1 | // Copyright 2010 the V8 project authors. All rights reserved. |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions are |
4 | // met: |
5 | // |
6 | // * Redistributions of source code must retain the above copyright |
7 | // notice, this list of conditions and the following disclaimer. |
8 | // * Redistributions in binary form must reproduce the above |
9 | // copyright notice, this list of conditions and the following |
10 | // disclaimer in the documentation and/or other materials provided |
11 | // with the distribution. |
12 | // * Neither the name of Google Inc. nor the names of its |
13 | // contributors may be used to endorse or promote products derived |
14 | // from this software without specific prior written permission. |
15 | // |
16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | |
28 | #include "config.h" |
29 | |
30 | #include <cmath> |
31 | |
32 | #include <wtf/dtoa/fixed-dtoa.h> |
33 | #include <wtf/dtoa/ieee.h> |
34 | |
35 | namespace WTF { |
36 | namespace double_conversion { |
37 | |
38 | // Represents a 128bit type. This class should be replaced by a native type on |
39 | // platforms that support 128bit integers. |
40 | class UInt128 { |
41 | public: |
42 | UInt128() : high_bits_(0), low_bits_(0) { } |
43 | UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } |
44 | |
45 | void Multiply(uint32_t multiplicand) { |
46 | uint64_t accumulator; |
47 | |
48 | accumulator = (low_bits_ & kMask32) * multiplicand; |
49 | uint32_t part = static_cast<uint32_t>(accumulator & kMask32); |
50 | accumulator >>= 32; |
51 | accumulator = accumulator + (low_bits_ >> 32) * multiplicand; |
52 | low_bits_ = (accumulator << 32) + part; |
53 | accumulator >>= 32; |
54 | accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; |
55 | part = static_cast<uint32_t>(accumulator & kMask32); |
56 | accumulator >>= 32; |
57 | accumulator = accumulator + (high_bits_ >> 32) * multiplicand; |
58 | high_bits_ = (accumulator << 32) + part; |
59 | ASSERT((accumulator >> 32) == 0); |
60 | } |
61 | |
62 | void Shift(int shift_amount) { |
63 | ASSERT(-64 <= shift_amount && shift_amount <= 64); |
64 | if (shift_amount == 0) { |
65 | return; |
66 | } else if (shift_amount == -64) { |
67 | high_bits_ = low_bits_; |
68 | low_bits_ = 0; |
69 | } else if (shift_amount == 64) { |
70 | low_bits_ = high_bits_; |
71 | high_bits_ = 0; |
72 | } else if (shift_amount <= 0) { |
73 | high_bits_ <<= -shift_amount; |
74 | high_bits_ += low_bits_ >> (64 + shift_amount); |
75 | low_bits_ <<= -shift_amount; |
76 | } else { |
77 | low_bits_ >>= shift_amount; |
78 | low_bits_ += high_bits_ << (64 - shift_amount); |
79 | high_bits_ >>= shift_amount; |
80 | } |
81 | } |
82 | |
83 | // Modifies *this to *this MOD (2^power). |
84 | // Returns *this DIV (2^power). |
85 | int DivModPowerOf2(int power) { |
86 | if (power >= 64) { |
87 | int result = static_cast<int>(high_bits_ >> (power - 64)); |
88 | high_bits_ -= static_cast<uint64_t>(result) << (power - 64); |
89 | return result; |
90 | } else { |
91 | uint64_t part_low = low_bits_ >> power; |
92 | uint64_t part_high = high_bits_ << (64 - power); |
93 | int result = static_cast<int>(part_low + part_high); |
94 | high_bits_ = 0; |
95 | low_bits_ -= part_low << power; |
96 | return result; |
97 | } |
98 | } |
99 | |
100 | bool IsZero() const { |
101 | return high_bits_ == 0 && low_bits_ == 0; |
102 | } |
103 | |
104 | int BitAt(int position) const { |
105 | if (position >= 64) { |
106 | return static_cast<int>(high_bits_ >> (position - 64)) & 1; |
107 | } else { |
108 | return static_cast<int>(low_bits_ >> position) & 1; |
109 | } |
110 | } |
111 | |
112 | private: |
113 | static const uint64_t kMask32 = 0xFFFFFFFF; |
114 | // Value == (high_bits_ << 64) + low_bits_ |
115 | uint64_t high_bits_; |
116 | uint64_t low_bits_; |
117 | }; |
118 | |
119 | |
120 | static const int kDoubleSignificandSize = 53; // Includes the hidden bit. |
121 | |
122 | |
123 | static void FillDigits32FixedLength(uint32_t number, int requested_length, |
124 | BufferReference<char> buffer, int* length) { |
125 | for (int i = requested_length - 1; i >= 0; --i) { |
126 | buffer[(*length) + i] = '0' + number % 10; |
127 | number /= 10; |
128 | } |
129 | *length += requested_length; |
130 | } |
131 | |
132 | |
133 | static void FillDigits32(uint32_t number, BufferReference<char> buffer, int* length) { |
134 | int number_length = 0; |
135 | // We fill the digits in reverse order and exchange them afterwards. |
136 | while (number != 0) { |
137 | int digit = number % 10; |
138 | number /= 10; |
139 | buffer[(*length) + number_length] = static_cast<char>('0' + digit); |
140 | number_length++; |
141 | } |
142 | // Exchange the digits. |
143 | int i = *length; |
144 | int j = *length + number_length - 1; |
145 | while (i < j) { |
146 | char tmp = buffer[i]; |
147 | buffer[i] = buffer[j]; |
