1 | /* |
2 | * Copyright (C) 2007, 2009, 2015 Apple Inc. All rights reserved. |
3 | * Copyright (C) 2007 Justin Haygood <[email protected]> |
4 | * Copyright (C) 2011 Research In Motion Limited. All rights reserved. |
5 | * Copyright (C) 2017 Yusuke Suzuki <[email protected]> |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions |
9 | * are met: |
10 | * |
11 | * 1. Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * 2. Redistributions in binary form must reproduce the above copyright |
14 | * notice, this list of conditions and the following disclaimer in the |
15 | * documentation and/or other materials provided with the distribution. |
16 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
17 | * its contributors may be used to endorse or promote products derived |
18 | * from this software without specific prior written permission. |
19 | * |
20 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
21 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
22 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
23 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
24 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
25 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
26 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
27 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
29 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | */ |
31 | |
32 | #include "config.h" |
33 | #include <wtf/Threading.h> |
34 | |
35 | #if USE(PTHREADS) |
36 | |
37 | #include <errno.h> |
38 | #include <wtf/DataLog.h> |
39 | #include <wtf/NeverDestroyed.h> |
40 | #include <wtf/RawPointer.h> |
41 | #include <wtf/StdLibExtras.h> |
42 | #include <wtf/ThreadGroup.h> |
43 | #include <wtf/ThreadingPrimitives.h> |
44 | #include <wtf/WordLock.h> |
45 | |
46 | #if OS(LINUX) |
47 | #include <sys/prctl.h> |
48 | #endif |
49 | |
50 | #if !COMPILER(MSVC) |
51 | #include <limits.h> |
52 | #include <sched.h> |
53 | #include <sys/time.h> |
54 | #endif |
55 | |
56 | #if !OS(DARWIN) && OS(UNIX) |
57 | |
58 | #include <semaphore.h> |
59 | #include <sys/mman.h> |
60 | #include <unistd.h> |
61 | #include <pthread.h> |
62 | |
63 | #if HAVE(PTHREAD_NP_H) |
64 | #include <pthread_np.h> |
65 | #endif |
66 | |
67 | #endif |
68 | |
69 | namespace WTF { |
70 | |
71 | static Lock globalSuspendLock; |
72 | |
73 | Thread::~Thread() |
74 | { |
75 | } |
76 | |
77 | #if !OS(DARWIN) |
78 | class Semaphore final { |
79 | WTF_MAKE_NONCOPYABLE(Semaphore); |
80 | WTF_MAKE_FAST_ALLOCATED; |
81 | public: |
82 | explicit Semaphore(unsigned initialValue) |
83 | { |
84 | int sharedBetweenProcesses = 0; |
85 | sem_init(&m_platformSemaphore, sharedBetweenProcesses, initialValue); |
86 | } |
87 | |
88 | ~Semaphore() |
89 | { |
90 | sem_destroy(&m_platformSemaphore); |
91 | } |
92 | |
93 | void wait() |
94 | { |
95 | sem_wait(&m_platformSemaphore); |
96 | } |
97 | |
98 | void post() |
99 | { |
100 | sem_post(&m_platformSemaphore); |
101 | } |
102 | |
103 | private: |
104 | sem_t m_platformSemaphore; |
105 | }; |
106 | static LazyNeverDestroyed<Semaphore> globalSemaphoreForSuspendResume; |
107 | |
108 | static std::atomic<Thread*> targetThread { nullptr }; |
109 | |
110 | void Thread::signalHandlerSuspendResume(int, siginfo_t*, void* ucontext) |
111 | { |
112 | // Touching a global variable atomic types from signal handlers is allowed. |
113 | Thread* thread = targetThread.load(); |
