1 | /* |
2 | * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #if ENABLE(ASSEMBLER) |
29 | |
30 | #include "JSCJSValue.h" |
31 | |
32 | #if CPU(ARM_THUMB2) |
33 | #define TARGET_ASSEMBLER ARMv7Assembler |
34 | #define TARGET_MACROASSEMBLER MacroAssemblerARMv7 |
35 | #include "MacroAssemblerARMv7.h" |
36 | namespace JSC { typedef MacroAssemblerARMv7 MacroAssemblerBase; }; |
37 | |
38 | #elif CPU(ARM64E) |
39 | #define TARGET_ASSEMBLER ARM64EAssembler |
40 | #define TARGET_MACROASSEMBLER MacroAssemblerARM64E |
41 | #include "MacroAssemblerARM64E.h" |
42 | |
43 | #elif CPU(ARM64) |
44 | #define TARGET_ASSEMBLER ARM64Assembler |
45 | #define TARGET_MACROASSEMBLER MacroAssemblerARM64 |
46 | #include "MacroAssemblerARM64.h" |
47 | |
48 | #elif CPU(MIPS) |
49 | #define TARGET_ASSEMBLER MIPSAssembler |
50 | #define TARGET_MACROASSEMBLER MacroAssemblerMIPS |
51 | #include "MacroAssemblerMIPS.h" |
52 | |
53 | #elif CPU(X86) |
54 | #define TARGET_ASSEMBLER X86Assembler |
55 | #define TARGET_MACROASSEMBLER MacroAssemblerX86 |
56 | #include "MacroAssemblerX86.h" |
57 | |
58 | #elif CPU(X86_64) |
59 | #define TARGET_ASSEMBLER X86Assembler |
60 | #define TARGET_MACROASSEMBLER MacroAssemblerX86_64 |
61 | #include "MacroAssemblerX86_64.h" |
62 | |
63 | #else |
64 | #error "The MacroAssembler is not supported on this platform." |
65 | #endif |
66 | |
67 | #include "MacroAssemblerHelpers.h" |
68 | |
69 | namespace WTF { |
70 | |
71 | template<typename FunctionType> |
72 | class ScopedLambda; |
73 | |
74 | } // namespace WTF |
75 | |
76 | namespace JSC { |
77 | |
78 | #if ENABLE(MASM_PROBE) |
79 | namespace Probe { |
80 | |
81 | class Context; |
82 | typedef void (*Function)(Context&); |
83 | |
84 | } // namespace Probe |
85 | #endif // ENABLE(MASM_PROBE) |
86 | |
87 | namespace Printer { |
88 | |
89 | struct PrintRecord; |
90 | typedef Vector<PrintRecord> PrintRecordList; |
91 | |
92 | } // namespace Printer |
93 | |
94 | using MacroAssemblerBase = TARGET_MACROASSEMBLER; |
95 | |
96 | class MacroAssembler : public MacroAssemblerBase { |
97 | public: |
98 | |
99 | static constexpr RegisterID nextRegister(RegisterID reg) |
100 | { |
101 | return static_cast<RegisterID>(reg + 1); |
102 | } |
103 | |
104 | static constexpr FPRegisterID nextFPRegister(FPRegisterID reg) |
105 | { |
106 | return static_cast<FPRegisterID>(reg + 1); |
107 | } |
108 | |
109 | static constexpr unsigned registerIndex(RegisterID reg) |
110 | { |
111 | return reg - firstRegister(); |
112 | } |
113 | |
114 | static constexpr unsigned fpRegisterIndex(FPRegisterID reg) |
115 | { |
116 | return reg - firstFPRegister(); |
117 | } |
118 | |
119 | static constexpr unsigned registerIndex(FPRegisterID reg) |
120 | { |
121 | return fpRegisterIndex(reg) + numberOfRegisters(); |
122 | } |
123 | |
124 | static constexpr unsigned totalNumberOfRegisters() |
125 | { |
126 | return numberOfRegisters() + numberOfFPRegisters(); |
127 | } |
128 | |
129 | using MacroAssemblerBase::pop; |
130 | using MacroAssemblerBase::jump; |
131 | using MacroAssemblerBase::farJump; |
132 | using MacroAssemblerBase::branch32; |
133 | using MacroAssemblerBase::compare32; |
134 | using MacroAssemblerBase::move; |
135 | using MacroAssemblerBase::moveDouble; |
136 | using MacroAssemblerBase::add32; |
137 | using MacroAssemblerBase::mul32; |
138 | using MacroAssemblerBase::and32; |
139 | using MacroAssemblerBase::branchAdd32; |
140 | using MacroAssemblerBase::branchMul32; |
141 | #if CPU(ARM64) || CPU(ARM_THUMB2) || CPU(X86_64) || CPU(MIPS) |
142 | using MacroAssemblerBase::branchPtr; |
143 | #endif |
144 | using MacroAssemblerBase::branchSub32; |
145 | using MacroAssemblerBase::lshift32; |
146 | using MacroAssemblerBase::or32; |
147 | using MacroAssemblerBase::rshift32; |
148 | using MacroAssemblerBase::store32; |
149 | using MacroAssemblerBase::sub32; |
150 | using MacroAssemblerBase::urshift32; |
151 | using MacroAssemblerBase::xor32; |
152 | |
153 | static bool isPtrAlignedAddressOffset(ptrdiff_t value) |
154 | { |
155 | return value == static_cast<int32_t>(value); |
156 | } |
157 | |
158 | static const double twoToThe32; // This is super useful for some double code. |
159 | |
160 | // Utilities used by the DFG JIT. |
161 | using AbstractMacroAssemblerBase::invert; |
162 | using MacroAssemblerBase::invert; |
163 | |
164 | static DoubleCondition invert(DoubleCondition cond) |
165 | { |
166 | switch (cond) { |
167 | case DoubleEqual: |
168 | return DoubleNotEqualOrUnordered; |
169 | case DoubleNotEqual: |
170 | return DoubleEqualOrUnordered; |
171 | case DoubleGreaterThan: |
172 | return DoubleLessThanOrEqualOrUnordered; |
173 | case DoubleGreaterThanOrEqual: |
174 | return DoubleLessThanOrUnordered; |
175 | case DoubleLessThan: |
176 | return DoubleGreaterThanOrEqualOrUnordered; |
177 | case DoubleLessThanOrEqual: |
178 | return DoubleGreaterThanOrUnordered; |
179 | case DoubleEqualOrUnordered: |
180 | return DoubleNotEqual; |
181 | case DoubleNotEqualOrUnordered: |
182 | return DoubleEqual; |
183 | case DoubleGreaterThanOrUnordered: |
184 | return DoubleLessThanOrEqual; |
185 | case DoubleGreaterThanOrEqualOrUnordered: |
186 | return DoubleLessThan; |
187 | case DoubleLessThanOrUnordered: |
188 | return DoubleGreaterThanOrEqual; |
189 | case DoubleLessThanOrEqualOrUnordered: |
190 | return DoubleGreaterThan; |
191 | } |
192 | RELEASE_ASSERT_NOT_REACHED(); |
193 | return DoubleEqual; // make compiler happy |
194 | } |
195 | |
196 | static bool isInvertible(ResultCondition cond) |
197 | { |
198 | switch (cond) { |
199 | case Zero: |
200 | case NonZero: |
201 | case Signed: |
202 | case PositiveOrZero: |
203 | return true; |
204 | default: |
205 | return false; |
206 | } |
207 | } |
208 | |
209 | static ResultCondition invert(ResultCondition cond) |
210 | { |
211 | switch (cond) { |
212 | case Zero: |
213 | return NonZero; |
214 | case NonZero: |
215 | return Zero; |
216 | case Signed: |
217 | return PositiveOrZero; |
218 | case PositiveOrZero: |
219 | return Signed; |
220 | default: |
221 | RELEASE_ASSERT_NOT_REACHED(); |
222 | return Zero; // Make compiler happy for release builds. |
223 | } |
224 | } |
225 | |
226 | static RelationalCondition flip(RelationalCondition cond) |
227 | { |
228 | switch (cond) { |
229 | case Equal: |
230 | case NotEqual: |
231 | return cond; |
232 | case Above: |
233 | return Below; |
234 | case AboveOrEqual: |
235 | return BelowOrEqual; |
236 | case Below: |
237 | return Above; |
238 | case BelowOrEqual: |
239 | return AboveOrEqual; |
240 | case GreaterThan: |
241 | return LessThan; |
242 | case GreaterThanOrEqual: |
243 | return LessThanOrEqual; |
244 | case LessThan: |
245 | return GreaterThan; |
246 | case LessThanOrEqual: |
247 | return GreaterThanOrEqual; |
248 | } |
249 | |
250 | RELEASE_ASSERT_NOT_REACHED(); |
251 | return Equal; |
252 | } |
253 | |
254 | static bool isSigned(RelationalCondition cond) |
255 | { |
256 | return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond); |
257 | } |
258 | |
259 | static bool isUnsigned(RelationalCondition cond) |
260 | { |
261 | return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond); |
262 | } |
263 | |
264 | static bool isSigned(ResultCondition cond) |
265 | { |
266 | return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond); |
267 | } |
268 | |
269 | static bool isUnsigned(ResultCondition cond) |
270 | { |
271 | return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond); |
272 | } |
273 | |
274 | // Platform agnostic convenience functions, |
275 | // described in terms of other macro assembly methods. |
276 | void pop() |
277 | { |
278 | addPtr(TrustedImm32(sizeof(void*)), stackPointerRegister); |
279 | } |
280 | |
281 | void peek(RegisterID dest, int index = 0) |
