 | namespace __detail |
66 | { |
67 | /** |
68 | * @brief Compute the modified Bessel functions @f$ I_\nu(x) @f$ and |
69 | * @f$ K_\nu(x) @f$ and their first derivatives |
70 | * @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively. |
71 | * These four functions are computed together for numerical |
72 | * stability. |
73 | * |
74 | * @param __nu The order of the Bessel functions. |
75 | * @param __x The argument of the Bessel functions. |
76 | * @param __Inu The output regular modified Bessel function. |
77 | * @param __Knu The output irregular modified Bessel function. |
78 | * @param __Ipnu The output derivative of the regular |
79 | * modified Bessel function. |
80 | * @param __Kpnu The output derivative of the irregular |
81 | * modified Bessel function. |
82 | */ |
83 | template <typename _Tp> |
84 | void |
85 | __bessel_ik(_Tp __nu, _Tp __x, |
86 | _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu) |
87 | { |
88 | if (__x == _Tp(0)) |
89 | { |
90 | if (__nu == _Tp(0)) |
91 | { |
92 | __Inu = _Tp(1); |
93 | __Ipnu = _Tp(0); |
94 | } |
95 | else if (__nu == _Tp(1)) |
96 | { |
97 | __Inu = _Tp(0); |
98 | __Ipnu = _Tp(0.5L); |
99 | } |
100 | else |
101 | { |
102 | __Inu = _Tp(0); |
103 | __Ipnu = _Tp(0); |
104 | } |
105 | __Knu = std::numeric_limits<_Tp>::infinity(); |
106 | __Kpnu = -std::numeric_limits<_Tp>::infinity(); |
107 | return; |
108 | } |
109 | |
110 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); |
111 | const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon(); |
112 | const int __max_iter = 15000; |
113 | const _Tp __x_min = _Tp(2); |
114 | |
115 | const int __nl = static_cast<int>(__nu + _Tp(0.5L)); |
116 | |
117 | const _Tp __mu = __nu - __nl; |
118 | const _Tp __mu2 = __mu * __mu; |
119 | const _Tp __xi = _Tp(1) / __x; |
120 | const _Tp __xi2 = _Tp(2) * __xi; |
121 | _Tp __h = __nu * __xi; |
122 | if ( __h < __fp_min ) |
123 | __h = __fp_min; |
124 | _Tp __b = __xi2 * __nu; |
125 | _Tp __d = _Tp(0); |
126 | _Tp __c = __h; |
127 | int __i; |
128 | for ( __i = 1; __i <= __max_iter; ++__i ) |
129 | { |
130 | __b += __xi2; |
131 | __d = _Tp(1) / (__b + __d); |
132 | __c = __b + _Tp(1) / __c; |
133 | const _Tp __del = __c * __d; |
134 | __h *= __del; |
135 | if (std::abs(__del - _Tp(1)) < __eps) |
136 | break; |
137 | } |
138 | if (__i > __max_iter) |
139 | std::__throw_runtime_error(__N("Argument x too large " |
140 | "in __bessel_ik; " |
141 | "try asymptotic expansion." )); |
142 | _Tp __Inul = __fp_min; |
143 | _Tp __Ipnul = __h * __Inul; |
144 | _Tp __Inul1 = __Inul; |
145 | _Tp __Ipnu1 = __Ipnul; |
146 | _Tp __fact = __nu * __xi; |
147 | for (int __l = __nl; __l >= 1; --__l) |
148 | { |
149 | const _Tp __Inutemp = __fact * __Inul + __Ipnul; |
150 | __fact -= __xi; |
151 | __Ipnul = __fact * __Inutemp + __Inul; |
152 | __Inul = __Inutemp; |
153 | } |
154 | _Tp __f = __Ipnul / __Inul; |
155 | _Tp __Kmu, __Knu1; |
156 | if (__x < __x_min) |
157 | { |
158 | const _Tp __x2 = __x / _Tp(2); |
159 | const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu; |
160 | const _Tp __fact = (std::abs(__pimu) < __eps |
161 | ? _Tp(1) : __pimu / std::sin(__pimu)); |
162 | _Tp __d = -std::log(__x2); |
163 | _Tp __e = __mu * __d; |
164 | const _Tp __fact2 = (std::abs(__e) < __eps |
165 | ? _Tp(1) : std::sinh(__e) / __e); |
166 | _Tp __gam1, __gam2, __gampl, __gammi; |
167 | __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi); |
168 | _Tp __ff = __fact |
169 | * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d); |
170 | _Tp __sum = __ff; |
171 | __e = std::exp(__e); |
172 | _Tp __p = __e / (_Tp(2) * __gampl); |
173 | _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi); |
174 | _Tp __c = _Tp(1); |
175 | __d = __x2 * __x2; |
176 | _Tp __sum1 = __p; |
177 | int __i; |
178 | for (__i = 1; __i <= __max_iter; ++__i) |
179 | { |
180 | __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2); |
181 | __c *= __d / __i; |
182 | __p /= __i - __mu; |
183 | __q /= __i + __mu; |
184 | const _Tp __del = __c * __ff; |
185 | __sum += __del; |
186 | const _Tp __del1 = __c * (__p - __i * __ff); |
187 | __sum1 += __del1; |
188 | if (std::abs(__del) < __eps * std::abs(__sum)) |
189 | break; |
190 | } |
191 | if (__i > __max_iter) |
192 | std::__throw_runtime_error(__N("Bessel k series failed to converge " |
193 | "in __bessel_ik." )); |
194 | __Kmu = __sum; |
195 | __Knu1 = __sum1 * __xi2; |
196 | } |
197 | else |
198 | { |
199 | _Tp __b = _Tp(2) * (_Tp(1) + __x); |
200 | _Tp __d = _Tp(1) / __b; |
201 | _Tp __delh = __d; |
202 | _Tp __h = __delh; |
203 | _Tp __q1 = _Tp(0); |
