1 | /* |
2 | * Copyright (C) 2016-2019 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "AirEmitShuffle.h" |
28 | |
29 | #if ENABLE(B3_JIT) |
30 | |
31 | #include "AirCode.h" |
32 | #include "AirInstInlines.h" |
33 | #include <wtf/GraphNodeWorklist.h> |
34 | #include <wtf/ListDump.h> |
35 | |
36 | namespace JSC { namespace B3 { namespace Air { |
37 | |
38 | namespace { |
39 | |
40 | namespace AirEmitShuffleInternal { |
41 | static constexpr bool verbose = false; |
42 | } |
43 | |
44 | template<typename Functor> |
45 | Tmp findPossibleScratch(Code& code, Bank bank, const Functor& functor) { |
46 | for (Reg reg : code.regsInPriorityOrder(bank)) { |
47 | Tmp tmp(reg); |
48 | if (functor(tmp)) |
49 | return tmp; |
50 | } |
51 | return Tmp(); |
52 | } |
53 | |
54 | Tmp findPossibleScratch(Code& code, Bank bank, const Arg& arg1, const Arg& arg2) { |
55 | return findPossibleScratch( |
56 | code, bank, |
57 | [&] (Tmp tmp) -> bool { |
58 | return !arg1.usesTmp(tmp) && !arg2.usesTmp(tmp); |
59 | }); |
60 | } |
61 | |
62 | // Example: (a => b, b => a, a => c, b => d) |
63 | struct Rotate { |
64 | Vector<ShufflePair> loop; // in the example, this is the loop: (a => b, b => a) |
65 | Vector<ShufflePair> fringe; // in the example, these are the associated shifts: (a => c, b => d) |
66 | }; |
67 | |
68 | } // anonymous namespace |
69 | |
70 | Bank ShufflePair::bank() const |
71 | { |
72 | if (src().isMemory() && dst().isMemory() && width() > pointerWidth()) { |
73 | // 8-byte memory-to-memory moves on a 32-bit platform are best handled as float moves. |
74 | return FP; |
75 | } |
76 | |
77 | if (src().isGP() && dst().isGP()) { |
78 | // This means that gpPairs gets memory-to-memory shuffles. The assumption is that we |
79 | // can do that more efficiently using GPRs, except in the special case above. |
80 | return GP; |
81 | } |
82 | |
83 | return FP; |
84 | } |
85 | |
86 | Vector<Inst, 2> ShufflePair::insts(Code& code, Value* origin) const |
87 | { |
88 | if (UNLIKELY(src().isMemory() && dst().isMemory())) |
89 | return { Inst(moveFor(bank(), width()), origin, src(), dst(), code.newTmp(bank())) }; |
90 | |
91 | if (isValidForm(moveFor(bank(), width()), src().kind(), dst().kind())) |
92 | return { Inst(moveFor(bank(), width()), origin, src(), dst()) }; |
93 | |
94 | // We must be a store immediate or a move immediate if we reach here. The reason: |
95 | // 1. We're not a mem->mem move, given the above check. |
96 | // 2. It's always valid to do a load from Addr into a tmp using Move/Move32/MoveFloat/MoveDouble. |
97 | ASSERT(isValidForm(moveFor(bank(), width()), Arg::Addr, Arg::Tmp)); |
98 | // 3. It's also always valid to do a Tmp->Tmp move. |
99 | ASSERT(isValidForm(moveFor(bank(), width()), Arg::Tmp, Arg::Tmp)); |
100 | // 4. It's always valid to do a Tmp->Addr store. |
101 | ASSERT(isValidForm(moveFor(bank(), width()), Arg::Tmp, Arg::Addr)); |
102 | |
103 | ASSERT(src().isSomeImm()); |
104 | Tmp tmp = code.newTmp(bank()); |
105 | ASSERT(isValidForm(Move, Arg::BigImm, Arg::Tmp)); |
106 | ASSERT(isValidForm(moveFor(bank(), width()), Arg::Tmp, dst().kind())); |
107 | return { |
108 | Inst(Move, origin, Arg::bigImm(src().value()), tmp), |
109 | Inst(moveFor(bank(), width()), origin, tmp, dst()), |
110 | }; |
111 | } |
112 | |
113 | void ShufflePair::dump(PrintStream& out) const |
114 | { |
115 | out.print(width(), ":" , src(), "=>" , dst()); |
116 | } |
117 | |
118 | Inst createShuffle(Value* origin, const Vector<ShufflePair>& pairs) |
119 | { |
120 | Inst result(Shuffle, origin); |
121 | for (const ShufflePair& pair : pairs) |
122 | result.append(pair.src(), pair.dst(), Arg::widthArg(pair.width())); |