282 | { |
283 | loadPtr(Address(stackPointerRegister, (index * sizeof(void*))), dest); |
284 | } |
285 | |
286 | Address addressForPoke(int index) |
287 | { |
288 | return Address(stackPointerRegister, (index * sizeof(void*))); |
289 | } |
290 | |
291 | void poke(RegisterID src, int index = 0) |
292 | { |
293 | storePtr(src, addressForPoke(index)); |
294 | } |
295 | |
296 | void poke(TrustedImm32 value, int index = 0) |
297 | { |
298 | store32(value, addressForPoke(index)); |
299 | } |
300 | |
301 | void poke(TrustedImmPtr imm, int index = 0) |
302 | { |
303 | storePtr(imm, addressForPoke(index)); |
304 | } |
305 | |
306 | void poke(FPRegisterID src, int index = 0) |
307 | { |
308 | storeDouble(src, addressForPoke(index)); |
309 | } |
310 | |
311 | #if !CPU(ARM64) |
312 | void pushToSave(RegisterID src) |
313 | { |
314 | push(src); |
315 | } |
316 | void pushToSaveImmediateWithoutTouchingRegisters(TrustedImm32 imm) |
317 | { |
318 | push(imm); |
319 | } |
320 | void popToRestore(RegisterID dest) |
321 | { |
322 | pop(dest); |
323 | } |
324 | void pushToSave(FPRegisterID src) |
325 | { |
326 | subPtr(TrustedImm32(sizeof(double)), stackPointerRegister); |
327 | storeDouble(src, stackPointerRegister); |
328 | } |
329 | void popToRestore(FPRegisterID dest) |
330 | { |
331 | loadDouble(stackPointerRegister, dest); |
332 | addPtr(TrustedImm32(sizeof(double)), stackPointerRegister); |
333 | } |
334 | |
335 | static ptrdiff_t pushToSaveByteOffset() { return sizeof(void*); } |
336 | #endif // !CPU(ARM64) |
337 | |
338 | #if CPU(X86_64) || CPU(ARM64) |
339 | void peek64(RegisterID dest, int index = 0) |
340 | { |
341 | load64(Address(stackPointerRegister, (index * sizeof(void*))), dest); |
342 | } |
343 | |
344 | void poke(TrustedImm64 value, int index = 0) |
345 | { |
346 | store64(value, addressForPoke(index)); |
347 | } |
348 | |
349 | void poke64(RegisterID src, int index = 0) |
350 | { |
351 | store64(src, addressForPoke(index)); |
352 | } |
353 | #endif |
354 | |
355 | // Immediate shifts only have 5 controllable bits |
356 | // so we'll consider them safe for now. |
357 | TrustedImm32 trustedImm32ForShift(Imm32 imm) |
358 | { |
359 | return TrustedImm32(imm.asTrustedImm32().m_value & 31); |
360 | } |
361 | |
362 | // Backwards banches, these are currently all implemented using existing forwards branch mechanisms. |
363 | void branchPtr(RelationalCondition cond, RegisterID op1, TrustedImmPtr imm, Label target) |
364 | { |
365 | branchPtr(cond, op1, imm).linkTo(target, this); |
366 | } |
367 | void branchPtr(RelationalCondition cond, RegisterID op1, ImmPtr imm, Label target) |
368 | { |
369 | branchPtr(cond, op1, imm).linkTo(target, this); |
370 | } |
371 | |
372 | Jump branch32(RelationalCondition cond, RegisterID left, AbsoluteAddress right) |
373 | { |
374 | return branch32(flip(cond), right, left); |
375 | } |
376 | |
377 | void branch32(RelationalCondition cond, RegisterID op1, RegisterID op2, Label target) |
378 | { |
379 | branch32(cond, op1, op2).linkTo(target, this); |
380 | } |
381 | |
382 | void branch32(RelationalCondition cond, RegisterID op1, TrustedImm32 imm, Label target) |
383 | { |
384 | branch32(cond, op1, imm).linkTo(target, this); |
385 | } |
386 | |
387 | void branch32(RelationalCondition cond, RegisterID op1, Imm32 imm, Label target) |
388 | { |
389 | branch32(cond, op1, imm).linkTo(target, this); |
390 | } |
391 | |
392 | void branch32(RelationalCondition cond, RegisterID left, Address right, Label target) |
393 | { |
394 | branch32(cond, left, right).linkTo(target, this); |
395 | } |
396 | |
397 | Jump branch32(RelationalCondition cond, TrustedImm32 left, RegisterID right) |
398 | { |
399 | return branch32(commute(cond), right, left); |
400 | } |
401 | |
402 | Jump branch32(RelationalCondition cond, Imm32 left, RegisterID right) |
403 | { |
404 | return branch32(commute(cond), right, left); |
405 | } |
406 | |
407 | void compare32(RelationalCondition cond, Imm32 left, RegisterID right, RegisterID dest) |
408 | { |
409 | compare32(commute(cond), right, left, dest); |
410 | } |
411 | |
412 | void branchTestPtr(ResultCondition cond, RegisterID reg, Label target) |
413 | { |
414 | branchTestPtr(cond, reg).linkTo(target, this); |
415 | } |
416 | |
417 | #if !CPU(ARM_THUMB2) && !CPU(ARM64) |
418 | PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right = TrustedImmPtr(nullptr)) |
419 | { |
420 | return PatchableJump(branchPtr(cond, left, right)); |
421 | } |
422 | |
423 | PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr)) |
424 | { |
425 | return PatchableJump(branchPtrWithPatch(cond, left, dataLabel, initialRightValue)); |
426 | } |
427 | |
428 | PatchableJump patchableBranch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0)) |
429 | { |
430 | return PatchableJump(branch32WithPatch(cond, left, dataLabel, initialRightValue)); |
431 | } |
432 | |
433 | PatchableJump patchableJump() |
434 | { |
435 | return PatchableJump(jump()); |
436 | } |
437 | |
438 | PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
439 | { |
440 | return PatchableJump(branchTest32(cond, reg, mask)); |
441 | } |
442 | |
443 | PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm) |
444 | { |
445 | return PatchableJump(branch32(cond, reg, imm)); |
446 | } |
447 | |
448 | PatchableJump patchableBranch8(RelationalCondition cond, Address address, TrustedImm32 imm) |
449 | { |
450 | return PatchableJump(branch8(cond, address, imm)); |
451 | } |
452 | |
453 | PatchableJump patchableBranch32(RelationalCondition cond, Address address, TrustedImm32 imm) |
454 | { |
455 | return PatchableJump(branch32(cond, address, imm)); |
456 | } |
457 | #endif |
458 | |
459 | void jump(Label target) |
460 | { |
461 | jump().linkTo(target, this); |
462 | } |
463 | |
464 | // Commute a relational condition, returns a new condition that will produce |
465 | // the same results given the same inputs but with their positions exchanged. |
466 | static RelationalCondition commute(RelationalCondition condition) |
467 | { |
468 | switch (condition) { |
469 | case Above: |
470 | return Below; |
471 | case AboveOrEqual: |
472 | return BelowOrEqual; |
473 | case Below: |
474 | return Above; |
475 | case BelowOrEqual: |
476 | return AboveOrEqual; |
477 | case GreaterThan: |
478 | return LessThan; |
479 | case GreaterThanOrEqual: |
480 | return LessThanOrEqual; |
481 | case LessThan: |
482 | return GreaterThan; |
483 | case LessThanOrEqual: |
484 | return GreaterThanOrEqual; |
485 | default: |
486 | break; |
487 | } |
488 | |
489 | ASSERT(condition == Equal || condition == NotEqual); |
490 | return condition; |
491 | } |
492 | |
493 | void oops() |
494 | { |
495 | abortWithReason(B3Oops); |
496 | } |
497 | |
498 | // B3 has additional pseudo-opcodes for returning, when it wants to signal that the return |
499 | // consumes some register in some way. |
500 | void retVoid() { ret(); } |
501 | void ret32(RegisterID) { ret(); } |
502 | void ret64(RegisterID) { ret(); } |
503 | void retFloat(FPRegisterID) { ret(); } |
504 | void retDouble(FPRegisterID) { ret(); } |
505 | |
506 | static constexpr unsigned BlindingModulus = 64; |
507 | bool shouldConsiderBlinding() |
508 | { |
509 | return !(random() & (BlindingModulus - 1)); |
510 | } |
511 | |
512 | void move(Address src, Address dest, RegisterID scratch) |
513 | { |
514 | loadPtr(src, scratch); |
515 | storePtr(scratch, dest); |
516 | } |
517 | |
518 | void move32(Address src, Address dest, RegisterID scratch) |
519 | { |
520 | load32(src, scratch); |
521 | store32(scratch, dest); |
522 | } |
523 | |
524 | void moveFloat(Address src, Address dest, FPRegisterID scratch) |
525 | { |
526 | loadFloat(src, scratch); |
