1 | /* |
2 | * Copyright (C) 2011-2019 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "DFGCSEPhase.h" |
28 | |
29 | #if ENABLE(DFG_JIT) |
30 | |
31 | #include "DFGAbstractHeap.h" |
32 | #include "DFGBlockMapInlines.h" |
33 | #include "DFGClobberSet.h" |
34 | #include "DFGClobberize.h" |
35 | #include "DFGDominators.h" |
36 | #include "DFGGraph.h" |
37 | #include "DFGPhase.h" |
38 | #include "JSCInlines.h" |
39 | #include <array> |
40 | |
41 | namespace JSC { namespace DFG { |
42 | |
43 | // This file contains two CSE implementations: local and global. LocalCSE typically runs when we're |
44 | // in DFG mode, i.e. we want to compile quickly. LocalCSE contains a lot of optimizations for |
45 | // compile time. GlobalCSE, on the other hand, is fairly straight-forward. It will find more |
46 | // optimization opportunities by virtue of being global. |
47 | |
48 | namespace { |
49 | |
50 | namespace DFGCSEPhaseInternal { |
51 | static constexpr bool verbose = false; |
52 | } |
53 | |
54 | class ImpureDataSlot { |
55 | WTF_MAKE_NONCOPYABLE(ImpureDataSlot); |
56 | WTF_MAKE_FAST_ALLOCATED; |
57 | public: |
58 | ImpureDataSlot(HeapLocation key, LazyNode value, unsigned hash) |
59 | : key(key), value(value), hash(hash) |
60 | { } |
61 | |
62 | HeapLocation key; |
63 | LazyNode value; |
64 | unsigned hash; |
65 | }; |
66 | |
67 | struct ImpureDataSlotHash : public DefaultHash<std::unique_ptr<ImpureDataSlot>>::Hash { |
68 | static unsigned hash(const std::unique_ptr<ImpureDataSlot>& key) |
69 | { |
70 | return key->hash; |
71 | } |
72 | |
73 | static bool equal(const std::unique_ptr<ImpureDataSlot>& a, const std::unique_ptr<ImpureDataSlot>& b) |
74 | { |
75 | // The ImpureDataSlot are unique per table per HeapLocation. This lets us compare the key |
76 | // by just comparing the pointers of the unique ImpureDataSlots. |
77 | ASSERT(a != b || a->key == b->key); |
78 | return a == b; |
79 | } |
80 | }; |
81 | |
82 | struct ImpureDataTranslator { |
83 | static unsigned hash(const HeapLocation& key) |
84 | { |
85 | return key.hash(); |
86 | } |
87 | |
88 | static bool equal(const std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key) |
89 | { |
90 | if (!slot) |
91 | return false; |
92 | if (HashTraits<std::unique_ptr<ImpureDataSlot>>::isDeletedValue(slot)) |
93 | return false; |
94 | return slot->key == key; |
95 | } |
96 | |
97 | static void translate(std::unique_ptr<ImpureDataSlot>& slot, const HeapLocation& key, unsigned hashCode) |
98 | { |
99 | new (NotNull, std::addressof(slot)) std::unique_ptr<ImpureDataSlot>(new ImpureDataSlot {key, LazyNode(), hashCode}); |
100 | } |
101 | }; |
102 | |
103 | class ImpureMap { |
104 | WTF_MAKE_FAST_ALLOCATED; |
105 | WTF_MAKE_NONCOPYABLE(ImpureMap); |
106 | public: |
107 | ImpureMap() = default; |
108 | |
109 | ImpureMap(ImpureMap&& other) |
110 | { |
111 | m_abstractHeapStackMap.swap(other.m_abstractHeapStackMap); |
112 | m_fallbackStackMap.swap(other.m_fallbackStackMap); |
113 | m_heapMap.swap(other.m_heapMap); |
114 | #if !defined(NDEBUG) |
115 | m_debugImpureData.swap(other.m_debugImpureData); |
116 | #endif |
117 | } |
118 | |
119 | const ImpureDataSlot* add(const HeapLocation& location, const LazyNode& node) |
120 | { |
121 | const ImpureDataSlot* result = addImpl(location, node); |
122 | |
123 | #if !defined(NDEBUG) |
124 | auto addResult = m_debugImpureData.add(location, node); |
125 | ASSERT(!!result == !addResult.isNewEntry); |
126 | #endif |
127 | return result; |
128 | } |
129 | |
130 | LazyNode get(const HeapLocation& location) const |
131 | { |
132 | LazyNode result = getImpl(location); |
133 | #if !defined(NDEBUG) |
134 | ASSERT(result == m_debugImpureData.get(location)); |
135 | #endif |
136 | return result; |
137 | } |
138 | |
139 | void clobber(AbstractHeap heap, bool clobberConservatively) |
140 | { |
141 | switch (heap.kind()) { |
142 | case World: { |
143 | clear(); |
144 | break; |
145 | } |
146 | case SideState: |
147 | break; |
148 | case Stack: { |
149 | ASSERT(!heap.payload().isTop()); |
150 | ASSERT(heap.payload().value() == heap.payload().value32()); |
151 | m_abstractHeapStackMap.remove(heap.payload().value32()); |
152 | if (clobberConservatively) |
153 | m_fallbackStackMap.clear(); |
154 | else |
155 | clobber(m_fallbackStackMap, heap); |
156 | break; |
157 | } |
158 | default: |
159 | if (clobberConservatively) |