204 | _Tp __q2 = _Tp(1); |
205 | _Tp __a1 = _Tp(0.25L) - __mu2; |
206 | _Tp __q = __c = __a1; |
207 | _Tp __a = -__a1; |
208 | _Tp __s = _Tp(1) + __q * __delh; |
209 | int __i; |
210 | for (__i = 2; __i <= __max_iter; ++__i) |
211 | { |
212 | __a -= 2 * (__i - 1); |
213 | __c = -__a * __c / __i; |
214 | const _Tp __qnew = (__q1 - __b * __q2) / __a; |
215 | __q1 = __q2; |
216 | __q2 = __qnew; |
217 | __q += __c * __qnew; |
218 | __b += _Tp(2); |
219 | __d = _Tp(1) / (__b + __a * __d); |
220 | __delh = (__b * __d - _Tp(1)) * __delh; |
221 | __h += __delh; |
222 | const _Tp __dels = __q * __delh; |
223 | __s += __dels; |
224 | if ( std::abs(__dels / __s) < __eps ) |
225 | break; |
226 | } |
227 | if (__i > __max_iter) |
228 | std::__throw_runtime_error(__N("Steed's method failed " |
229 | "in __bessel_ik." )); |
230 | __h = __a1 * __h; |
231 | __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x)) |
232 | * std::exp(-__x) / __s; |
233 | __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi; |
234 | } |
235 | |
236 | _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1; |
237 | _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu); |
238 | __Inu = __Inumu * __Inul1 / __Inul; |
239 | __Ipnu = __Inumu * __Ipnu1 / __Inul; |
240 | for ( __i = 1; __i <= __nl; ++__i ) |
241 | { |
242 | const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu; |
243 | __Kmu = __Knu1; |
244 | __Knu1 = __Knutemp; |
245 | } |
246 | __Knu = __Kmu; |
247 | __Kpnu = __nu * __xi * __Kmu - __Knu1; |
248 | |
249 | return; |
250 | } |
251 | |
252 | |
253 | /** |
254 | * @brief Return the regular modified Bessel function of order |
255 | * \f$ \nu \f$: \f$ I_{\nu}(x) \f$. |
256 | * |
257 | * The regular modified cylindrical Bessel function is: |
258 | * @f[ |
259 | * I_{\nu}(x) = \sum_{k=0}^{\infty} |
260 | * \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} |
261 | * @f] |
262 | * |
263 | * @param __nu The order of the regular modified Bessel function. |
264 | * @param __x The argument of the regular modified Bessel function. |
265 | * @return The output regular modified Bessel function. |
266 | */ |
267 | template<typename _Tp> |
268 | _Tp |
269 | __cyl_bessel_i(_Tp __nu, _Tp __x) |
270 | { |
271 | if (__nu < _Tp(0) || __x < _Tp(0)) |
272 | std::__throw_domain_error(__N("Bad argument " |
273 | "in __cyl_bessel_i." )); |
274 | else if (__isnan(__nu) || __isnan(__x)) |
275 | return std::numeric_limits<_Tp>::quiet_NaN(); |
276 | else if (__x * __x < _Tp(10) * (__nu + _Tp(1))) |
277 | return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200); |
278 | else |
279 | { |
280 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; |
281 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
282 | return __I_nu; |
283 | } |
284 | } |
285 | |
286 | |
287 | /** |
288 | * @brief Return the irregular modified Bessel function |
289 | * \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$. |
290 | * |
291 | * The irregular modified Bessel function is defined by: |
292 | * @f[ |
293 | * K_{\nu}(x) = \frac{\pi}{2} |
294 | * \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi} |
295 | * @f] |
296 | * where for integral \f$ \nu = n \f$ a limit is taken: |
297 | * \f$ lim_{\nu \to n} \f$. |
298 | * |
299 | * @param __nu The order of the irregular modified Bessel function. |
300 | * @param __x The argument of the irregular modified Bessel function. |
301 | * @return The output irregular modified Bessel function. |
302 | */ |
303 | template<typename _Tp> |
304 | _Tp |
305 | __cyl_bessel_k(_Tp __nu, _Tp __x) |
306 | { |
307 | if (__nu < _Tp(0) || __x < _Tp(0)) |
308 | std::__throw_domain_error(__N("Bad argument " |
309 | "in __cyl_bessel_k." )); |
310 | else if (__isnan(__nu) || __isnan(__x)) |
311 | return std::numeric_limits<_Tp>::quiet_NaN(); |
312 | else |
313 | { |
314 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; |
315 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
316 | return __K_nu; |
317 | } |
318 | } |
319 | |
320 | |
321 | /** |
322 | * @brief Compute the spherical modified Bessel functions |
323 | * @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first |
324 | * derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$ |
325 | * respectively. |
326 | * |
327 | * @param __n The order of the modified spherical Bessel function. |
328 | * @param __x The argument of the modified spherical Bessel function. |
329 | * @param __i_n The output regular modified spherical Bessel function. |
330 | * @param __k_n The output irregular modified spherical |
331 | * Bessel function. |