527 | storeFloat(scratch, dest); |
528 | } |
529 | |
530 | // Overload mostly for use in templates. |
531 | void move(FPRegisterID src, FPRegisterID dest) |
532 | { |
533 | moveDouble(src, dest); |
534 | } |
535 | |
536 | void moveDouble(Address src, Address dest, FPRegisterID scratch) |
537 | { |
538 | loadDouble(src, scratch); |
539 | storeDouble(scratch, dest); |
540 | } |
541 | |
542 | // Ptr methods |
543 | // On 32-bit platforms (i.e. x86), these methods directly map onto their 32-bit equivalents. |
544 | // FIXME: should this use a test for 32-bitness instead of this specific exception? |
545 | #if !CPU(X86_64) && !CPU(ARM64) |
546 | void addPtr(Address src, RegisterID dest) |
547 | { |
548 | add32(src, dest); |
549 | } |
550 | |
551 | void addPtr(AbsoluteAddress src, RegisterID dest) |
552 | { |
553 | add32(src, dest); |
554 | } |
555 | |
556 | void addPtr(RegisterID src, RegisterID dest) |
557 | { |
558 | add32(src, dest); |
559 | } |
560 | |
561 | void addPtr(RegisterID left, RegisterID right, RegisterID dest) |
562 | { |
563 | add32(left, right, dest); |
564 | } |
565 | |
566 | void addPtr(TrustedImm32 imm, RegisterID srcDest) |
567 | { |
568 | add32(imm, srcDest); |
569 | } |
570 | |
571 | void addPtr(TrustedImmPtr imm, RegisterID dest) |
572 | { |
573 | add32(TrustedImm32(imm), dest); |
574 | } |
575 | |
576 | void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
577 | { |
578 | add32(imm, src, dest); |
579 | } |
580 | |
581 | void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
582 | { |
583 | add32(imm, address); |
584 | } |
585 | |
586 | void andPtr(RegisterID src, RegisterID dest) |
587 | { |
588 | and32(src, dest); |
589 | } |
590 | |
591 | void andPtr(TrustedImm32 imm, RegisterID srcDest) |
592 | { |
593 | and32(imm, srcDest); |
594 | } |
595 | |
596 | void andPtr(TrustedImmPtr imm, RegisterID srcDest) |
597 | { |
598 | and32(TrustedImm32(imm), srcDest); |
599 | } |
600 | |
601 | void lshiftPtr(Imm32 imm, RegisterID srcDest) |
602 | { |
603 | lshift32(trustedImm32ForShift(imm), srcDest); |
604 | } |
605 | |
606 | void lshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
607 | { |
608 | lshift32(imm, srcDest); |
609 | } |
610 | |
611 | void rshiftPtr(Imm32 imm, RegisterID srcDest) |
612 | { |
613 | rshift32(trustedImm32ForShift(imm), srcDest); |
614 | } |
615 | |
616 | void rshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
617 | { |
618 | rshift32(imm, srcDest); |
619 | } |
620 | |
621 | void urshiftPtr(Imm32 imm, RegisterID srcDest) |
622 | { |
623 | urshift32(trustedImm32ForShift(imm), srcDest); |
624 | } |
625 | |
626 | void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest) |
627 | { |
628 | urshift32(shiftAmmount, srcDest); |
629 | } |
630 | |
631 | void negPtr(RegisterID dest) |
632 | { |
633 | neg32(dest); |
634 | } |
635 | |
636 | void negPtr(RegisterID src, RegisterID dest) |
637 | { |
638 | neg32(src, dest); |
639 | } |
640 | |
641 | void orPtr(RegisterID src, RegisterID dest) |
642 | { |
643 | or32(src, dest); |
644 | } |
645 | |
646 | void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
647 | { |
648 | or32(op1, op2, dest); |
649 | } |
650 | |
651 | void orPtr(TrustedImmPtr imm, RegisterID dest) |
652 | { |
653 | or32(TrustedImm32(imm), dest); |
654 | } |
655 | |
656 | void orPtr(TrustedImm32 imm, RegisterID dest) |
657 | { |
658 | or32(imm, dest); |
659 | } |
660 | |
661 | void subPtr(RegisterID src, RegisterID dest) |
662 | { |
663 | sub32(src, dest); |
664 | } |
665 | |
666 | void subPtr(TrustedImm32 imm, RegisterID dest) |
667 | { |
668 | sub32(imm, dest); |
669 | } |
670 | |
671 | void subPtr(TrustedImmPtr imm, RegisterID dest) |
672 | { |
673 | sub32(TrustedImm32(imm), dest); |
674 | } |
675 | |
676 | void xorPtr(RegisterID src, RegisterID dest) |
677 | { |
678 | xor32(src, dest); |
679 | } |
680 | |
681 | void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
682 | { |
683 | xor32(imm, srcDest); |
684 | } |
685 | |
686 | void xorPtr(TrustedImmPtr imm, RegisterID srcDest) |
687 | { |
688 | xor32(TrustedImm32(imm), srcDest); |
689 | } |
690 | |
691 | void xorPtr(Address src, RegisterID dest) |
692 | { |
693 | xor32(src, dest); |
694 | } |
695 | |
696 | void loadPtr(ImplicitAddress address, RegisterID dest) |
697 | { |
698 | load32(address, dest); |
699 | } |
700 | |
701 | void loadPtr(BaseIndex address, RegisterID dest) |
702 | { |
703 | load32(address, dest); |
704 | } |
705 | |
706 | void loadPtr(const void* address, RegisterID dest) |
707 | { |
708 | load32(address, dest); |
709 | } |
710 | |
711 | #if ENABLE(FAST_TLS_JIT) |
712 | void loadFromTLSPtr(uint32_t offset, RegisterID dst) |
713 | { |
714 | loadFromTLS32(offset, dst); |
715 | } |
716 | |
717 | void storeToTLSPtr(RegisterID src, uint32_t offset) |
718 | { |
719 | storeToTLS32(src, offset); |
720 | } |
721 | #endif |
722 | |
723 | DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
724 | { |
725 | return load32WithAddressOffsetPatch(address, dest); |
726 | } |
727 | |
728 | DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
729 | { |
730 | return load32WithCompactAddressOffsetPatch(address, dest); |
731 | } |
732 | |
733 | void move(ImmPtr imm, RegisterID dest) |
734 | { |
735 | move(Imm32(imm.asTrustedImmPtr()), dest); |
736 | } |
737 | |
738 | void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
739 | { |
740 | compare32(cond, left, right, dest); |
741 | } |
742 | |
743 | void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
744 | { |
745 | compare32(cond, left, right, dest); |
746 | } |
747 | |
748 | void storePtr(RegisterID src, ImplicitAddress address) |
749 | { |
750 | store32(src, address); |
751 | } |
752 | |
753 | void storePtr(RegisterID src, BaseIndex address) |
754 | { |
755 | store32(src, address); |
756 | } |
757 | |
758 | void storePtr(RegisterID src, void* address) |
759 | { |
760 | store32(src, address); |
761 | } |
762 | |
763 | void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
764 | { |
765 | store32(TrustedImm32(imm), address); |
766 | } |
767 | |
768 | void storePtr(ImmPtr imm, Address address) |
769 | { |
770 | store32(Imm32(imm.asTrustedImmPtr()), address); |
771 | } |
772 | |
773 | void storePtr(TrustedImmPtr imm, void* address) |
774 | { |
775 | store32(TrustedImm32(imm), address); |
776 | } |
777 | |
778 | void storePtr(TrustedImm32 imm, ImplicitAddress address) |
779 | { |
780 | store32(imm, address); |
781 | } |
782 | |
783 | void storePtr(TrustedImmPtr imm, BaseIndex address) |
784 | { |
785 | store32(TrustedImm32(imm), address); |
786 | } |
787 | |
788 | DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
789 | { |
790 | return store32WithAddressOffsetPatch(src, address); |
791 | } |
792 | |
793 | Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
794 | { |
795 | return branch32(cond, left, right); |
796 | } |
797 | |
798 | Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
799 | { |
800 | return branch32(cond, left, TrustedImm32(right)); |
801 | } |
802 | |
803 | Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
804 | { |
805 | return branch32(cond, left, Imm32(right.asTrustedImmPtr())); |
806 | } |
807 | |
808 | Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
809 | { |
810 | return branch32(cond, left, right); |
811 | } |
812 | |
813 | Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
814 | { |
815 | return branch32(cond, left, right); |
816 | } |
817 | |
818 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
819 | { |
820 | return branch32(cond, left, right); |
821 | } |
822 | |
823 | Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
824 | { |
825 | return branch32(cond, left, TrustedImm32(right)); |
826 | } |
827 | |
828 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, TrustedImmPtr right) |