160 | m_heapMap.clear(); |
161 | else |
162 | clobber(m_heapMap, heap); |
163 | break; |
164 | } |
165 | #if !defined(NDEBUG) |
166 | m_debugImpureData.removeIf([heap, clobberConservatively, this](const HashMap<HeapLocation, LazyNode>::KeyValuePairType& pair) -> bool { |
167 | switch (heap.kind()) { |
168 | case World: |
169 | case SideState: |
170 | break; |
171 | case Stack: { |
172 | if (!clobberConservatively) |
173 | break; |
174 | if (pair.key.heap().kind() == Stack) { |
175 | auto iterator = m_abstractHeapStackMap.find(pair.key.heap().payload().value32()); |
176 | if (iterator != m_abstractHeapStackMap.end() && iterator->value->key == pair.key) |
177 | return false; |
178 | return true; |
179 | } |
180 | break; |
181 | } |
182 | default: { |
183 | if (!clobberConservatively) |
184 | break; |
185 | AbstractHeapKind kind = pair.key.heap().kind(); |
186 | if (kind != World && kind != SideState && kind != Stack) |
187 | return true; |
188 | break; |
189 | } |
190 | } |
191 | return heap.overlaps(pair.key.heap()); |
192 | }); |
193 | ASSERT(m_debugImpureData.size() |
194 | == (m_heapMap.size() |
195 | + m_abstractHeapStackMap.size() |
196 | + m_fallbackStackMap.size())); |
197 | |
198 | const bool verifyClobber = false; |
199 | if (verifyClobber) { |
200 | for (auto& pair : m_debugImpureData) |
201 | ASSERT(!!get(pair.key)); |
202 | } |
203 | #endif |
204 | } |
205 | |
206 | void clear() |
207 | { |
208 | m_abstractHeapStackMap.clear(); |
209 | m_fallbackStackMap.clear(); |
210 | m_heapMap.clear(); |
211 | #if !defined(NDEBUG) |
212 | m_debugImpureData.clear(); |
213 | #endif |
214 | } |
215 | |
216 | private: |
217 | typedef HashSet<std::unique_ptr<ImpureDataSlot>, ImpureDataSlotHash> Map; |
218 | |
219 | const ImpureDataSlot* addImpl(const HeapLocation& location, const LazyNode& node) |
220 | { |
221 | switch (location.heap().kind()) { |
222 | case World: |
223 | case SideState: |
224 | RELEASE_ASSERT_NOT_REACHED(); |
225 | case Stack: { |
226 | AbstractHeap abstractHeap = location.heap(); |
227 | if (abstractHeap.payload().isTop()) |
228 | return add(m_fallbackStackMap, location, node); |
229 | ASSERT(abstractHeap.payload().value() == abstractHeap.payload().value32()); |
230 | auto addResult = m_abstractHeapStackMap.add(abstractHeap.payload().value32(), nullptr); |
231 | if (addResult.isNewEntry) { |
232 | addResult.iterator->value.reset(new ImpureDataSlot {location, node, 0}); |
233 | return nullptr; |
234 | } |
235 | if (addResult.iterator->value->key == location) |
236 | return addResult.iterator->value.get(); |
237 | return add(m_fallbackStackMap, location, node); |
238 | } |
239 | default: |
240 | return add(m_heapMap, location, node); |
241 | } |
242 | return nullptr; |
243 | } |
244 | |
245 | LazyNode getImpl(const HeapLocation& location) const |
246 | { |
247 | switch (location.heap().kind()) { |
248 | case World: |
249 | case SideState: |
250 | RELEASE_ASSERT_NOT_REACHED(); |
251 | case Stack: { |
252 | ASSERT(location.heap().payload().value() == location.heap().payload().value32()); |
253 | auto iterator = m_abstractHeapStackMap.find(location.heap().payload().value32()); |
254 | if (iterator != m_abstractHeapStackMap.end() |
255 | && iterator->value->key == location) |
256 | return iterator->value->value; |
257 | return get(m_fallbackStackMap, location); |
258 | } |
259 | default: |
260 | return get(m_heapMap, location); |
261 | } |
262 | return LazyNode(); |
263 | } |
264 | |
265 | static const ImpureDataSlot* add(Map& map, const HeapLocation& location, const LazyNode& node) |
266 | { |
267 | auto result = map.add<ImpureDataTranslator>(location); |
268 | if (result.isNewEntry) { |
269 | (*result.iterator)->value = node; |
270 | return nullptr; |
271 | } |
272 | return result.iterator->get(); |
273 | } |
274 | |
275 | static LazyNode get(const Map& map, const HeapLocation& location) |
276 | { |
277 | auto iterator = map.find<ImpureDataTranslator>(location); |
278 | if (iterator != map.end()) |
279 | return (*iterator)->value; |
280 | return LazyNode(); |
281 | } |
282 | |
283 | static void clobber(Map& map, AbstractHeap heap) |
284 | { |
285 | map.removeIf([heap](const std::unique_ptr<ImpureDataSlot>& slot) -> bool { |
286 | return heap.overlaps(slot->key.heap()); |
287 | }); |
288 | } |
289 | |
290 | // The majority of Impure Stack Slots are unique per value. |