114 | |
115 | if (thread->m_suspendCount) { |
116 | // This is signal handler invocation that is intended to be used to resume sigsuspend. |
117 | // So this handler invocation itself should not process. |
118 | // |
119 | // When signal comes, first, the system calls signal handler. And later, sigsuspend will be resumed. Signal handler invocation always precedes. |
120 | // So, the problem never happens that suspended.store(true, ...) will be executed before the handler is called. |
121 | // http://pubs.opengroup.org/onlinepubs/009695399/functions/sigsuspend.html |
122 | return; |
123 | } |
124 | |
125 | void* approximateStackPointer = currentStackPointer(); |
126 | if (!thread->m_stack.contains(approximateStackPointer)) { |
127 | // This happens if we use an alternative signal stack. |
128 | // 1. A user-defined signal handler is invoked with an alternative signal stack. |
129 | // 2. In the middle of the execution of the handler, we attempt to suspend the target thread. |
130 | // 3. A nested signal handler is executed. |
131 | // 4. The stack pointer saved in the machine context will be pointing to the alternative signal stack. |
132 | // In this case, we back off the suspension and retry a bit later. |
133 | thread->m_platformRegisters = nullptr; |
134 | globalSemaphoreForSuspendResume->post(); |
135 | return; |
136 | } |
137 | |
138 | #if HAVE(MACHINE_CONTEXT) |
139 | ucontext_t* userContext = static_cast<ucontext_t*>(ucontext); |
140 | thread->m_platformRegisters = ®istersFromUContext(userContext); |
141 | #else |
142 | UNUSED_PARAM(ucontext); |
143 | PlatformRegisters platformRegisters { approximateStackPointer }; |
144 | thread->m_platformRegisters = &platformRegisters; |
145 | #endif |
146 | |
147 | // Allow suspend caller to see that this thread is suspended. |
148 | // sem_post is async-signal-safe function. It means that we can call this from a signal handler. |
149 | // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03 |
150 | // |
151 | // And sem_post emits memory barrier that ensures that PlatformRegisters are correctly saved. |
152 | // http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_11 |
153 | globalSemaphoreForSuspendResume->post(); |
154 | |
155 | // Reaching here, SigThreadSuspendResume is blocked in this handler (this is configured by sigaction's sa_mask). |
156 | // So before calling sigsuspend, SigThreadSuspendResume to this thread is deferred. This ensures that the handler is not executed recursively. |
157 | sigset_t blockedSignalSet; |
158 | sigfillset(&blockedSignalSet); |
159 | sigdelset(&blockedSignalSet, SigThreadSuspendResume); |
160 | sigsuspend(&blockedSignalSet); |
161 | |
162 | thread->m_platformRegisters = nullptr; |
163 | |
164 | // Allow resume caller to see that this thread is resumed. |
165 | globalSemaphoreForSuspendResume->post(); |
166 | } |
167 | |
168 | #endif // !OS(DARWIN) |
169 | |
170 | void Thread::initializePlatformThreading() |
171 | { |
172 | #if !OS(DARWIN) |
173 | globalSemaphoreForSuspendResume.construct(0); |
174 | |
175 | // Signal handlers are process global configuration. |
176 | // Intentionally block SigThreadSuspendResume in the handler. |
177 | // SigThreadSuspendResume will be allowed in the handler by sigsuspend. |
178 | struct sigaction action; |
179 | sigemptyset(&action.sa_mask); |
180 | sigaddset(&action.sa_mask, SigThreadSuspendResume); |
181 | |