829 | { |
830 | return branch32(cond, left, TrustedImm32(right)); |
831 | } |
832 | |
833 | Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
834 | { |
835 | return branchSub32(cond, src, dest); |
836 | } |
837 | |
838 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
839 | { |
840 | return branchTest32(cond, reg, mask); |
841 | } |
842 | |
843 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
844 | { |
845 | return branchTest32(cond, reg, mask); |
846 | } |
847 | |
848 | Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
849 | { |
850 | return branchTest32(cond, address, mask); |
851 | } |
852 | |
853 | Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
854 | { |
855 | return branchTest32(cond, address, mask); |
856 | } |
857 | |
858 | Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
859 | { |
860 | return branchAdd32(cond, src, dest); |
861 | } |
862 | |
863 | Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
864 | { |
865 | return branchSub32(cond, imm, dest); |
866 | } |
867 | using MacroAssemblerBase::branchTest8; |
868 | Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
869 | { |
870 | return MacroAssemblerBase::branchTest8(cond, Address(address.base, address.offset), mask); |
871 | } |
872 | |
873 | #else // !CPU(X86_64) && !CPU(ARM64) |
874 | |
875 | void addPtr(RegisterID src, RegisterID dest) |
876 | { |
877 | add64(src, dest); |
878 | } |
879 | |
880 | void addPtr(RegisterID left, RegisterID right, RegisterID dest) |
881 | { |
882 | add64(left, right, dest); |
883 | } |
884 | |
885 | void addPtr(Address src, RegisterID dest) |
886 | { |
887 | add64(src, dest); |
888 | } |
889 | |
890 | void addPtr(TrustedImm32 imm, RegisterID srcDest) |
891 | { |
892 | add64(imm, srcDest); |
893 | } |
894 | |
895 | void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
896 | { |
897 | add64(imm, src, dest); |
898 | } |
899 | |
900 | void addPtr(TrustedImm32 imm, Address address) |
901 | { |
902 | add64(imm, address); |
903 | } |
904 | |
905 | void addPtr(AbsoluteAddress src, RegisterID dest) |
906 | { |
907 | add64(src, dest); |
908 | } |
909 | |
910 | void addPtr(TrustedImmPtr imm, RegisterID dest) |
911 | { |
912 | add64(TrustedImm64(imm), dest); |
913 | } |
914 | |
915 | void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
916 | { |
917 | add64(imm, address); |
918 | } |
919 | |
920 | void andPtr(RegisterID src, RegisterID dest) |
921 | { |
922 | and64(src, dest); |
923 | } |
924 | |
925 | void andPtr(TrustedImm32 imm, RegisterID srcDest) |
926 | { |
927 | and64(imm, srcDest); |
928 | } |
929 | |
930 | void andPtr(TrustedImmPtr imm, RegisterID srcDest) |
931 | { |
932 | and64(imm, srcDest); |
933 | } |
934 | |
935 | void lshiftPtr(Imm32 imm, RegisterID srcDest) |
936 | { |
937 | lshift64(trustedImm32ForShift(imm), srcDest); |
938 | } |
939 | |
940 | void lshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
941 | { |
942 | lshift64(imm, srcDest); |
943 | } |
944 | |
945 | void rshiftPtr(Imm32 imm, RegisterID srcDest) |
946 | { |
947 | rshift64(trustedImm32ForShift(imm), srcDest); |
948 | } |
949 | |
950 | void rshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
951 | { |
952 | rshift64(imm, srcDest); |
953 | } |
954 | |
955 | void urshiftPtr(Imm32 imm, RegisterID srcDest) |
956 | { |
957 | urshift64(trustedImm32ForShift(imm), srcDest); |
958 | } |
959 | |
960 | void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest) |
961 | { |
962 | urshift64(shiftAmmount, srcDest); |
963 | } |
964 | |
965 | void negPtr(RegisterID dest) |
966 | { |
967 | neg64(dest); |
968 | } |
969 | |
970 | void negPtr(RegisterID src, RegisterID dest) |
971 | { |
972 | neg64(src, dest); |
973 | } |
974 | |
975 | void orPtr(RegisterID src, RegisterID dest) |
976 | { |
977 | or64(src, dest); |
978 | } |
979 | |
980 | void orPtr(TrustedImm32 imm, RegisterID dest) |
981 | { |
982 | or64(imm, dest); |
983 | } |
984 | |
985 | void orPtr(TrustedImmPtr imm, RegisterID dest) |
986 | { |
987 | or64(TrustedImm64(imm), dest); |
988 | } |
989 | |
990 | void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
991 | { |
992 | or64(op1, op2, dest); |
993 | } |
994 | |
995 | void orPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
996 | { |
997 | or64(imm, src, dest); |
998 | } |
999 | |
1000 | void rotateRightPtr(TrustedImm32 imm, RegisterID srcDst) |
1001 | { |
1002 | rotateRight64(imm, srcDst); |
1003 | } |
1004 | |
1005 | void subPtr(RegisterID src, RegisterID dest) |
1006 | { |
1007 | sub64(src, dest); |
1008 | } |
1009 | |
1010 | void subPtr(TrustedImm32 imm, RegisterID dest) |
1011 | { |
1012 | sub64(imm, dest); |
1013 | } |
1014 | |
1015 | void subPtr(TrustedImmPtr imm, RegisterID dest) |
1016 | { |
1017 | sub64(TrustedImm64(imm), dest); |
1018 | } |
1019 | |
1020 | void xorPtr(RegisterID src, RegisterID dest) |
1021 | { |
1022 | xor64(src, dest); |
1023 | } |
1024 | |
1025 | void xorPtr(Address src, RegisterID dest) |
1026 | { |
1027 | xor64(src, dest); |
1028 | } |
1029 | |
1030 | void xorPtr(RegisterID src, Address dest) |
1031 | { |
1032 | xor64(src, dest); |
1033 | } |
1034 | |
1035 | void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
1036 | { |
1037 | xor64(imm, srcDest); |
1038 | } |
1039 | |
1040 | // FIXME: Look into making the need for a scratch register explicit, or providing the option to specify a scratch register. |
1041 | void xorPtr(TrustedImmPtr imm, RegisterID srcDest) |
1042 | { |
1043 | xor64(TrustedImm64(imm), srcDest); |
1044 | } |
1045 | |
1046 | void loadPtr(ImplicitAddress address, RegisterID dest) |
1047 | { |
1048 | load64(address, dest); |
1049 | } |
1050 | |
1051 | void loadPtr(BaseIndex address, RegisterID dest) |
1052 | { |
1053 | load64(address, dest); |
1054 | } |
1055 | |
1056 | void loadPtr(const void* address, RegisterID dest) |
1057 | { |
1058 | load64(address, dest); |
1059 | } |
1060 | |
1061 | #if ENABLE(FAST_TLS_JIT) |
1062 | void loadFromTLSPtr(uint32_t offset, RegisterID dst) |
1063 | { |
1064 | loadFromTLS64(offset, dst); |
1065 | } |
1066 | void storeToTLSPtr(RegisterID src, uint32_t offset) |
1067 | { |
1068 | storeToTLS64(src, offset); |
1069 | } |
1070 | #endif |
1071 | |
1072 | DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
1073 | { |
1074 | return load64WithAddressOffsetPatch(address, dest); |
1075 | } |
1076 | |
1077 | DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
1078 | { |
1079 | return load64WithCompactAddressOffsetPatch(address, dest); |
1080 | } |
1081 | |
1082 | void storePtr(RegisterID src, ImplicitAddress address) |
1083 | { |
1084 | store64(src, address); |
1085 | } |
1086 | |
1087 | void storePtr(RegisterID src, BaseIndex address) |
1088 | { |
1089 | store64(src, address); |
1090 | } |
1091 | |
1092 | void storePtr(RegisterID src, void* address) |
1093 | { |
1094 | store64(src, address); |
1095 | } |
1096 | |
1097 | void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
1098 | { |
1099 | store64(TrustedImm64(imm), address); |
1100 | } |
1101 | |
1102 | void storePtr(TrustedImm32 imm, ImplicitAddress address) |
1103 | { |
1104 | store64(imm, address); |
1105 | } |
1106 | |
1107 | void storePtr(TrustedImmPtr imm, BaseIndex address) |
1108 | { |
1109 | store64(TrustedImm64(imm), address); |
1110 | } |
1111 | |
1112 | DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
1113 | { |
1114 | return store64WithAddressOffsetPatch(src, address); |
1115 | } |
1116 | |
1117 | void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
1118 | { |
1119 | compare64(cond, left, right, dest); |
1120 | } |
1121 | |
1122 | void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
1123 | { |
1124 | compare64(cond, left, right, dest); |
1125 | } |