123 | return result; |
124 | } |
125 | |
126 | Vector<Inst> emitShuffle( |
127 | Code& code, Vector<ShufflePair> pairs, std::array<Arg, 2> scratches, Bank bank, |
128 | Value* origin) |
129 | { |
130 | if (AirEmitShuffleInternal::verbose) { |
131 | dataLog( |
132 | "Dealing with pairs: " , listDump(pairs), " and scratches " , scratches[0], ", " , |
133 | scratches[1], "\n" ); |
134 | } |
135 | |
136 | pairs.removeAllMatching( |
137 | [&] (const ShufflePair& pair) -> bool { |
138 | return pair.src() == pair.dst(); |
139 | }); |
140 | |
141 | // First validate that this is the kind of shuffle that we know how to deal with. |
142 | #if !ASSERT_DISABLED |
143 | for (const ShufflePair& pair : pairs) { |
144 | ASSERT(pair.src().isBank(bank)); |
145 | ASSERT(pair.dst().isBank(bank)); |
146 | ASSERT(pair.dst().isTmp() || pair.dst().isMemory()); |
147 | } |
148 | #endif // !ASSERT_DISABLED |
149 | |
150 | // There are two possible kinds of operations that we will do: |
151 | // |
152 | // - Shift. Example: (a => b, b => c). We emit this as "Move b, c; Move a, b". This only requires |
153 | // scratch registers if there are memory->memory moves. We want to find as many of these as |
154 | // possible because they are cheaper. Note that shifts can involve the same source mentioned |
155 | // multiple times. Example: (a => b, a => c, b => d, b => e). |
156 | // |
157 | // - Rotate. Example: (a => b, b => a). We want to emit this as "Swap a, b", but that instruction |
158 | // may not be available, in which case we may need a scratch register or a scratch memory |
159 | // location. A gnarlier example is (a => b, b => c, c => a). We can emit this as "Swap b, c; |
160 | // Swap a, b". Note that swapping has to be careful about differing widths. |
161 | // |
162 | // Note that a rotate can have "fringe". For example, we might have (a => b, b => a, a =>c, |
163 | // b => d). This has a rotate loop (a => b, b => a) and some fringe (a => c, b => d). We treat |
164 | // the whole thing as a single rotate. |
165 | // |
166 | // We will find multiple disjoint such operations. We can execute them in any order. |
167 | |
168 | // We interpret these as Moves that should be executed backwards. All shifts are keyed by their |
169 | // starting source. |
170 | HashMap<Arg, Vector<ShufflePair>> shifts; |
171 | |
172 | // We interpret these as Swaps over src()'s that should be executed backwards, i.e. for a list |
173 | // of size 3 we would do "Swap list[1].src(), list[2].src(); Swap list[0].src(), list[1].src()". |
174 | // Note that we actually can't do that if the widths don't match or other bad things happen. |
175 | // But, prior to executing all of that, we need to execute the fringe: the shifts comming off the |
176 | // rotate. |
177 | Vector<Rotate> rotates; |
178 | |
179 | { |
180 | HashMap<Arg, Vector<ShufflePair>> mapping; |
181 | for (const ShufflePair& pair : pairs) |
182 | mapping.add(pair.src(), Vector<ShufflePair>()).iterator->value.append(pair); |
183 | |
184 | Vector<ShufflePair> currentPairs; |
185 | |
186 | while (!mapping.isEmpty()) { |
187 | ASSERT(currentPairs.isEmpty()); |
188 | Arg originalSrc = mapping.begin()->key; |
189 | ASSERT(!shifts.contains(originalSrc)); |
190 | if (AirEmitShuffleInternal::verbose) |
191 | dataLog("Processing from " , originalSrc, "\n" ); |
192 | |
193 | GraphNodeWorklist<Arg> worklist; |
194 | worklist.push(originalSrc); |
195 | while (Arg src = worklist.pop()) { |
196 | HashMap<Arg, Vector<ShufflePair>>::iterator iter = mapping.find(src); |
197 | if (iter == mapping.end()) { |
198 | // With a shift it's possible that we previously built the tail of this shift. |