182 | action.sa_sigaction = &signalHandlerSuspendResume; |
183 | action.sa_flags = SA_RESTART | SA_SIGINFO; |
184 | sigaction(SigThreadSuspendResume, &action, 0); |
185 | #endif |
186 | } |
187 | |
188 | void Thread::initializeCurrentThreadEvenIfNonWTFCreated() |
189 | { |
190 | #if !OS(DARWIN) |
191 | sigset_t mask; |
192 | sigemptyset(&mask); |
193 | sigaddset(&mask, SigThreadSuspendResume); |
194 | pthread_sigmask(SIG_UNBLOCK, &mask, 0); |
195 | #endif |
196 | } |
197 | |
198 | static void* wtfThreadEntryPoint(void* context) |
199 | { |
200 | Thread::entryPoint(reinterpret_cast<Thread::NewThreadContext*>(context)); |
201 | return nullptr; |
202 | } |
203 | |
204 | bool Thread::establishHandle(NewThreadContext* context) |
205 | { |
206 | pthread_t threadHandle; |
207 | pthread_attr_t attr; |
208 | pthread_attr_init(&attr); |
209 | #if HAVE(QOS_CLASSES) |
210 | pthread_attr_set_qos_class_np(&attr, adjustedQOSClass(QOS_CLASS_USER_INITIATED), 0); |
211 | #endif |
212 | int error = pthread_create(&threadHandle, &attr, wtfThreadEntryPoint, context); |
213 | pthread_attr_destroy(&attr); |
214 | if (error) { |
215 | LOG_ERROR("Failed to create pthread at entry point %p with context %p" , wtfThreadEntryPoint, context); |
216 | return false; |
217 | } |
218 | establishPlatformSpecificHandle(threadHandle); |
219 | return true; |
220 | } |
221 | |
222 | void Thread::initializeCurrentThreadInternal(const char* threadName) |
223 | { |
224 | #if HAVE(PTHREAD_SETNAME_NP) |
225 | pthread_setname_np(normalizeThreadName(threadName)); |
226 | #elif OS(LINUX) |
227 | prctl(PR_SET_NAME, normalizeThreadName(threadName)); |
228 | #else |
229 | UNUSED_PARAM(threadName); |
230 | #endif |
231 | initializeCurrentThreadEvenIfNonWTFCreated(); |
232 | } |
233 | |
234 | void Thread::changePriority(int delta) |
235 | { |
236 | #if HAVE(PTHREAD_SETSCHEDPARAM) |
237 | auto locker = holdLock(m_mutex); |
238 | |
239 | int policy; |
240 | struct sched_param param; |
241 | |
242 | if (pthread_getschedparam(m_handle, &policy, ¶m)) |
243 | return; |
244 | |
245 | param.sched_priority += delta; |
246 | |
247 | pthread_setschedparam(m_handle, policy, ¶m); |
248 | #endif |
249 | } |
250 | |
251 | int Thread::waitForCompletion() |
252 | { |
253 | pthread_t handle; |
254 | { |
255 | auto locker = holdLock(m_mutex); |
256 | handle = m_handle; |
257 | } |
258 | |
259 | int joinResult = pthread_join(handle, 0); |
260 | |
261 | if (joinResult == EDEADLK) |
262 | LOG_ERROR("Thread %p was found to be deadlocked trying to quit" , this); |
263 | else if (joinResult) |
264 | LOG_ERROR("Thread %p was unable to be joined.\n" , this); |
265 | |
266 | auto locker = holdLock(m_mutex); |
267 | ASSERT(joinableState() == Joinable); |
268 | |
269 | // If the thread has already exited, then do nothing. If the thread hasn't exited yet, then just signal that we've already joined on it. |
270 | // In both cases, Thread::destructTLS() will take care of destroying Thread. |
271 | if (!hasExited()) |
272 | didJoin(); |
273 | |
274 | return joinResult; |
275 | } |
276 | |
277 | void Thread::detach() |
278 | { |
279 | auto locker = holdLock(m_mutex); |
280 | int detachResult = pthread_detach(m_handle); |
281 | if (detachResult) |
282 | LOG_ERROR("Thread %p was unable to be detached\n" , this); |
283 | |
284 | if (!hasExited()) |
285 | didBecomeDetached(); |
286 | } |
287 | |
288 | Thread& Thread::initializeCurrentTLS() |