1126 | |
1127 | void testPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) |
1128 | { |
1129 | test64(cond, reg, mask, dest); |
1130 | } |
1131 | |
1132 | void testPtr(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest) |
1133 | { |
1134 | test64(cond, reg, mask, dest); |
1135 | } |
1136 | |
1137 | Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
1138 | { |
1139 | return branch64(cond, left, right); |
1140 | } |
1141 | |
1142 | Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
1143 | { |
1144 | return branch64(cond, left, TrustedImm64(right)); |
1145 | } |
1146 | |
1147 | Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
1148 | { |
1149 | return branch64(cond, left, right); |
1150 | } |
1151 | |
1152 | Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
1153 | { |
1154 | return branch64(cond, left, right); |
1155 | } |
1156 | |
1157 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
1158 | { |
1159 | return branch64(cond, left, right); |
1160 | } |
1161 | |
1162 | Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
1163 | { |
1164 | return branch64(cond, left, TrustedImm64(right)); |
1165 | } |
1166 | |
1167 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
1168 | { |
1169 | return branchTest64(cond, reg, mask); |
1170 | } |
1171 | |
1172 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
1173 | { |
1174 | return branchTest64(cond, reg, mask); |
1175 | } |
1176 | |
1177 | Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
1178 | { |
1179 | return branchTest64(cond, address, mask); |
1180 | } |
1181 | |
1182 | Jump branchTestPtr(ResultCondition cond, Address address, RegisterID reg) |
1183 | { |
1184 | return branchTest64(cond, address, reg); |
1185 | } |
1186 | |
1187 | Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
1188 | { |
1189 | return branchTest64(cond, address, mask); |
1190 | } |
1191 | |
1192 | Jump branchTestPtr(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
1193 | { |
1194 | return branchTest64(cond, address, mask); |
1195 | } |
1196 | |
1197 | Jump branchAddPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
1198 | { |
1199 | return branchAdd64(cond, imm, dest); |
1200 | } |
1201 | |
1202 | Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
1203 | { |
1204 | return branchAdd64(cond, src, dest); |
1205 | } |
1206 | |
1207 | Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
1208 | { |
1209 | return branchSub64(cond, imm, dest); |
1210 | } |
1211 | |
1212 | Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
1213 | { |
1214 | return branchSub64(cond, src, dest); |
1215 | } |
1216 | |
1217 | Jump branchSubPtr(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest) |
1218 | { |
1219 | return branchSub64(cond, src1, src2, dest); |
1220 | } |
1221 | |
1222 | using MacroAssemblerBase::and64; |
1223 | using MacroAssemblerBase::convertInt32ToDouble; |
1224 | using MacroAssemblerBase::store64; |
1225 | bool shouldBlindDouble(double value) |
1226 | { |
1227 | // Don't trust NaN or +/-Infinity |
1228 | if (!std::isfinite(value)) |
1229 | return shouldConsiderBlinding(); |
1230 | |
1231 | // Try to force normalisation, and check that there's no change |
1232 | // in the bit pattern |
1233 | if (bitwise_cast<uint64_t>(value * 1.0) != bitwise_cast<uint64_t>(value)) |
1234 | return shouldConsiderBlinding(); |
1235 | |
1236 | value = fabs(value); |
1237 | // Only allow a limited set of fractional components |
1238 | double scaledValue = value * 8; |
1239 | if (scaledValue / 8 != value) |
1240 | return shouldConsiderBlinding(); |
1241 | double frac = scaledValue - floor(scaledValue); |
1242 | if (frac != 0.0) |
1243 | return shouldConsiderBlinding(); |
1244 | |
1245 | return value > 0xff; |
1246 | } |
1247 | |
1248 | bool shouldBlindPointerForSpecificArch(uintptr_t value) |
1249 | { |
1250 | if (sizeof(void*) == 4) |
1251 | return shouldBlindForSpecificArch(static_cast<uint32_t>(value)); |
1252 | return shouldBlindForSpecificArch(static_cast<uint64_t>(value)); |
1253 | } |
1254 | |
1255 | bool shouldBlind(ImmPtr imm) |
1256 | { |
1257 | if (!canBlind()) |
1258 | return false; |
1259 | |
1260 | #if ENABLE(FORCED_JIT_BLINDING) |
1261 | UNUSED_PARAM(imm); |
1262 | // Debug always blind all constants, if only so we know |
1263 | // if we've broken blinding during patch development. |
1264 | return true; |
1265 | #endif |
1266 | |
1267 | // First off we'll special case common, "safe" values to avoid hurting |
1268 | // performance too much |
1269 | uint64_t value = imm.asTrustedImmPtr().asIntptr(); |
1270 | switch (value) { |
1271 | case 0xffff: |
1272 | case 0xffffff: |
1273 | case 0xffffffffL: |
1274 | case 0xffffffffffL: |
1275 | case 0xffffffffffffL: |
1276 | case 0xffffffffffffffL: |
1277 | case 0xffffffffffffffffL: |
1278 | return false; |
1279 | default: { |
1280 | if (value <= 0xff) |
1281 | return false; |
1282 | if (~value <= 0xff) |
1283 | return false; |
1284 | } |
1285 | } |
1286 | |
1287 | if (!shouldConsiderBlinding()) |
1288 | return false; |
1289 | |
1290 | return shouldBlindPointerForSpecificArch(static_cast<uintptr_t>(value)); |
1291 | } |
1292 | |
1293 | uint8_t generateRotationSeed(size_t widthInBits) |
1294 | { |
1295 | // Generate the seed in [1, widthInBits - 1]. We should not generate widthInBits or 0 |
1296 | // since it leads to `<< widthInBits` or `>> widthInBits`, which cause undefined behaviors. |
1297 | return (random() % (widthInBits - 1)) + 1; |
1298 | } |
1299 | |
1300 | struct RotatedImmPtr { |
1301 | RotatedImmPtr(uintptr_t v1, uint8_t v2) |
1302 | : value(v1) |
1303 | , rotation(v2) |
1304 | { |
1305 | } |
1306 | TrustedImmPtr value; |
1307 | TrustedImm32 rotation; |
1308 | }; |
1309 | |
1310 | RotatedImmPtr rotationBlindConstant(ImmPtr imm) |
1311 | { |
1312 | uint8_t rotation = generateRotationSeed(sizeof(void*) * 8); |
1313 | uintptr_t value = imm.asTrustedImmPtr().asIntptr(); |
1314 | value = (value << rotation) | (value >> (sizeof(void*) * 8 - rotation)); |
1315 | return RotatedImmPtr(value, rotation); |
1316 | } |
1317 | |
1318 | void loadRotationBlindedConstant(RotatedImmPtr constant, RegisterID dest) |
1319 | { |
1320 | move(constant.value, dest); |
1321 | rotateRightPtr(constant.rotation, dest); |
1322 | } |
1323 | |
1324 | bool shouldBlind(Imm64 imm) |
1325 | { |
1326 | #if ENABLE(FORCED_JIT_BLINDING) |
1327 | UNUSED_PARAM(imm); |
1328 | // Debug always blind all constants, if only so we know |
1329 | // if we've broken blinding during patch development. |
1330 | return true; |
1331 | #endif |
1332 | |
1333 | // First off we'll special case common, "safe" values to avoid hurting |
1334 | // performance too much |
1335 | uint64_t value = imm.asTrustedImm64().m_value; |
1336 | switch (value) { |
1337 | case 0xffff: |
1338 | case 0xffffff: |
1339 | case 0xffffffffL: |
1340 | case 0xffffffffffL: |
1341 | case 0xffffffffffffL: |
1342 | case 0xffffffffffffffL: |
1343 | case 0xffffffffffffffffL: |
1344 | return false; |
1345 | default: { |
1346 | if (value <= 0xff) |
1347 | return false; |
1348 | if (~value <= 0xff) |
1349 | return false; |
1350 | |
1351 | JSValue jsValue = JSValue::decode(value); |
1352 | if (jsValue.isInt32()) |
1353 | return shouldBlind(Imm32(jsValue.asInt32())); |
1354 | if (jsValue.isDouble() && !shouldBlindDouble(jsValue.asDouble())) |
1355 | return false; |
1356 | |
1357 | if (!shouldBlindDouble(bitwise_cast<double>(value))) |
1358 | return false; |
1359 | } |
1360 | } |
1361 | |
1362 | if (!shouldConsiderBlinding()) |
1363 | return false; |
1364 | |
1365 | return shouldBlindForSpecificArch(value); |
1366 | } |
1367 | |
1368 | struct RotatedImm64 { |
1369 | RotatedImm64(uint64_t v1, uint8_t v2) |
1370 | : value(v1) |
1371 | , rotation(v2) |
1372 | { |