332 | * @param __ip_n The output derivative of the regular modified |
333 | * spherical Bessel function. |
334 | * @param __kp_n The output derivative of the irregular modified |
335 | * spherical Bessel function. |
336 | */ |
337 | template <typename _Tp> |
338 | void |
339 | __sph_bessel_ik(unsigned int __n, _Tp __x, |
340 | _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n) |
341 | { |
342 | const _Tp __nu = _Tp(__n) + _Tp(0.5L); |
343 | |
344 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; |
345 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
346 | |
347 | const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2() |
348 | / std::sqrt(__x); |
349 | |
350 | __i_n = __factor * __I_nu; |
351 | __k_n = __factor * __K_nu; |
352 | __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x); |
353 | __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x); |
354 | |
355 | return; |
356 | } |
357 | |
358 | |
359 | /** |
360 | * @brief Compute the Airy functions |
361 | * @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first |
362 | * derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$ |
363 | * respectively. |
364 | * |
365 | * @param __x The argument of the Airy functions. |
366 | * @param __Ai The output Airy function of the first kind. |
367 | * @param __Bi The output Airy function of the second kind. |
368 | * @param __Aip The output derivative of the Airy function |
369 | * of the first kind. |
370 | * @param __Bip The output derivative of the Airy function |
371 | * of the second kind. |
372 | */ |
373 | template <typename _Tp> |
374 | void |
375 | __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip) |
376 | { |
377 | const _Tp __absx = std::abs(__x); |
378 | const _Tp __rootx = std::sqrt(__absx); |
379 | const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3); |
380 | const _Tp _S_NaN = std::numeric_limits<_Tp>::quiet_NaN(); |
381 | const _Tp _S_inf = std::numeric_limits<_Tp>::infinity(); |
382 | |
383 | if (__isnan(__x)) |
384 | __Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN(); |
385 | else if (__z == _S_inf) |
386 | { |
387 | __Aip = __Ai = _Tp(0); |
388 | __Bip = __Bi = _S_inf; |
389 | } |
390 | else if (__z == -_S_inf) |
391 | __Bip = __Aip = __Bi = __Ai = _Tp(0); |
392 | else if (__x > _Tp(0)) |
393 | { |
394 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; |
395 | |
396 | __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
397 | __Ai = __rootx * __K_nu |
398 | / (__numeric_constants<_Tp>::__sqrt3() |
399 | * __numeric_constants<_Tp>::__pi()); |
400 | __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi() |
401 | + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3()); |
402 | |
403 | __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); |
404 | __Aip = -__x * __K_nu |
405 | / (__numeric_constants<_Tp>::__sqrt3() |
406 | * __numeric_constants<_Tp>::__pi()); |
407 | __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi() |
408 | + _Tp(2) * __I_nu |
409 | / __numeric_constants<_Tp>::__sqrt3()); |
410 | } |
411 | else if (__x < _Tp(0)) |
412 | { |
413 | _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu; |
414 | |
415 | __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); |
416 | __Ai = __rootx * (__J_nu |
417 | - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); |
418 | __Bi = -__rootx * (__N_nu |
419 | + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); |
420 | |
421 | __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); |
422 | __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3() |
423 | + __J_nu) / _Tp(2); |
424 | __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3() |
425 | - __N_nu) / _Tp(2); |
426 | } |
427 | else |
428 | { |
429 | // Reference: |
430 | // Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions. |
431 | // The number is Ai(0) = 3^{-2/3}/\Gamma(2/3). |
432 | __Ai = _Tp(0.35502805388781723926L); |
433 | __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3(); |
434 | |
435 | // Reference: |
436 | // Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions. |
437 | // The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3). |
438 | __Aip = -_Tp(0.25881940379280679840L); |
439 | __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3(); |
440 | } |
441 | |
442 | return; |
443 | } |
444 | } // namespace __detail |
445 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
446 | } // namespace tr1 |
447 | #endif |
448 | |
449 | _GLIBCXX_END_NAMESPACE_VERSION |
450 | } |
451 | |
452 | #endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC |
453 | |