199 | // See if that's the case now. |
200 | if (AirEmitShuffleInternal::verbose) |
201 | dataLog("Trying to append shift at " , src, "\n" ); |
202 | currentPairs.appendVector(shifts.take(src)); |
203 | continue; |
204 | } |
205 | Vector<ShufflePair> pairs = WTFMove(iter->value); |
206 | mapping.remove(iter); |
207 | |
208 | for (const ShufflePair& pair : pairs) { |
209 | currentPairs.append(pair); |
210 | ASSERT(pair.src() == src); |
211 | worklist.push(pair.dst()); |
212 | } |
213 | } |
214 | |
215 | ASSERT(currentPairs.size()); |
216 | ASSERT(currentPairs[0].src() == originalSrc); |
217 | |
218 | if (AirEmitShuffleInternal::verbose) |
219 | dataLog("currentPairs = " , listDump(currentPairs), "\n" ); |
220 | |
221 | bool isRotate = false; |
222 | for (const ShufflePair& pair : currentPairs) { |
223 | if (pair.dst() == originalSrc) { |
224 | isRotate = true; |
225 | break; |
226 | } |
227 | } |
228 | |
229 | if (isRotate) { |
230 | if (AirEmitShuffleInternal::verbose) |
231 | dataLog("It's a rotate.\n" ); |
232 | Rotate rotate; |
233 | |
234 | // The common case is that the rotate does not have fringe. The only way to |
235 | // check for this is to examine the whole rotate. |
236 | bool ok; |
237 | if (currentPairs.last().dst() == originalSrc) { |
238 | ok = true; |
239 | for (unsigned i = currentPairs.size() - 1; i--;) |
240 | ok &= currentPairs[i].dst() == currentPairs[i + 1].src(); |
241 | } else |
242 | ok = false; |
243 | |
244 | if (ok) |
245 | rotate.loop = WTFMove(currentPairs); |
246 | else { |
247 | // This is the slow path. The rotate has fringe. |
248 | |
249 | HashMap<Arg, ShufflePair> dstMapping; |
250 | for (const ShufflePair& pair : currentPairs) |
251 | dstMapping.add(pair.dst(), pair); |
252 | |
253 | ShufflePair pair = dstMapping.take(originalSrc); |
254 | for (;;) { |
255 | rotate.loop.append(pair); |
256 | |
257 | auto iter = dstMapping.find(pair.src()); |
258 | if (iter == dstMapping.end()) |
259 | break; |
260 | pair = iter->value; |
261 | dstMapping.remove(iter); |
262 | } |
263 | |
264 | rotate.loop.reverse(); |
265 | |
266 | // Make sure that the fringe appears in the same order as how it appeared in the |
267 | // currentPairs, since that's the DFS order. |
268 | for (const ShufflePair& pair : currentPairs) { |
269 | // But of course we only include it if it's not in the loop. |
270 | if (dstMapping.contains(pair.dst())) |
271 | rotate.fringe.append(pair); |
272 | } |
273 | } |
274 | |
275 | // If the graph search terminates because we returned to the first source, then the |
276 | // pair list has to have a very particular shape. |
277 | for (unsigned i = rotate.loop.size() - 1; i--;) |
278 | ASSERT(rotate.loop[i].dst() == rotate.loop[i + 1].src()); |
279 | rotates.append(WTFMove(rotate)); |
280 | currentPairs.shrink(0); |
281 | } else { |
282 | if (AirEmitShuffleInternal::verbose) |
283 | dataLog("It's a shift.\n" ); |
284 | shifts.add(originalSrc, WTFMove(currentPairs)); |
285 | } |
286 | } |
287 | } |
288 | |
289 | if (AirEmitShuffleInternal::verbose) { |
290 | dataLog("Shifts:\n" ); |
291 | for (auto& entry : shifts) |
292 | dataLog(" " , entry.key, ": " , listDump(entry.value), "\n" ); |
293 | dataLog("Rotates:\n" ); |
294 | for (auto& rotate : rotates) |
295 | dataLog(" loop = " , listDump(rotate.loop), ", fringe = " , listDump(rotate.fringe), "\n" ); |
296 | } |
297 | |
298 | // In the worst case, we need two scratch registers. The way we do this is that the client passes |
299 | // us what scratch registers he happens to have laying around. We will need scratch registers in |