1373 | } |
1374 | TrustedImm64 value; |
1375 | TrustedImm32 rotation; |
1376 | }; |
1377 | |
1378 | RotatedImm64 rotationBlindConstant(Imm64 imm) |
1379 | { |
1380 | uint8_t rotation = generateRotationSeed(sizeof(int64_t) * 8); |
1381 | uint64_t value = imm.asTrustedImm64().m_value; |
1382 | value = (value << rotation) | (value >> (sizeof(int64_t) * 8 - rotation)); |
1383 | return RotatedImm64(value, rotation); |
1384 | } |
1385 | |
1386 | void loadRotationBlindedConstant(RotatedImm64 constant, RegisterID dest) |
1387 | { |
1388 | move(constant.value, dest); |
1389 | rotateRight64(constant.rotation, dest); |
1390 | } |
1391 | |
1392 | void convertInt32ToDouble(Imm32 imm, FPRegisterID dest) |
1393 | { |
1394 | if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
1395 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
1396 | loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister); |
1397 | convertInt32ToDouble(scratchRegister, dest); |
1398 | } else |
1399 | convertInt32ToDouble(imm.asTrustedImm32(), dest); |
1400 | } |
1401 | |
1402 | void move(ImmPtr imm, RegisterID dest) |
1403 | { |
1404 | if (shouldBlind(imm)) |
1405 | loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
1406 | else |
1407 | move(imm.asTrustedImmPtr(), dest); |
1408 | } |
1409 | |
1410 | void move(Imm64 imm, RegisterID dest) |
1411 | { |
1412 | if (shouldBlind(imm)) |
1413 | loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
1414 | else |
1415 | move(imm.asTrustedImm64(), dest); |
1416 | } |
1417 | |
1418 | #if CPU(X86_64) || CPU(ARM64) |
1419 | void moveDouble(Imm64 imm, FPRegisterID dest) |
1420 | { |
1421 | move(imm, scratchRegister()); |
1422 | move64ToDouble(scratchRegister(), dest); |
1423 | } |
1424 | #endif |
1425 | |
1426 | void and64(Imm32 imm, RegisterID dest) |
1427 | { |
1428 | if (shouldBlind(imm)) { |
1429 | BlindedImm32 key = andBlindedConstant(imm); |
1430 | and64(key.value1, dest); |
1431 | and64(key.value2, dest); |
1432 | } else |
1433 | and64(imm.asTrustedImm32(), dest); |
1434 | } |
1435 | |
1436 | Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
1437 | { |
1438 | if (shouldBlind(right) && haveScratchRegisterForBlinding()) { |
1439 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
1440 | loadRotationBlindedConstant(rotationBlindConstant(right), scratchRegister); |
1441 | return branchPtr(cond, left, scratchRegister); |
1442 | } |
1443 | return branchPtr(cond, left, right.asTrustedImmPtr()); |
1444 | } |
1445 | |
1446 | void storePtr(ImmPtr imm, Address dest) |
1447 | { |
1448 | if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
1449 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
1450 | loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
1451 | storePtr(scratchRegister, dest); |
1452 | } else |
1453 | storePtr(imm.asTrustedImmPtr(), dest); |
1454 | } |
1455 | |
1456 | void store64(Imm64 imm, Address dest) |
1457 | { |
1458 | if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
1459 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
1460 | loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
1461 | store64(scratchRegister, dest); |
1462 | } else |
1463 | store64(imm.asTrustedImm64(), dest); |
1464 | } |
1465 | |
1466 | #endif // !CPU(X86_64) |
1467 | |
1468 | #if !CPU(X86) && !CPU(X86_64) && !CPU(ARM64) |
1469 | // We should implement this the right way eventually, but for now, it's fine because it arises so |
1470 | // infrequently. |
1471 | void compareDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest) |
1472 | { |
1473 | move(TrustedImm32(0), dest); |
1474 | Jump falseCase = branchDouble(invert(cond), left, right); |
1475 | move(TrustedImm32(1), dest); |
1476 | falseCase.link(this); |
1477 | } |
1478 | #endif |
1479 | |
1480 | void lea32(Address address, RegisterID dest) |
1481 | { |
1482 | add32(TrustedImm32(address.offset), address.base, dest); |
1483 | } |
1484 | |
1485 | #if CPU(X86_64) || CPU(ARM64) |
1486 | void lea64(Address address, RegisterID dest) |
1487 | { |
1488 | add64(TrustedImm32(address.offset), address.base, dest); |
1489 | } |
1490 | #endif // CPU(X86_64) || CPU(ARM64) |
1491 | |
1492 | bool shouldBlind(Imm32 imm) |
1493 | { |
1494 | #if ENABLE(FORCED_JIT_BLINDING) |
1495 | UNUSED_PARAM(imm); |
1496 | // Debug always blind all constants, if only so we know |
1497 | // if we've broken blinding during patch development. |
1498 | return true; |
1499 | #else // ENABLE(FORCED_JIT_BLINDING) |
1500 | |
1501 | // First off we'll special case common, "safe" values to avoid hurting |
1502 | // performance too much |
1503 | uint32_t value = imm.asTrustedImm32().m_value; |
1504 | switch (value) { |
1505 | case 0xffff: |
1506 | case 0xffffff: |
1507 | case 0xffffffff: |
1508 | return false; |
1509 | default: |
1510 | if (value <= 0xff) |
1511 | return false; |
1512 | if (~value <= 0xff) |
1513 | return false; |
1514 | } |
1515 | |
1516 | if (!shouldConsiderBlinding()) |
1517 | return false; |
1518 | |
1519 | return shouldBlindForSpecificArch(value); |
1520 | #endif // ENABLE(FORCED_JIT_BLINDING) |
1521 | } |
1522 | |
1523 | struct BlindedImm32 { |
1524 | BlindedImm32(int32_t v1, int32_t v2) |
1525 | : value1(v1) |
1526 | , value2(v2) |
1527 | { |
1528 | } |
1529 | TrustedImm32 value1; |
1530 | TrustedImm32 value2; |
1531 | }; |
1532 | |
1533 | uint32_t keyForConstant(uint32_t value, uint32_t& mask) |
1534 | { |
1535 | uint32_t key = random(); |
1536 | if (value <= 0xff) |
1537 | mask = 0xff; |
1538 | else if (value <= 0xffff) |
1539 | mask = 0xffff; |
1540 | else if (value <= 0xffffff) |
1541 | mask = 0xffffff; |
1542 | else |
1543 | mask = 0xffffffff; |
1544 | return key & mask; |
1545 | } |
1546 | |
1547 | uint32_t keyForConstant(uint32_t value) |
1548 | { |
1549 | uint32_t mask = 0; |
1550 | return keyForConstant(value, mask); |
1551 | } |
1552 | |
1553 | BlindedImm32 xorBlindConstant(Imm32 imm) |
1554 | { |
1555 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
1556 | uint32_t key = keyForConstant(baseValue); |
1557 | return BlindedImm32(baseValue ^ key, key); |
1558 | } |
1559 | |
1560 | BlindedImm32 additionBlindedConstant(Imm32 imm) |
1561 | { |
1562 | // The addition immediate may be used as a pointer offset. Keep aligned based on "imm". |
1563 | static const uint32_t maskTable[4] = { 0xfffffffc, 0xffffffff, 0xfffffffe, 0xffffffff }; |
1564 | |
1565 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
1566 | uint32_t key = keyForConstant(baseValue) & maskTable[baseValue & 3]; |
1567 | if (key > baseValue) |
1568 | key = key - baseValue; |
1569 | return BlindedImm32(baseValue - key, key); |
1570 | } |
1571 | |
1572 | BlindedImm32 andBlindedConstant(Imm32 imm) |
1573 | { |
1574 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
1575 | uint32_t mask = 0; |
1576 | uint32_t key = keyForConstant(baseValue, mask); |
1577 | ASSERT((baseValue & mask) == baseValue); |
1578 | return BlindedImm32(((baseValue & key) | ~key) & mask, ((baseValue & ~key) | key) & mask); |
1579 | } |
1580 | |
1581 | BlindedImm32 orBlindedConstant(Imm32 imm) |
1582 | { |
1583 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
1584 | uint32_t mask = 0; |
1585 | uint32_t key = keyForConstant(baseValue, mask); |
1586 | ASSERT((baseValue & mask) == baseValue); |
1587 | return BlindedImm32((baseValue & key) & mask, (baseValue & ~key) & mask); |
1588 | } |
1589 | |
1590 | void loadXorBlindedConstant(BlindedImm32 constant, RegisterID dest) |
1591 | { |
1592 | move(constant.value1, dest); |
1593 | xor32(constant.value2, dest); |
1594 | } |
1595 | |
1596 | void add32(Imm32 imm, RegisterID dest) |
1597 | { |
1598 | if (shouldBlind(imm)) { |
1599 | BlindedImm32 key = additionBlindedConstant(imm); |
1600 | add32(key.value1, dest); |