289 | { |
290 | // Not a WTF-created thread, Thread is not established yet. |
291 | Ref<Thread> thread = adoptRef(*new Thread()); |
292 | thread->establishPlatformSpecificHandle(pthread_self()); |
293 | thread->initializeInThread(); |
294 | initializeCurrentThreadEvenIfNonWTFCreated(); |
295 | |
296 | return initializeTLS(WTFMove(thread)); |
297 | } |
298 | |
299 | bool Thread::signal(int signalNumber) |
300 | { |
301 | auto locker = holdLock(m_mutex); |
302 | if (hasExited()) |
303 | return false; |
304 | int errNo = pthread_kill(m_handle, signalNumber); |
305 | return !errNo; // A 0 errNo means success. |
306 | } |
307 | |
308 | auto Thread::suspend() -> Expected<void, PlatformSuspendError> |
309 | { |
310 | RELEASE_ASSERT_WITH_MESSAGE(this != &Thread::current(), "We do not support suspending the current thread itself." ); |
311 | // During suspend, suspend or resume should not be executed from the other threads. |
312 | // We use global lock instead of per thread lock. |
313 | // Consider the following case, there are threads A and B. |
314 | // And A attempt to suspend B and B attempt to suspend A. |
315 | // A and B send signals. And later, signals are delivered to A and B. |
316 | // In that case, both will be suspended. |
317 | // |
318 | // And it is important to use a global lock to suspend and resume. Let's consider using per-thread lock. |
319 | // Your issuing thread (A) attempts to suspend the target thread (B). Then, you will suspend the thread (C) additionally. |
320 | // This case frequently happens if you stop threads to perform stack scanning. But thread (B) may hold the lock of thread (C). |
321 | // In that case, dead lock happens. Using global lock here avoids this dead lock. |
322 | LockHolder locker(globalSuspendLock); |
323 | #if OS(DARWIN) |
324 | kern_return_t result = thread_suspend(m_platformThread); |
325 | if (result != KERN_SUCCESS) |
326 | return makeUnexpected(result); |
327 | return { }; |
328 | #else |
329 | if (!m_suspendCount) { |
330 | // Ideally, we would like to use pthread_sigqueue. It allows us to pass the argument to the signal handler. |
331 | // But it can be used in a few platforms, like Linux. |
332 | // Instead, we use Thread* stored in a global variable to pass it to the signal handler. |
333 | targetThread.store(this); |
334 | |
335 | while (true) { |
336 | int result = pthread_kill(m_handle, SigThreadSuspendResume); |
337 | if (result) |
338 | return makeUnexpected(result); |
339 | globalSemaphoreForSuspendResume->wait(); |
340 | if (m_platformRegisters) |
341 | break; |
342 | // Because of an alternative signal stack, we failed to suspend this thread. |
343 | // Retry suspension again after yielding. |
344 | Thread::yield(); |
345 | } |
346 | } |
347 | ++m_suspendCount; |
348 | return { }; |
349 | #endif |
350 | } |
351 | |
352 | void Thread::resume() |
353 | { |
354 | // During resume, suspend or resume should not be executed from the other threads. |
355 | LockHolder locker(globalSuspendLock); |
356 | #if OS(DARWIN) |
357 | thread_resume(m_platformThread); |
358 | #else |
359 | if (m_suspendCount == 1) { |
360 | // When allowing SigThreadSuspendResume interrupt in the signal handler by sigsuspend and SigThreadSuspendResume is actually issued, |
361 | // the signal handler itself will be called once again. |
362 | // There are several ways to distinguish the handler invocation for suspend and resume. |