291 | // This is very useful for fast clobber(), we can just remove the slot addressed by AbstractHeap |
292 | // in O(1). |
293 | // |
294 | // When there are conflict, any additional HeapLocation is added in the fallback map. |
295 | // This works well because fallbackStackMap remains tiny. |
296 | // |
297 | // One cannot assume a unique ImpureData is in m_abstractHeapStackMap. It may have been |
298 | // a duplicate in the past and now only live in m_fallbackStackMap. |
299 | // |
300 | // Obviously, TOP always goes into m_fallbackStackMap since it does not have a unique value. |
301 | HashMap<int32_t, std::unique_ptr<ImpureDataSlot>, DefaultHash<int32_t>::Hash, WTF::SignedWithZeroKeyHashTraits<int32_t>> m_abstractHeapStackMap; |
302 | Map m_fallbackStackMap; |
303 | |
304 | Map m_heapMap; |
305 | |
306 | #if !defined(NDEBUG) |
307 | HashMap<HeapLocation, LazyNode> m_debugImpureData; |
308 | #endif |
309 | }; |
310 | |
311 | class LocalCSEPhase : public Phase { |
312 | public: |
313 | LocalCSEPhase(Graph& graph) |
314 | : Phase(graph, "local common subexpression elimination" ) |
315 | , m_smallBlock(graph) |
316 | , m_largeBlock(graph) |
317 | , m_hugeBlock(graph) |
318 | { |
319 | } |
320 | |
321 | bool run() |
322 | { |
323 | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); |
324 | ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == LoadStore); |
325 | |
326 | bool changed = false; |
327 | |
328 | m_graph.clearReplacements(); |
329 | |
330 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
331 | BasicBlock* block = m_graph.block(blockIndex); |
332 | if (!block) |
333 | continue; |
334 | |
335 | if (block->size() <= SmallMaps::capacity) |
336 | changed |= m_smallBlock.run(block); |
337 | else if (block->size() <= Options::maxDFGNodesInBasicBlockForPreciseAnalysis()) |
338 | changed |= m_largeBlock.run(block); |
339 | else |
340 | changed |= m_hugeBlock.run(block); |
341 | } |
342 | |
343 | return changed; |
344 | } |
345 | |
346 | private: |
347 | class SmallMaps { |
348 | public: |
349 | // This permits SmallMaps to be used for blocks that have up to 100 nodes. In practice, |
350 | // fewer than half of the nodes in a block have pure defs, and even fewer have impure defs. |
351 | // Thus, a capacity limit of 100 probably means that somewhere around ~40 things may end up |
352 | // in one of these "small" list-based maps. That number still seems largeish, except that |
353 | // the overhead of HashMaps can be quite high currently: clearing them, or even removing |
354 | // enough things from them, deletes (or resizes) their backing store eagerly. Hence |
355 | // HashMaps induce a lot of malloc traffic. |
356 | static constexpr unsigned capacity = 100; |
357 | |
358 | SmallMaps() |
359 | : m_pureLength(0) |
360 | , m_impureLength(0) |
361 | { |
362 | } |
363 | |
364 | void clear() |
365 | { |
366 | m_pureLength = 0; |
367 | m_impureLength = 0; |
368 | } |
369 | |
370 | void write(AbstractHeap heap) |
371 | { |
372 | if (heap.kind() == SideState) |
373 | return; |
374 | |
375 | for (unsigned i = 0; i < m_impureLength; ++i) { |
376 | if (heap.overlaps(m_impureMap[i].key.heap())) |
377 | m_impureMap[i--] = m_impureMap[--m_impureLength]; |
378 | } |
379 | } |
380 | |
381 | Node* addPure(PureValue value, Node* node) |
382 | { |
383 | for (unsigned i = m_pureLength; i--;) { |
384 | if (m_pureMap[i].key == value) |
385 | return m_pureMap[i].value; |
386 | } |
387 | |
388 | RELEASE_ASSERT(m_pureLength < capacity); |
389 | m_pureMap[m_pureLength++] = WTF::KeyValuePair<PureValue, Node*>(value, node); |
390 | return nullptr; |
391 | } |
392 | |
393 | LazyNode findReplacement(HeapLocation location) |
394 | { |
395 | for (unsigned i = m_impureLength; i--;) { |
396 | if (m_impureMap[i].key == location) |
397 | return m_impureMap[i].value; |
398 | } |
399 | return nullptr; |
400 | } |
401 | |
402 | LazyNode addImpure(HeapLocation location, LazyNode node) |
403 | { |
404 | // FIXME: If we are using small maps, we must not def() derived values. |
405 | // For now the only derived values we def() are constant-based. |
406 | if (location.index() && !location.index().isNode()) |
407 | return nullptr; |
408 | if (LazyNode result = findReplacement(location)) |
409 | return result; |
410 | RELEASE_ASSERT(m_impureLength < capacity); |
411 | m_impureMap[m_impureLength++] = WTF::KeyValuePair<HeapLocation, LazyNode>(location, node); |