300 | // the following cases: |
301 | // |
302 | // - Shuffle pairs where both src and dst refer to memory. |
303 | // - Rotate when no Swap instruction is available. |
304 | // |
305 | // Lucky for us, we are guaranteed to have extra scratch registers anytime we have a Shift that |
306 | // ends with a register. We search for such a register right now. |
307 | |
308 | auto moveForWidth = [&] (Width width) -> Opcode { |
309 | return moveFor(bank, width); |
310 | }; |
311 | |
312 | Opcode conservativeMove = moveForWidth(conservativeWidth(bank)); |
313 | |
314 | // We will emit things in reverse. We maintain a list of packs of instructions, and then we emit |
315 | // append them together in reverse (for example the thing at the end of resultPacks is placed |
316 | // first). This is useful because the last thing we emit frees up its destination registers, so |
317 | // it affects how we emit things before it. |
318 | Vector<Vector<Inst>> resultPacks; |
319 | Vector<Inst> result; |
320 | |
321 | auto commitResult = [&] () { |
322 | resultPacks.append(WTFMove(result)); |
323 | }; |
324 | |
325 | auto getScratch = [&] (unsigned index, Tmp possibleScratch) -> Tmp { |
326 | if (scratches[index].isTmp()) |
327 | return scratches[index].tmp(); |
328 | |
329 | if (!possibleScratch) |
330 | return Tmp(); |
331 | result.append(Inst(conservativeMove, origin, possibleScratch, scratches[index])); |
332 | return possibleScratch; |
333 | }; |
334 | |
335 | auto returnScratch = [&] (unsigned index, Tmp tmp) { |
336 | if (Arg(tmp) != scratches[index]) |
337 | result.append(Inst(conservativeMove, origin, scratches[index], tmp)); |
338 | }; |
339 | |
340 | auto handleShiftPair = [&] (const ShufflePair& pair, unsigned scratchIndex) { |
341 | Opcode move = moveForWidth(pair.width()); |
342 | |
343 | if (!isValidForm(move, pair.src().kind(), pair.dst().kind())) { |
344 | Tmp scratch = |
345 | getScratch(scratchIndex, findPossibleScratch(code, bank, pair.src(), pair.dst())); |
346 | RELEASE_ASSERT(scratch); |
347 | if (isValidForm(move, pair.src().kind(), Arg::Tmp)) |
348 | result.append(Inst(moveForWidth(pair.width()), origin, pair.src(), scratch)); |
349 | else { |
350 | ASSERT(pair.src().isSomeImm()); |
351 | ASSERT(move == Move32); |
352 | result.append(Inst(Move, origin, Arg::bigImm(pair.src().value()), scratch)); |
353 | } |
354 | result.append(Inst(moveForWidth(pair.width()), origin, scratch, pair.dst())); |
355 | returnScratch(scratchIndex, scratch); |
356 | return; |
357 | } |
358 | |
359 | result.append(Inst(move, origin, pair.src(), pair.dst())); |
360 | }; |
361 | |
362 | auto handleShift = [&] (Vector<ShufflePair>& shift) { |
363 | // FIXME: We could optimize the spill behavior of the shifter by checking if any of the |
364 | // shifts need spills. If they do, then we could try to get a register out here. Note that |
365 | // this may fail where the current strategy succeeds: out here we need a register that does |
366 | // not interfere with any of the shifts, while the current strategy only needs to find a |
367 | // scratch register that does not interfer with a particular shift. So, this optimization |
368 | // will be opportunistic: if it succeeds, then the individual shifts can use that scratch, |
369 | // otherwise they will do what they do now. |
370 | |
371 | for (unsigned i = shift.size(); i--;) |
372 | handleShiftPair(shift[i], 0); |
373 | |
374 | Arg lastDst = shift.last().dst(); |
375 | if (lastDst.isTmp()) { |
376 | for (Arg& scratch : scratches) { |
377 | ASSERT(scratch != lastDst); |
378 | if (!scratch.isTmp()) { |
379 | scratch = lastDst; |
380 | break; |
381 | } |
382 | } |