363 | // 1. Use different signal numbers. And check the signal number in the handler. |
364 | // 2. Use some arguments to distinguish suspend and resume in the handler. If pthread_sigqueue can be used, we can take this. |
365 | // 3. Use thread's flag. |
366 | // In this implementaiton, we take (3). m_suspendCount is used to distinguish it. |
367 | targetThread.store(this); |
368 | if (pthread_kill(m_handle, SigThreadSuspendResume) == ESRCH) |
369 | return; |
370 | globalSemaphoreForSuspendResume->wait(); |
371 | } |
372 | --m_suspendCount; |
373 | #endif |
374 | } |
375 | |
376 | #if OS(DARWIN) |
377 | struct ThreadStateMetadata { |
378 | WTF_MAKE_STRUCT_FAST_ALLOCATED; |
379 | unsigned userCount; |
380 | thread_state_flavor_t flavor; |
381 | }; |
382 | |
383 | static ThreadStateMetadata threadStateMetadata() |
384 | { |
385 | #if CPU(X86) |
386 | unsigned userCount = sizeof(PlatformRegisters) / sizeof(int); |
387 | thread_state_flavor_t flavor = i386_THREAD_STATE; |
388 | #elif CPU(X86_64) |
389 | unsigned userCount = x86_THREAD_STATE64_COUNT; |
390 | thread_state_flavor_t flavor = x86_THREAD_STATE64; |
391 | #elif CPU(PPC) |
392 | unsigned userCount = PPC_THREAD_STATE_COUNT; |
393 | thread_state_flavor_t flavor = PPC_THREAD_STATE; |
394 | #elif CPU(PPC64) |
395 | unsigned userCount = PPC_THREAD_STATE64_COUNT; |
396 | thread_state_flavor_t flavor = PPC_THREAD_STATE64; |
397 | #elif CPU(ARM) |
398 | unsigned userCount = ARM_THREAD_STATE_COUNT; |
399 | thread_state_flavor_t flavor = ARM_THREAD_STATE; |
400 | #elif CPU(ARM64) |
401 | unsigned userCount = ARM_THREAD_STATE64_COUNT; |
402 | thread_state_flavor_t flavor = ARM_THREAD_STATE64; |
403 | #else |
404 | #error Unknown Architecture |
405 | #endif |
406 | return ThreadStateMetadata { userCount, flavor }; |
407 | } |
408 | #endif // OS(DARWIN) |
409 | |
410 | size_t Thread::getRegisters(PlatformRegisters& registers) |
411 | { |
412 | LockHolder locker(globalSuspendLock); |
413 | #if OS(DARWIN) |
414 | auto metadata = threadStateMetadata(); |
415 | kern_return_t result = thread_get_state(m_platformThread, metadata.flavor, (thread_state_t)®isters, &metadata.userCount); |
416 | if (result != KERN_SUCCESS) { |
417 | WTFReportFatalError(__FILE__, __LINE__, WTF_PRETTY_FUNCTION, "JavaScript garbage collection failed because thread_get_state returned an error (%d). This is probably the result of running inside Rosetta, which is not supported." , result); |
418 | CRASH(); |
419 | } |
420 | return metadata.userCount * sizeof(uintptr_t); |
421 | #else |
422 | ASSERT_WITH_MESSAGE(m_suspendCount, "We can get registers only if the thread is suspended." ); |
423 | ASSERT(m_platformRegisters); |
424 | registers = *m_platformRegisters; |
425 | return sizeof(PlatformRegisters); |
426 | #endif |
427 | } |
428 | |
429 | void Thread::establishPlatformSpecificHandle(pthread_t handle) |
430 | { |
431 | auto locker = holdLock(m_mutex); |
432 | m_handle = handle; |
433 | #if OS(DARWIN) |
434 | m_platformThread = pthread_mach_thread_np(handle); |
435 | #endif |
436 | } |
437 | |
438 | #if !HAVE(FAST_TLS) |
439 | void Thread::initializeTLSKey() |
440 | { |
441 | threadSpecificKeyCreate(&s_key, destructTLS); |
442 | } |
443 | #endif |
444 | |
445 | Thread& Thread::initializeTLS(Ref<Thread>&& thread) |
446 | { |
447 | // We leak the ref to keep the Thread alive while it is held in TLS. destructTLS will deref it later at thread destruction time. |