412 | return nullptr; |
413 | } |
414 | |
415 | private: |
416 | WTF::KeyValuePair<PureValue, Node*> m_pureMap[capacity]; |
417 | WTF::KeyValuePair<HeapLocation, LazyNode> m_impureMap[capacity]; |
418 | unsigned m_pureLength; |
419 | unsigned m_impureLength; |
420 | }; |
421 | |
422 | class LargeMaps { |
423 | public: |
424 | LargeMaps() |
425 | { |
426 | } |
427 | |
428 | void clear() |
429 | { |
430 | m_pureMap.clear(); |
431 | m_impureMap.clear(); |
432 | } |
433 | |
434 | void write(AbstractHeap heap) |
435 | { |
436 | bool clobberConservatively = false; |
437 | m_impureMap.clobber(heap, clobberConservatively); |
438 | } |
439 | |
440 | Node* addPure(PureValue value, Node* node) |
441 | { |
442 | auto result = m_pureMap.add(value, node); |
443 | if (result.isNewEntry) |
444 | return nullptr; |
445 | return result.iterator->value; |
446 | } |
447 | |
448 | LazyNode findReplacement(HeapLocation location) |
449 | { |
450 | return m_impureMap.get(location); |
451 | } |
452 | |
453 | LazyNode addImpure(const HeapLocation& location, const LazyNode& node) |
454 | { |
455 | if (const ImpureDataSlot* slot = m_impureMap.add(location, node)) |
456 | return slot->value; |
457 | return LazyNode(); |
458 | } |
459 | |
460 | private: |
461 | HashMap<PureValue, Node*> m_pureMap; |
462 | ImpureMap m_impureMap; |
463 | }; |
464 | |
465 | // This is used only for huge basic blocks. Our usual CSE is quadratic complexity for # of DFG nodes in a basic block. |
466 | // HugeMaps model results conservatively to avoid an O(N^2) algorithm. In particular, we clear all the slots of the specified heap kind |
467 | // in ImpureMap instead of iterating slots and removing a matched slot. This change makes the complexity O(N). |
468 | // FIXME: We can make LargeMap O(N) without introducing conservative behavior if we track clobbering by hierarchical epochs. |
469 | // https://bugs.webkit.org/show_bug.cgi?id=200014 |
470 | class HugeMaps { |
471 | public: |
472 | HugeMaps() = default; |
473 | |
474 | void clear() |
475 | { |
476 | m_pureMap.clear(); |
477 | m_impureMap.clear(); |
478 | } |
479 | |
480 | void write(AbstractHeap heap) |
481 | { |
482 | bool clobberConservatively = true; |
483 | m_impureMap.clobber(heap, clobberConservatively); |
484 | } |
485 | |
486 | Node* addPure(PureValue value, Node* node) |
487 | { |
488 | auto result = m_pureMap.add(value, node); |
489 | if (result.isNewEntry) |
490 | return nullptr; |
491 | return result.iterator->value; |
492 | } |
493 | |
494 | LazyNode findReplacement(HeapLocation location) |
495 | { |
496 | return m_impureMap.get(location); |
497 | } |
498 | |
499 | LazyNode addImpure(const HeapLocation& location, const LazyNode& node) |
500 | { |
501 | if (const ImpureDataSlot* slot = m_impureMap.add(location, node)) |
502 | return slot->value; |
503 | return LazyNode(); |
504 | } |
505 | |
506 | private: |
507 | HashMap<PureValue, Node*> m_pureMap; |
508 | ImpureMap m_impureMap; |
509 | }; |
510 | |
511 | template<typename Maps> |
512 | class BlockCSE { |
513 | public: |
514 | BlockCSE(Graph& graph) |
515 | : m_graph(graph) |
516 | , m_insertionSet(graph) |
517 | { |
518 | } |
519 | |
520 | bool run(BasicBlock* block) |
521 | { |
522 | m_maps.clear(); |
523 | m_changed = false; |
524 | m_block = block; |
525 | |
526 | for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { |
527 | m_node = block->at(nodeIndex); |
528 | m_graph.performSubstitution(m_node); |
529 | |
530 | if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) { |
531 | m_node->replaceWith(m_graph, m_node->child1().node()); |
532 | m_changed = true; |
533 | } else { |
534 | // This rule only makes sense for local CSE, since in SSA form we have already |
535 | // factored the bounds check out of the PutByVal. It's kind of gross, but we |
536 | // still have reason to believe that PutByValAlias is a good optimization and |
537 | // that it's better to do it with a single node rather than separating out the |
538 | // CheckInBounds. |
539 | if (m_node->op() == PutByVal || m_node->op() == PutByValDirect) { |
540 | HeapLocation heap; |
541 | |
542 | Node* base = m_graph.varArgChild(m_node, 0).node(); |
543 | Node* index = m_graph.varArgChild(m_node, 1).node(); |
544 | LocationKind indexedPropertyLoc = indexedPropertyLocForResultType(m_node->result()); |
545 | |
546 | ArrayMode mode = m_node->arrayMode(); |