383 | } |
384 | }; |
385 | |
386 | // First handle shifts whose last destination is a tmp because these free up scratch registers. |
387 | // These end up last in the final sequence, so the final destination of these shifts will be |
388 | // available as a scratch location for anything emitted prior (so, after, since we're emitting in |
389 | // reverse). |
390 | for (auto& entry : shifts) { |
391 | Vector<ShufflePair>& shift = entry.value; |
392 | if (shift.last().dst().isTmp()) |
393 | handleShift(shift); |
394 | commitResult(); |
395 | } |
396 | |
397 | // Now handle the rest of the shifts. |
398 | for (auto& entry : shifts) { |
399 | Vector<ShufflePair>& shift = entry.value; |
400 | if (!shift.last().dst().isTmp()) |
401 | handleShift(shift); |
402 | commitResult(); |
403 | } |
404 | |
405 | for (Rotate& rotate : rotates) { |
406 | if (!rotate.fringe.isEmpty()) { |
407 | // Make sure we do the fringe first! This won't clobber any of the registers that are |
408 | // part of the rotation. |
409 | handleShift(rotate.fringe); |
410 | } |
411 | |
412 | bool canSwap = false; |
413 | Opcode swap = Oops; |
414 | Width swapWidth = Width8; // bogus value |
415 | |
416 | // Currently, the swap instruction is not available for floating point on any architecture we |
417 | // support. |
418 | if (bank == GP) { |
419 | // Figure out whether we will be doing 64-bit swaps or 32-bit swaps. If we have a mix of |
420 | // widths we handle that by fixing up the relevant register with zero-extends. |
421 | swap = Swap32; |
422 | swapWidth = Width32; |
423 | bool hasMemory = false; |
424 | bool hasIndex = false; |
425 | for (ShufflePair& pair : rotate.loop) { |
426 | switch (pair.width()) { |
427 | case Width32: |
428 | break; |
429 | case Width64: |
430 | swap = Swap64; |
431 | swapWidth = Width64; |
432 | break; |
433 | default: |
434 | RELEASE_ASSERT_NOT_REACHED(); |
435 | break; |
436 | } |
437 | |
438 | hasMemory |= pair.src().isMemory() || pair.dst().isMemory(); |
439 | hasIndex |= pair.src().isIndex() || pair.dst().isIndex(); |
440 | } |
441 | |
442 | canSwap = isValidForm(swap, Arg::Tmp, Arg::Tmp); |
443 | |
444 | // We can totally use swaps even if there are shuffles involving memory. But, we play it |
445 | // safe in that case. There are corner cases we don't handle, and our ability to do it is |
446 | // contingent upon swap form availability. |
447 | |
448 | if (hasMemory) { |
449 | canSwap &= isValidForm(swap, Arg::Tmp, Arg::Addr); |
450 | |
451 | // We don't take the swapping path if there is a mix of widths and some of the |
452 | // shuffles involve memory. That gets too confusing. We might be able to relax this |
453 | // to only bail if there are subwidth pairs involving memory, but I haven't thought |
454 | // about it very hard. Anyway, this case is not common: rotates involving memory |
455 | // don't arise for function calls, and they will only happen for rotates in user code |
456 | // if some of the variables get spilled. It's hard to imagine a program that rotates |
457 | // data around in variables while also doing a combination of uint32->uint64 and |
458 | // int64->int32 casts. |
459 | for (ShufflePair& pair : rotate.loop) |
460 | canSwap &= pair.width() == swapWidth; |
461 | } |
462 | |
463 | if (hasIndex) |
464 | canSwap &= isValidForm(swap, Arg::Tmp, Arg::Index); |
465 | } |
466 | |
467 | if (canSwap) { |
468 | for (unsigned i = rotate.loop.size() - 1; i--;) { |
469 | Arg left = rotate.loop[i].src(); |
470 | Arg right = rotate.loop[i + 1].src(); |
471 | |
472 | if (left.isMemory() && right.isMemory()) { |
473 | // Note that this is a super rare outcome. Rotates are rare. Spills are rare. |