1601 | add32(key.value2, dest); |
1602 | } else |
1603 | add32(imm.asTrustedImm32(), dest); |
1604 | } |
1605 | |
1606 | void add32(Imm32 imm, RegisterID src, RegisterID dest) |
1607 | { |
1608 | if (shouldBlind(imm)) { |
1609 | BlindedImm32 key = additionBlindedConstant(imm); |
1610 | add32(key.value1, src, dest); |
1611 | add32(key.value2, dest); |
1612 | } else |
1613 | add32(imm.asTrustedImm32(), src, dest); |
1614 | } |
1615 | |
1616 | void addPtr(Imm32 imm, RegisterID dest) |
1617 | { |
1618 | if (shouldBlind(imm)) { |
1619 | BlindedImm32 key = additionBlindedConstant(imm); |
1620 | addPtr(key.value1, dest); |
1621 | addPtr(key.value2, dest); |
1622 | } else |
1623 | addPtr(imm.asTrustedImm32(), dest); |
1624 | } |
1625 | |
1626 | void mul32(Imm32 imm, RegisterID src, RegisterID dest) |
1627 | { |
1628 | if (shouldBlind(imm)) { |
1629 | if (src != dest || haveScratchRegisterForBlinding()) { |
1630 | if (src == dest) { |
1631 | move(src, scratchRegisterForBlinding()); |
1632 | src = scratchRegisterForBlinding(); |
1633 | } |
1634 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1635 | mul32(src, dest); |
1636 | return; |
1637 | } |
1638 | // If we don't have a scratch register available for use, we'll just |
1639 | // place a random number of nops. |
1640 | uint32_t nopCount = random() & 3; |
1641 | while (nopCount--) |
1642 | nop(); |
1643 | } |
1644 | mul32(imm.asTrustedImm32(), src, dest); |
1645 | } |
1646 | |
1647 | void and32(Imm32 imm, RegisterID dest) |
1648 | { |
1649 | if (shouldBlind(imm)) { |
1650 | BlindedImm32 key = andBlindedConstant(imm); |
1651 | and32(key.value1, dest); |
1652 | and32(key.value2, dest); |
1653 | } else |
1654 | and32(imm.asTrustedImm32(), dest); |
1655 | } |
1656 | |
1657 | void andPtr(Imm32 imm, RegisterID dest) |
1658 | { |
1659 | if (shouldBlind(imm)) { |
1660 | BlindedImm32 key = andBlindedConstant(imm); |
1661 | andPtr(key.value1, dest); |
1662 | andPtr(key.value2, dest); |
1663 | } else |
1664 | andPtr(imm.asTrustedImm32(), dest); |
1665 | } |
1666 | |
1667 | void and32(Imm32 imm, RegisterID src, RegisterID dest) |
1668 | { |
1669 | if (shouldBlind(imm)) { |
1670 | if (src == dest) |
1671 | return and32(imm.asTrustedImm32(), dest); |
1672 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1673 | and32(src, dest); |
1674 | } else |
1675 | and32(imm.asTrustedImm32(), src, dest); |
1676 | } |
1677 | |
1678 | void move(Imm32 imm, RegisterID dest) |
1679 | { |
1680 | if (shouldBlind(imm)) |
1681 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1682 | else |
1683 | move(imm.asTrustedImm32(), dest); |
1684 | } |
1685 | |
1686 | void or32(Imm32 imm, RegisterID src, RegisterID dest) |
1687 | { |
1688 | if (shouldBlind(imm)) { |
1689 | if (src == dest) |
1690 | return or32(imm, dest); |
1691 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1692 | or32(src, dest); |
1693 | } else |
1694 | or32(imm.asTrustedImm32(), src, dest); |
1695 | } |
1696 | |
1697 | void or32(Imm32 imm, RegisterID dest) |
1698 | { |
1699 | if (shouldBlind(imm)) { |
1700 | BlindedImm32 key = orBlindedConstant(imm); |
1701 | or32(key.value1, dest); |
1702 | or32(key.value2, dest); |
1703 | } else |
1704 | or32(imm.asTrustedImm32(), dest); |
1705 | } |
1706 | |
1707 | void poke(Imm32 value, int index = 0) |
1708 | { |
1709 | store32(value, addressForPoke(index)); |
1710 | } |
1711 | |
1712 | void poke(ImmPtr value, int index = 0) |
1713 | { |
1714 | storePtr(value, addressForPoke(index)); |
1715 | } |
1716 | |
1717 | #if CPU(X86_64) || CPU(ARM64) |
1718 | void poke(Imm64 value, int index = 0) |
1719 | { |
1720 | store64(value, addressForPoke(index)); |
1721 | } |
1722 | #endif // CPU(X86_64) |
1723 | |
1724 | void store32(Imm32 imm, Address dest) |
1725 | { |
1726 | if (shouldBlind(imm)) { |
1727 | #if CPU(X86) || CPU(X86_64) |
1728 | BlindedImm32 blind = xorBlindConstant(imm); |
1729 | store32(blind.value1, dest); |
1730 | xor32(blind.value2, dest); |
1731 | #else // CPU(X86) || CPU(X86_64) |
1732 | if (haveScratchRegisterForBlinding()) { |
1733 | loadXorBlindedConstant(xorBlindConstant(imm), scratchRegisterForBlinding()); |
1734 | store32(scratchRegisterForBlinding(), dest); |
1735 | } else { |
1736 | // If we don't have a scratch register available for use, we'll just |
1737 | // place a random number of nops. |
1738 | uint32_t nopCount = random() & 3; |
1739 | while (nopCount--) |
1740 | nop(); |
1741 | store32(imm.asTrustedImm32(), dest); |
1742 | } |
1743 | #endif // CPU(X86) || CPU(X86_64) |
1744 | } else |
1745 | store32(imm.asTrustedImm32(), dest); |
1746 | } |
1747 | |
1748 | void sub32(Imm32 imm, RegisterID dest) |
1749 | { |
1750 | if (shouldBlind(imm)) { |
1751 | BlindedImm32 key = additionBlindedConstant(imm); |
1752 | sub32(key.value1, dest); |
1753 | sub32(key.value2, dest); |
1754 | } else |
1755 | sub32(imm.asTrustedImm32(), dest); |
1756 | } |
1757 | |
1758 | void subPtr(Imm32 imm, RegisterID dest) |
1759 | { |
1760 | if (shouldBlind(imm)) { |
1761 | BlindedImm32 key = additionBlindedConstant(imm); |
1762 | subPtr(key.value1, dest); |
1763 | subPtr(key.value2, dest); |
1764 | } else |
1765 | subPtr(imm.asTrustedImm32(), dest); |
1766 | } |
1767 | |
1768 | void xor32(Imm32 imm, RegisterID src, RegisterID dest) |
1769 | { |
1770 | if (shouldBlind(imm)) { |
1771 | BlindedImm32 blind = xorBlindConstant(imm); |
1772 | xor32(blind.value1, src, dest); |
1773 | xor32(blind.value2, dest); |
1774 | } else |
1775 | xor32(imm.asTrustedImm32(), src, dest); |
1776 | } |
1777 | |
1778 | void xor32(Imm32 imm, RegisterID dest) |
1779 | { |
1780 | if (shouldBlind(imm)) { |
1781 | BlindedImm32 blind = xorBlindConstant(imm); |
1782 | xor32(blind.value1, dest); |
1783 | xor32(blind.value2, dest); |
1784 | } else |
1785 | xor32(imm.asTrustedImm32(), dest); |
1786 | } |
1787 | |
1788 | Jump branch32(RelationalCondition cond, RegisterID left, Imm32 right) |
1789 | { |
1790 | if (shouldBlind(right)) { |
1791 | if (haveScratchRegisterForBlinding()) { |
1792 | loadXorBlindedConstant(xorBlindConstant(right), scratchRegisterForBlinding()); |
1793 | return branch32(cond, left, scratchRegisterForBlinding()); |
1794 | } |
1795 | // If we don't have a scratch register available for use, we'll just |
1796 | // place a random number of nops. |
1797 | uint32_t nopCount = random() & 3; |
1798 | while (nopCount--) |
1799 | nop(); |
1800 | return branch32(cond, left, right.asTrustedImm32()); |
1801 | } |
1802 | |
1803 | return branch32(cond, left, right.asTrustedImm32()); |
1804 | } |
1805 | |
1806 | void compare32(RelationalCondition cond, RegisterID left, Imm32 right, RegisterID dest) |
1807 | { |
1808 | if (shouldBlind(right)) { |
1809 | if (left != dest || haveScratchRegisterForBlinding()) { |
1810 | RegisterID blindedConstantReg = dest; |
1811 | if (left == dest) |
1812 | blindedConstantReg = scratchRegisterForBlinding(); |
1813 | loadXorBlindedConstant(xorBlindConstant(right), blindedConstantReg); |
1814 | compare32(cond, left, blindedConstantReg, dest); |
1815 | return; |
1816 | } |
1817 | // If we don't have a scratch register available for use, we'll just |
1818 | // place a random number of nops. |
1819 | uint32_t nopCount = random() & 3; |
1820 | while (nopCount--) |
1821 | nop(); |
1822 | compare32(cond, left, right.asTrustedImm32(), dest); |
1823 | return; |
1824 | } |
1825 | |
1826 | compare32(cond, left, right.asTrustedImm32(), dest); |
1827 | } |
1828 | |
1829 | Jump branchAdd32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest) |
1830 | { |
1831 | if (shouldBlind(imm)) { |
1832 | if (src != dest || haveScratchRegisterForBlinding()) { |
1833 | if (src == dest) { |
1834 | move(src, scratchRegisterForBlinding()); |
1835 | src = scratchRegisterForBlinding(); |