547 | switch (mode.type()) { |
548 | case Array::Int32: |
549 | if (!mode.isInBounds()) |
550 | break; |
551 | heap = HeapLocation(indexedPropertyLoc, IndexedInt32Properties, base, index); |
552 | break; |
553 | |
554 | case Array::Double: { |
555 | if (!mode.isInBounds()) |
556 | break; |
557 | LocationKind kind = mode.isSaneChain() ? IndexedPropertyDoubleSaneChainLoc : IndexedPropertyDoubleLoc; |
558 | heap = HeapLocation(kind, IndexedDoubleProperties, base, index); |
559 | break; |
560 | } |
561 | |
562 | case Array::Contiguous: |
563 | if (!mode.isInBounds()) |
564 | break; |
565 | heap = HeapLocation(indexedPropertyLoc, IndexedContiguousProperties, base, index); |
566 | break; |
567 | |
568 | case Array::Int8Array: |
569 | case Array::Int16Array: |
570 | case Array::Int32Array: |
571 | case Array::Uint8Array: |
572 | case Array::Uint8ClampedArray: |
573 | case Array::Uint16Array: |
574 | case Array::Uint32Array: |
575 | case Array::Float32Array: |
576 | case Array::Float64Array: |
577 | if (!mode.isInBounds()) |
578 | break; |
579 | heap = HeapLocation( |
580 | indexedPropertyLoc, TypedArrayProperties, base, index); |
581 | break; |
582 | |
583 | default: |
584 | break; |
585 | } |
586 | |
587 | if (!!heap && m_maps.findReplacement(heap)) |
588 | m_node->setOp(PutByValAlias); |
589 | } |
590 | |
591 | clobberize(m_graph, m_node, *this); |
592 | } |
593 | } |
594 | |
595 | m_insertionSet.execute(block); |
596 | |
597 | return m_changed; |
598 | } |
599 | |
600 | void read(AbstractHeap) { } |
601 | |
602 | void write(AbstractHeap heap) |
603 | { |
604 | m_maps.write(heap); |
605 | } |
606 | |
607 | void def(PureValue value) |
608 | { |
609 | Node* match = m_maps.addPure(value, m_node); |
610 | if (!match) |
611 | return; |
612 | |
613 | m_node->replaceWith(m_graph, match); |
614 | m_changed = true; |
615 | } |
616 | |
617 | void def(const HeapLocation& location, const LazyNode& value) |
618 | { |
619 | LazyNode match = m_maps.addImpure(location, value); |
620 | if (!match) |
621 | return; |
622 | |
623 | if (m_node->op() == GetLocal) { |
624 | // Usually the CPS rethreading phase does this. But it's OK for us to mess with |
625 | // locals so long as: |
626 | // |
627 | // - We dethread the graph. Any changes we make may invalidate the assumptions of |
628 | // our CPS form, particularly if this GetLocal is linked to the variablesAtTail. |
629 | // |
630 | // - We don't introduce a Phantom for the child of the GetLocal. This wouldn't be |
631 | // totally wrong but it would pessimize the code. Just because there is a |
632 | // GetLocal doesn't mean that the child was live. Simply rerouting the all uses |
633 | // of this GetLocal will preserve the live-at-exit information just fine. |
634 | // |
635 | // We accomplish the latter by just clearing the child; then the Phantom that we |
636 | // introduce won't have children and so it will eventually just be deleted. |
637 | |
638 | m_node->child1() = Edge(); |
639 | m_graph.dethread(); |
640 | } |
641 | |
642 | if (value.isNode() && value.asNode() == m_node) { |
643 | match.ensureIsNode(m_insertionSet, m_block, 0)->owner = m_block; |
644 | ASSERT(match.isNode()); |
645 | m_node->replaceWith(m_graph, match.asNode()); |
646 | m_changed = true; |
647 | } |
648 | } |
649 | |
650 | private: |
651 | Graph& m_graph; |
652 | |
653 | bool m_changed; |
654 | Node* m_node; |
655 | BasicBlock* m_block; |
656 | |
657 | Maps m_maps; |
658 | |
659 | InsertionSet m_insertionSet; |
660 | }; |
661 | |
662 | BlockCSE<SmallMaps> m_smallBlock; |
663 | BlockCSE<LargeMaps> m_largeBlock; |
664 | BlockCSE<HugeMaps> m_hugeBlock; |
665 | }; |
666 | |
667 | class GlobalCSEPhase : public Phase { |
668 | public: |
669 | GlobalCSEPhase(Graph& graph) |
670 | : Phase(graph, "global common subexpression elimination" ) |
671 | , m_impureDataMap(graph) |
672 | , m_insertionSet(graph) |
673 | { |
674 | } |
675 | |
676 | bool run() |
677 | { |
678 | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); |
679 | ASSERT(m_graph.m_form == SSA); |
680 | |
681 | m_graph.initializeNodeOwners(); |
682 | m_graph.ensureSSADominators(); |
683 | |
684 | m_preOrder = m_graph.blocksInPreOrder(); |
685 | |
686 | // First figure out what gets clobbered by blocks. Node that this uses the preOrder list |
687 | // for convenience only. |
688 | for (unsigned i = m_preOrder.size(); i--;) { |