474 | // Moving data between two spills is rare. To get here a lot of rare stuff has to |
475 | // all happen at once. |
476 | |
477 | Tmp scratch = getScratch(0, findPossibleScratch(code, bank, left, right)); |
478 | RELEASE_ASSERT(scratch); |
479 | result.append(Inst(moveForWidth(swapWidth), origin, left, scratch)); |
480 | result.append(Inst(swap, origin, scratch, right)); |
481 | result.append(Inst(moveForWidth(swapWidth), origin, scratch, left)); |
482 | returnScratch(0, scratch); |
483 | continue; |
484 | } |
485 | |
486 | if (left.isMemory()) |
487 | std::swap(left, right); |
488 | |
489 | result.append(Inst(swap, origin, left, right)); |
490 | } |
491 | |
492 | for (ShufflePair pair : rotate.loop) { |
493 | if (pair.width() == swapWidth) |
494 | continue; |
495 | |
496 | RELEASE_ASSERT(pair.width() == Width32); |
497 | RELEASE_ASSERT(swapWidth == Width64); |
498 | RELEASE_ASSERT(pair.dst().isTmp()); |
499 | |
500 | // Need to do an extra zero extension. |
501 | result.append(Inst(Move32, origin, pair.dst(), pair.dst())); |
502 | } |
503 | } else { |
504 | // We can treat this as a shift so long as we take the last destination (i.e. first |
505 | // source) and save it first. Then we handle the first entry in the pair in the rotate |
506 | // specially, after we restore the last destination. This requires some special care to |
507 | // find a scratch register. It's possible that we have a rotate that uses the entire |
508 | // available register file. |
509 | |
510 | Tmp scratch = findPossibleScratch( |
511 | code, bank, |
512 | [&] (Tmp tmp) -> bool { |
513 | for (ShufflePair pair : rotate.loop) { |
514 | if (pair.src().usesTmp(tmp)) |
515 | return false; |
516 | if (pair.dst().usesTmp(tmp)) |
517 | return false; |
518 | } |
519 | return true; |
520 | }); |
521 | |
522 | // NOTE: This is the most likely use of scratch registers. |
523 | scratch = getScratch(0, scratch); |
524 | |
525 | // We may not have found a scratch register. When this happens, we can just use the spill |
526 | // slot directly. |
527 | Arg rotateSave = scratch ? Arg(scratch) : scratches[0]; |
528 | |
529 | handleShiftPair( |
530 | ShufflePair(rotate.loop.last().dst(), rotateSave, rotate.loop[0].width()), 1); |
531 | |
532 | for (unsigned i = rotate.loop.size(); i-- > 1;) |
533 | handleShiftPair(rotate.loop[i], 1); |
534 | |
535 | handleShiftPair( |
536 | ShufflePair(rotateSave, rotate.loop[0].dst(), rotate.loop[0].width()), 1); |
537 | |
538 | if (scratch) |
539 | returnScratch(0, scratch); |
540 | } |
541 | |
542 | commitResult(); |
543 | } |
544 | |
545 | ASSERT(result.isEmpty()); |
546 | |
547 | for (unsigned i = resultPacks.size(); i--;) |
548 | result.appendVector(resultPacks[i]); |
549 | |
550 | return result; |
551 | } |
552 | |
553 | Vector<Inst> emitShuffle( |
554 | Code& code, const Vector<ShufflePair>& pairs, |
555 | const std::array<Arg, 2>& gpScratch, const std::array<Arg, 2>& fpScratch, |
556 | Value* origin) |
557 | { |
558 | Vector<ShufflePair> gpPairs; |
559 | Vector<ShufflePair> fpPairs; |
560 | for (const ShufflePair& pair : pairs) { |
561 | switch (pair.bank()) { |
562 | case GP: |
563 | gpPairs.append(pair); |
564 | break; |
565 | case FP: |
566 | fpPairs.append(pair); |
567 | break; |
568 | } |
569 | } |
570 | |
571 | Vector<Inst> result; |
572 | result.appendVector(emitShuffle(code, gpPairs, gpScratch, GP, origin)); |
573 | result.appendVector(emitShuffle(code, fpPairs, fpScratch, FP, origin)); |
574 | return result; |
575 | } |
576 | |
577 | } } } // namespace JSC::B3::Air |
578 | |
579 | #endif // ENABLE(B3_JIT) |
580 | |
581 | |