448 | auto& threadInTLS = thread.leakRef(); |
449 | #if !HAVE(FAST_TLS) |
450 | ASSERT(s_key != InvalidThreadSpecificKey); |
451 | threadSpecificSet(s_key, &threadInTLS); |
452 | #else |
453 | _pthread_setspecific_direct(WTF_THREAD_DATA_KEY, &threadInTLS); |
454 | pthread_key_init_np(WTF_THREAD_DATA_KEY, &destructTLS); |
455 | #endif |
456 | return threadInTLS; |
457 | } |
458 | |
459 | void Thread::destructTLS(void* data) |
460 | { |
461 | Thread* thread = static_cast<Thread*>(data); |
462 | ASSERT(thread); |
463 | |
464 | if (thread->m_isDestroyedOnce) { |
465 | thread->didExit(); |
466 | thread->deref(); |
467 | return; |
468 | } |
469 | |
470 | thread->m_isDestroyedOnce = true; |
471 | // Re-setting the value for key causes another destructTLS() call after all other thread-specific destructors were called. |
472 | #if !HAVE(FAST_TLS) |
473 | ASSERT(s_key != InvalidThreadSpecificKey); |
474 | threadSpecificSet(s_key, thread); |
475 | #else |
476 | _pthread_setspecific_direct(WTF_THREAD_DATA_KEY, thread); |
477 | pthread_key_init_np(WTF_THREAD_DATA_KEY, &destructTLS); |
478 | #endif |
479 | } |
480 | |
481 | Mutex::~Mutex() |
482 | { |
483 | int result = pthread_mutex_destroy(&m_mutex); |
484 | ASSERT_UNUSED(result, !result); |
485 | } |
486 | |
487 | void Mutex::lock() |
488 | { |
489 | int result = pthread_mutex_lock(&m_mutex); |
490 | ASSERT_UNUSED(result, !result); |
491 | } |
492 | |
493 | bool Mutex::tryLock() |
494 | { |
495 | int result = pthread_mutex_trylock(&m_mutex); |
496 | |
497 | if (result == 0) |
498 | return true; |
499 | if (result == EBUSY) |
500 | return false; |
501 | |
502 | ASSERT_NOT_REACHED(); |
503 | return false; |
504 | } |
505 | |
506 | void Mutex::unlock() |
507 | { |
508 | int result = pthread_mutex_unlock(&m_mutex); |
509 | ASSERT_UNUSED(result, !result); |
510 | } |
511 | |
512 | ThreadCondition::~ThreadCondition() |
513 | { |
514 | pthread_cond_destroy(&m_condition); |
515 | } |
516 | |
517 | void ThreadCondition::wait(Mutex& mutex) |
518 | { |
519 | int result = pthread_cond_wait(&m_condition, &mutex.impl()); |
520 | ASSERT_UNUSED(result, !result); |
521 | } |
522 | |
523 | bool ThreadCondition::timedWait(Mutex& mutex, WallTime absoluteTime) |
524 | { |
525 | if (absoluteTime < WallTime::now()) |
526 | return false; |
527 | |
528 | if (absoluteTime > WallTime::fromRawSeconds(INT_MAX)) { |
529 | wait(mutex); |
530 | return true; |
531 | } |
532 | |
533 | double rawSeconds = absoluteTime.secondsSinceEpoch().value(); |
534 | |
535 | int timeSeconds = static_cast<int>(rawSeconds); |
536 | int timeNanoseconds = static_cast<int>((rawSeconds - timeSeconds) * 1E9); |
537 | |
538 | timespec targetTime; |
539 | targetTime.tv_sec = timeSeconds; |
540 | targetTime.tv_nsec = timeNanoseconds; |
541 | |
542 | return pthread_cond_timedwait(&m_condition, &mutex.impl(), &targetTime) == 0; |
543 | } |
544 | |
545 | void ThreadCondition::signal() |
546 | { |
547 | int result = pthread_cond_signal(&m_condition); |
548 | ASSERT_UNUSED(result, !result); |
549 | } |
550 | |
551 | void ThreadCondition::broadcast() |
552 | { |
553 | int result = pthread_cond_broadcast(&m_condition); |
554 | ASSERT_UNUSED(result, !result); |
555 | } |
556 | |
557 | void Thread::yield() |
558 | { |
559 | sched_yield(); |
560 | } |
561 | |
562 | } // namespace WTF |
563 | |
564 | #endif // USE(PTHREADS) |
565 | |