689 | m_block = m_preOrder[i]; |
690 | m_impureData = &m_impureDataMap[m_block]; |
691 | for (unsigned nodeIndex = m_block->size(); nodeIndex--;) |
692 | addWrites(m_graph, m_block->at(nodeIndex), m_impureData->writes); |
693 | } |
694 | |
695 | // Based on my experience doing this before, what follows might have to be made iterative. |
696 | // Right now it doesn't have to be iterative because everything is dominator-bsed. But when |
697 | // validation is enabled, we check if iterating would find new CSE opportunities. |
698 | |
699 | bool changed = iterate(); |
700 | |
701 | // FIXME: It should be possible to assert that CSE will not find any new opportunities if you |
702 | // run it a second time. Unfortunately, we cannot assert this right now. Note that if we did |
703 | // this, we'd have to first reset all of our state. |
704 | // https://bugs.webkit.org/show_bug.cgi?id=145853 |
705 | |
706 | return changed; |
707 | } |
708 | |
709 | bool iterate() |
710 | { |
711 | if (DFGCSEPhaseInternal::verbose) |
712 | dataLog("Performing iteration.\n" ); |
713 | |
714 | m_changed = false; |
715 | m_graph.clearReplacements(); |
716 | |
717 | for (unsigned i = 0; i < m_preOrder.size(); ++i) { |
718 | m_block = m_preOrder[i]; |
719 | m_impureData = &m_impureDataMap[m_block]; |
720 | m_writesSoFar.clear(); |
721 | |
722 | if (DFGCSEPhaseInternal::verbose) |
723 | dataLog("Processing block " , *m_block, ":\n" ); |
724 | |
725 | for (unsigned nodeIndex = 0; nodeIndex < m_block->size(); ++nodeIndex) { |
726 | m_nodeIndex = nodeIndex; |
727 | m_node = m_block->at(nodeIndex); |
728 | if (DFGCSEPhaseInternal::verbose) |
729 | dataLog(" Looking at node " , m_node, ":\n" ); |
730 | |
731 | m_graph.performSubstitution(m_node); |
732 | |
733 | if (m_node->op() == Identity || m_node->op() == IdentityWithProfile) { |
734 | m_node->replaceWith(m_graph, m_node->child1().node()); |
735 | m_changed = true; |
736 | } else |
737 | clobberize(m_graph, m_node, *this); |
738 | } |
739 | |
740 | m_insertionSet.execute(m_block); |
741 | |
742 | m_impureData->didVisit = true; |
743 | } |
744 | |
745 | return m_changed; |
746 | } |
747 | |
748 | void read(AbstractHeap) { } |
749 | |
750 | void write(AbstractHeap heap) |
751 | { |
752 | bool clobberConservatively = false; |
753 | m_impureData->availableAtTail.clobber(heap, clobberConservatively); |
754 | m_writesSoFar.add(heap); |
755 | } |
756 | |
757 | void def(PureValue value) |
758 | { |
759 | // With pure values we do not have to worry about the possibility of some control flow path |
760 | // clobbering the value. So, we just search for all of the like values that have been |
761 | // computed. We pick one that is in a block that dominates ours. Note that this means that |
762 | // a PureValue will map to a list of nodes, since there may be many places in the control |
763 | // flow graph that compute a value but only one of them that dominates us. We may build up |
764 | // a large list of nodes that compute some value in the case of gnarly control flow. This |
765 | // is probably OK. |
766 | |
767 | auto result = m_pureValues.add(value, Vector<Node*>()); |
768 | if (result.isNewEntry) { |
769 | result.iterator->value.append(m_node); |
770 | return; |
771 | } |
772 | |
773 | for (unsigned i = result.iterator->value.size(); i--;) { |
774 | Node* candidate = result.iterator->value[i]; |
775 | if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) { |
776 | m_node->replaceWith(m_graph, candidate); |
777 | m_changed = true; |
778 | return; |
779 | } |
780 | } |
781 | |
782 | result.iterator->value.append(m_node); |
783 | } |
784 | |
785 | LazyNode findReplacement(HeapLocation location) |
786 | { |
787 | // At this instant, our "availableAtTail" reflects the set of things that are available in |
788 | // this block so far. We check this map to find block-local CSE opportunities before doing |
789 | // a global search. |
790 | LazyNode match = m_impureData->availableAtTail.get(location); |
791 | if (!!match) { |
792 | if (DFGCSEPhaseInternal::verbose) |
793 | dataLog(" Found local match: " , match, "\n" ); |
794 | return match; |
795 | } |
796 | |
797 | // If it's not available at this point in the block, and at some prior point in the block |
798 | // we have clobbered this heap location, then there is no point in doing a global search. |