1836 | } |
1837 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1838 | return branchAdd32(cond, src, dest); |
1839 | } |
1840 | // If we don't have a scratch register available for use, we'll just |
1841 | // place a random number of nops. |
1842 | uint32_t nopCount = random() & 3; |
1843 | while (nopCount--) |
1844 | nop(); |
1845 | } |
1846 | return branchAdd32(cond, src, imm.asTrustedImm32(), dest); |
1847 | } |
1848 | |
1849 | Jump branchMul32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest) |
1850 | { |
1851 | if (src == dest) |
1852 | ASSERT(haveScratchRegisterForBlinding()); |
1853 | |
1854 | if (shouldBlind(imm)) { |
1855 | if (src == dest) { |
1856 | move(src, scratchRegisterForBlinding()); |
1857 | src = scratchRegisterForBlinding(); |
1858 | } |
1859 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
1860 | return branchMul32(cond, src, dest); |
1861 | } |
1862 | return branchMul32(cond, src, imm.asTrustedImm32(), dest); |
1863 | } |
1864 | |
1865 | // branchSub32 takes a scratch register as 32 bit platforms make use of this, |
1866 | // with src == dst, and on x86-32 we don't have a platform scratch register. |
1867 | Jump branchSub32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest, RegisterID scratch) |
1868 | { |
1869 | if (shouldBlind(imm)) { |
1870 | ASSERT(scratch != dest); |
1871 | ASSERT(scratch != src); |
1872 | loadXorBlindedConstant(xorBlindConstant(imm), scratch); |
1873 | return branchSub32(cond, src, scratch, dest); |
1874 | } |
1875 | return branchSub32(cond, src, imm.asTrustedImm32(), dest); |
1876 | } |
1877 | |
1878 | void lshift32(Imm32 imm, RegisterID dest) |
1879 | { |
1880 | lshift32(trustedImm32ForShift(imm), dest); |
1881 | } |
1882 | |
1883 | void lshift32(RegisterID src, Imm32 amount, RegisterID dest) |
1884 | { |
1885 | lshift32(src, trustedImm32ForShift(amount), dest); |
1886 | } |
1887 | |
1888 | void rshift32(Imm32 imm, RegisterID dest) |
1889 | { |
1890 | rshift32(trustedImm32ForShift(imm), dest); |
1891 | } |
1892 | |
1893 | void rshift32(RegisterID src, Imm32 amount, RegisterID dest) |
1894 | { |
1895 | rshift32(src, trustedImm32ForShift(amount), dest); |
1896 | } |
1897 | |
1898 | void urshift32(Imm32 imm, RegisterID dest) |
1899 | { |
1900 | urshift32(trustedImm32ForShift(imm), dest); |
1901 | } |
1902 | |
1903 | void urshift32(RegisterID src, Imm32 amount, RegisterID dest) |
1904 | { |
1905 | urshift32(src, trustedImm32ForShift(amount), dest); |
1906 | } |
1907 | |
1908 | void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest) |
1909 | { |
1910 | if (hasOneBitSet(imm.m_value)) { |
1911 | lshift32(src, TrustedImm32(getLSBSet(imm.m_value)), dest); |
1912 | return; |
1913 | } |
1914 | MacroAssemblerBase::mul32(imm, src, dest); |
1915 | } |
1916 | |
1917 | // If the result jump is taken that means the assert passed. |
1918 | void jitAssert(const WTF::ScopedLambda<Jump(void)>&); |
1919 | |
1920 | #if ENABLE(MASM_PROBE) |
1921 | // This function emits code to preserve the CPUState (e.g. registers), |
1922 | // call a user supplied probe function, and restore the CPUState before |
1923 | // continuing with other JIT generated code. |
1924 | // |
1925 | // The user supplied probe function will be called with a single pointer to |
1926 | // a Probe::State struct (defined below) which contains, among other things, |
1927 | // the preserved CPUState. This allows the user probe function to inspect |
1928 | // the CPUState at that point in the JIT generated code. |
1929 | // |
1930 | // If the user probe function alters the register values in the Probe::State, |
1931 | // the altered values will be loaded into the CPU registers when the probe |
1932 | // returns. |
1933 | // |
1934 | // The Probe::State is stack allocated and is only valid for the duration |
1935 | // of the call to the user probe function. |
1936 | // |
1937 | // The probe function may choose to move the stack pointer (in any direction). |
1938 | // To do this, the probe function needs to set the new sp value in the CPUState. |
1939 | // |
1940 | // The probe function may also choose to fill stack space with some values. |
1941 | // To do this, the probe function must first: |
1942 | // 1. Set the new sp value in the Probe::State's CPUState. |
1943 | // 2. Set the Probe::State's initializeStackFunction to a Probe::Function callback |
1944 | // which will do the work of filling in the stack values after the probe |
1945 | // trampoline has adjusted the machine stack pointer. |
1946 | // 3. Set the Probe::State's initializeStackArgs to any value that the client wants |
1947 | // to pass to the initializeStackFunction callback. |
1948 | // 4. Return from the probe function. |
1949 | // |
1950 | // Upon returning from the probe function, the probe trampoline will adjust the |
1951 | // the stack pointer based on the sp value in CPUState. If initializeStackFunction |
1952 | // is not set, the probe trampoline will restore registers and return to its caller. |
1953 | // |
1954 | // If initializeStackFunction is set, the trampoline will move the Probe::State |
1955 | // beyond the range of the stack pointer i.e. it will place the new Probe::State at |
1956 | // an address lower than where CPUState.sp() points. This ensures that the |
1957 | // Probe::State will not be trashed by the initializeStackFunction when it writes to |
1958 | // the stack. Then, the trampoline will call back to the initializeStackFunction |
1959 | // Probe::Function to let it fill in the stack values as desired. The |
1960 | // initializeStackFunction Probe::Function will be passed the moved Probe::State at |
1961 | // the new location. |
1962 | // |
1963 | // initializeStackFunction may now write to the stack at addresses greater or |
1964 | // equal to CPUState.sp(), but not below that. initializeStackFunction is also |
1965 | // not allowed to change CPUState.sp(). If the initializeStackFunction does not |
1966 | // abide by these rules, then behavior is undefined, and bad things may happen. |
1967 | // |
1968 | // Note: this version of probe() should be implemented by the target specific |
1969 | // MacroAssembler. |
1970 | void probe(Probe::Function, void* arg); |
1971 | |
1972 | JS_EXPORT_PRIVATE void probe(Function<void(Probe::Context&)>); |
1973 | |
1974 | // Let's you print from your JIT generated code. |
1975 | // See comments in MacroAssemblerPrinter.h for examples of how to use this. |
1976 | template<typename... Arguments> |
1977 | void print(Arguments&&... args); |
1978 | |
1979 | void print(Printer::PrintRecordList*); |
1980 | #endif // ENABLE(MASM_PROBE) |
1981 | }; |
1982 | |
1983 | } // namespace JSC |
1984 | |
1985 | namespace WTF { |
1986 | |
1987 | class PrintStream; |
1988 | |
1989 | void printInternal(PrintStream&, JSC::MacroAssembler::RelationalCondition); |
1990 | void printInternal(PrintStream&, JSC::MacroAssembler::ResultCondition); |
1991 | void printInternal(PrintStream&, JSC::MacroAssembler::DoubleCondition); |
1992 | |
1993 | } // namespace WTF |
1994 | |
1995 | #else // ENABLE(ASSEMBLER) |
1996 | |
1997 | namespace JSC { |
1998 | |
1999 | // If there is no assembler for this platform, at least allow code to make references to |
2000 | // some of the things it would otherwise define, albeit without giving that code any way |
2001 | // of doing anything useful. |
2002 | class MacroAssembler { |
2003 | private: |
2004 | MacroAssembler() { } |
2005 | |
2006 | public: |
2007 | |
2008 | enum RegisterID : int8_t { NoRegister, InvalidGPRReg = -1 }; |
2009 | enum FPRegisterID : int8_t { NoFPRegister, InvalidFPRReg = -1 }; |
2010 | }; |
2011 | |
2012 | } // namespace JSC |
2013 | |
2014 | #endif // ENABLE(ASSEMBLER) |
2015 | |