799 | if (m_writesSoFar.overlaps(location.heap())) { |
800 | if (DFGCSEPhaseInternal::verbose) |
801 | dataLog(" Not looking globally because of local clobber: " , m_writesSoFar, "\n" ); |
802 | return nullptr; |
803 | } |
804 | |
805 | // This perfoms a backward search over the control flow graph to find some possible |
806 | // non-local def() that matches our heap location. Such a match is only valid if there does |
807 | // not exist any path from that def() to our block that contains a write() that overlaps |
808 | // our heap. This algorithm looks for both of these things (the matching def and the |
809 | // overlapping writes) in one backwards DFS pass. |
810 | // |
811 | // This starts by looking at the starting block's predecessors, and then it continues along |
812 | // their predecessors. As soon as this finds a possible def() - one that defines the heap |
813 | // location we want while dominating our starting block - it assumes that this one must be |
814 | // the match. It then lets the DFS over predecessors complete, but it doesn't add the |
815 | // def()'s predecessors; this ensures that any blocks we visit thereafter are on some path |
816 | // from the def() to us. As soon as the DFG finds a write() that overlaps the location's |
817 | // heap, it stops, assuming that there is no possible match. Note that the write() case may |
818 | // trigger before we find a def(), or after. Either way, the write() case causes this |
819 | // function to immediately return nullptr. |
820 | // |
821 | // If the write() is found before we find the def(), then we know that any def() we would |
822 | // find would have a path to us that trips over the write() and hence becomes invalid. This |
823 | // is just a direct outcome of us looking for a def() that dominates us. Given a block A |
824 | // that dominates block B - so that A is the one that would have the def() and B is our |
825 | // starting block - we know that any other block must either be on the path from A to B, or |
826 | // it must be on a path from the root to A, but not both. So, if we haven't found A yet but |
827 | // we already have found a block C that has a write(), then C must be on some path from A |
828 | // to B, which means that A's def() is invalid for our purposes. Hence, before we find the |
829 | // def(), stopping on write() is the right thing to do. |
830 | // |
831 | // Stopping on write() is also the right thing to do after we find the def(). After we find |
832 | // the def(), we don't add that block's predecessors to the search worklist. That means |
833 | // that henceforth the only blocks we will see in the search are blocks on the path from |
834 | // the def() to us. If any such block has a write() that clobbers our heap then we should |
835 | // give up. |
836 | // |
837 | // Hence this graph search algorithm ends up being deceptively simple: any overlapping |
838 | // write() causes us to immediately return nullptr, and a matching def() means that we just |
839 | // record it and neglect to visit its precessors. |
840 | |
841 | Vector<BasicBlock*, 8> worklist; |
842 | Vector<BasicBlock*, 8> seenList; |
843 | BitVector seen; |
844 | |
845 | for (unsigned i = m_block->predecessors.size(); i--;) { |
846 | BasicBlock* predecessor = m_block->predecessors[i]; |
847 | if (!seen.get(predecessor->index)) { |
848 | worklist.append(predecessor); |
849 | seen.set(predecessor->index); |
850 | } |
851 | } |
852 | |
853 | while (!worklist.isEmpty()) { |
854 | BasicBlock* block = worklist.takeLast(); |
855 | seenList.append(block); |
856 | |
857 | if (DFGCSEPhaseInternal::verbose) |
858 | dataLog(" Searching in block " , *block, "\n" ); |
859 | ImpureBlockData& data = m_impureDataMap[block]; |
860 | |
861 | // We require strict domination because this would only see things in our own block if |
862 | // they came *after* our position in the block. Clearly, while our block dominates |
863 | // itself, the things in the block after us don't dominate us. |
864 | if (m_graph.m_ssaDominators->strictlyDominates(block, m_block)) { |
865 | if (DFGCSEPhaseInternal::verbose) |
866 | dataLog(" It strictly dominates.\n" ); |
867 | DFG_ASSERT(m_graph, m_node, data.didVisit); |
868 | DFG_ASSERT(m_graph, m_node, !match); |
869 | match = data.availableAtTail.get(location); |
870 | if (DFGCSEPhaseInternal::verbose) |
871 | dataLog(" Availability: " , match, "\n" ); |
872 | if (!!match) { |
873 | // Don't examine the predecessors of a match. At this point we just want to |
874 | // establish that other blocks on the path from here to there don't clobber |
875 | // the location we're interested in. |
876 | continue; |
877 | } |
878 | } |
879 | |
880 | if (DFGCSEPhaseInternal::verbose) |
881 | dataLog(" Dealing with write set " , data.writes, "\n" ); |
882 | if (data.writes.overlaps(location.heap())) { |
883 | if (DFGCSEPhaseInternal::verbose) |
884 | dataLog(" Clobbered.\n" ); |
885 | return nullptr; |
886 | } |
887 | |
888 | for (unsigned i = block->predecessors.size(); i--;) { |
889 | BasicBlock* predecessor = block->predecessors[i]; |
890 | if (!seen.get(predecessor->index)) { |
891 | worklist.append(predecessor); |
892 | seen.set(predecessor->index); |
893 | } |
894 | } |
895 | } |
896 | |
897 | if (!match) |
898 | return nullptr; |
899 | |
900 | // Cache the results for next time. We cache them both for this block and for all of our |
901 | // predecessors, since even though we've already visited our predecessors, our predecessors |
902 | // probably have successors other than us. |
903 | // FIXME: Consider caching failed searches as well, when match is null. It's not clear that |
904 | // the reduction in compile time would warrant the increase in complexity, though. |
905 | // https://bugs.webkit.org/show_bug.cgi?id=134876 |
906 | for (BasicBlock* block : seenList) |
907 | m_impureDataMap[block].availableAtTail.add(location, match); |
908 | m_impureData->availableAtTail.add(location, match); |
909 | |
910 | return match; |
911 | } |
912 | |
913 | void def(HeapLocation location, LazyNode value) |
914 | { |
915 | if (DFGCSEPhaseInternal::verbose) |
916 | dataLog(" Got heap location def: " , location, " -> " , value, "\n" ); |
917 | |
918 | LazyNode match = findReplacement(location); |
919 | |
920 | if (DFGCSEPhaseInternal::verbose) |
921 | dataLog(" Got match: " , match, "\n" ); |
922 | |
923 | if (!match) { |
924 | if (DFGCSEPhaseInternal::verbose) |
925 | dataLog(" Adding at-tail mapping: " , location, " -> " , value, "\n" ); |
926 | auto result = m_impureData->availableAtTail.add(location, value); |
927 | ASSERT_UNUSED(result, !result); |
928 | return; |
929 | } |
930 | |
931 | if (value.isNode() && value.asNode() == m_node) { |
932 | if (!match.isNode()) { |
933 | // We need to properly record the constant in order to use an existing one if applicable. |
934 | // This ensures that re-running GCSE will not find new optimizations. |
935 | match.ensureIsNode(m_insertionSet, m_block, m_nodeIndex)->owner = m_block; |
936 | auto result = m_pureValues.add(PureValue(match.asNode(), match->constant()), Vector<Node*>()); |
937 | bool replaced = false; |
938 | if (!result.isNewEntry) { |
939 | for (unsigned i = result.iterator->value.size(); i--;) { |
940 | Node* candidate = result.iterator->value[i]; |
941 | if (m_graph.m_ssaDominators->dominates(candidate->owner, m_block)) { |
942 | ASSERT(candidate); |
943 | match->replaceWith(m_graph, candidate); |
944 | match.setNode(candidate); |
945 | replaced = true; |
946 | break; |
947 | } |
948 | } |
949 | } |
950 | if (!replaced) |
951 | result.iterator->value.append(match.asNode()); |
952 | } |
953 | ASSERT(match.asNode()); |
954 | m_node->replaceWith(m_graph, match.asNode()); |
955 | m_changed = true; |
956 | } |
957 | } |
958 | |
959 | struct ImpureBlockData { |
960 | ImpureBlockData() |
961 | : didVisit(false) |
962 | { |
963 | } |
964 | |
965 | ClobberSet writes; |
966 | ImpureMap availableAtTail; |
967 | bool didVisit; |
968 | }; |
969 | |
970 | Vector<BasicBlock*> m_preOrder; |
971 | |
972 | PureMultiMap m_pureValues; |
973 | BlockMap<ImpureBlockData> m_impureDataMap; |
974 | |
975 | BasicBlock* m_block; |
976 | Node* m_node; |
977 | unsigned m_nodeIndex; |
978 | ImpureBlockData* m_impureData; |
979 | ClobberSet m_writesSoFar; |
980 | InsertionSet m_insertionSet; |
981 | |
982 | bool m_changed; |
983 | }; |
984 | |
985 | } // anonymous namespace |
986 | |
987 | bool performLocalCSE(Graph& graph) |
988 | { |
989 | return runPhase<LocalCSEPhase>(graph); |
990 | } |
991 | |
992 | bool performGlobalCSE(Graph& graph) |
993 | { |
994 | return runPhase<GlobalCSEPhase>(graph); |
995 | } |
996 | |
997 | } } // namespace JSC::DFG |
998 | |
999 | #endif // ENABLE(DFG_JIT) |
1000 | |