148 | buffer[j] = tmp; |
149 | i++; |
150 | j--; |
151 | } |
152 | *length += number_length; |
153 | } |
154 | |
155 | |
156 | static void FillDigits64FixedLength(uint64_t number, |
157 | BufferReference<char> buffer, int* length) { |
158 | const uint32_t kTen7 = 10000000; |
159 | // For efficiency cut the number into 3 uint32_t parts, and print those. |
160 | uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
161 | number /= kTen7; |
162 | uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
163 | uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
164 | |
165 | FillDigits32FixedLength(part0, 3, buffer, length); |
166 | FillDigits32FixedLength(part1, 7, buffer, length); |
167 | FillDigits32FixedLength(part2, 7, buffer, length); |
168 | } |
169 | |
170 | |
171 | static void FillDigits64(uint64_t number, BufferReference<char> buffer, int* length) { |
172 | const uint32_t kTen7 = 10000000; |
173 | // For efficiency cut the number into 3 uint32_t parts, and print those. |
174 | uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
175 | number /= kTen7; |
176 | uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
177 | uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
178 | |
179 | if (part0 != 0) { |
180 | FillDigits32(part0, buffer, length); |
181 | FillDigits32FixedLength(part1, 7, buffer, length); |
182 | FillDigits32FixedLength(part2, 7, buffer, length); |
183 | } else if (part1 != 0) { |
184 | FillDigits32(part1, buffer, length); |
185 | FillDigits32FixedLength(part2, 7, buffer, length); |
186 | } else { |
187 | FillDigits32(part2, buffer, length); |
188 | } |
189 | } |
190 | |
191 | |
192 | static void RoundUp(BufferReference<char> buffer, int* length, int* decimal_point) { |
193 | // An empty buffer represents 0. |
194 | if (*length == 0) { |
195 | buffer[0] = '1'; |
196 | *decimal_point = 1; |
197 | *length = 1; |
198 | return; |
199 | } |
200 | // Round the last digit until we either have a digit that was not '9' or until |
201 | // we reached the first digit. |
202 | buffer[(*length) - 1]++; |
203 | for (int i = (*length) - 1; i > 0; --i) { |
204 | if (buffer[i] != '0' + 10) { |
205 | return; |
206 | } |
207 | buffer[i] = '0'; |
208 | buffer[i - 1]++; |
209 | } |
210 | // If the first digit is now '0' + 10, we would need to set it to '0' and add |
211 | // a '1' in front. However we reach the first digit only if all following |
212 | // digits had been '9' before rounding up. Now all trailing digits are '0' and |
213 | // we simply switch the first digit to '1' and update the decimal-point |
214 | // (indicating that the point is now one digit to the right). |
215 | if (buffer[0] == '0' + 10) { |
216 | buffer[0] = '1'; |
217 | (*decimal_point)++; |
218 | } |
219 | } |
220 | |
221 | |
222 | // The given fractionals number represents a fixed-point number with binary |
223 | // point at bit (-exponent). |
224 | // Preconditions: |
225 | // -128 <= exponent <= 0. |
226 | // 0 <= fractionals * 2^exponent < 1 |
227 | // The buffer holds the result. |
228 | // The function will round its result. During the rounding-process digits not |
229 | // generated by this function might be updated, and the decimal-point variable |
230 | // might be updated. If this function generates the digits 99 and the buffer |
231 | // already contained "199" (thus yielding a buffer of "19999") then a |
232 | // rounding-up will change the contents of the buffer to "20000". |
233 | static void FillFractionals(uint64_t fractionals, int exponent, |
234 | int fractional_count, BufferReference<char> buffer, |
235 | int* length, int* decimal_point) { |
236 | ASSERT(-128 <= exponent && exponent <= 0); |
237 | // 'fractionals' is a fixed-point number, with binary point at bit |
238 | // (-exponent). Inside the function the non-converted remainder of fractionals |
239 | // is a fixed-point number, with binary point at bit 'point'. |
240 | if (-exponent <= 64) { |
241 | // One 64 bit number is sufficient. |
242 | ASSERT(fractionals >> 56 == 0); |
243 | int point = -exponent; |
244 | for (int i = 0; i < fractional_count; ++i) { |
245 | if (fractionals == 0) break; |
246 | // Instead of multiplying by 10 we multiply by 5 and adjust the point |
247 | // location. This way the fractionals variable will not overflow. |
248 | // Invariant at the beginning of the loop: fractionals < 2^point. |
249 | // Initially we have: point <= 64 and fractionals < 2^56 |
250 | // After each iteration the point is decremented by one. |
251 | // Note that 5^3 = 125 < 128 = 2^7. |
252 | // Therefore three iterations of this loop will not overflow fractionals |
253 | // (even without the subtraction at the end of the loop body). At this |
254 | // time point will satisfy point <= 61 and therefore fractionals < 2^point |
255 | // and any further multiplication of fractionals by 5 will not overflow. |
256 | fractionals *= 5; |
257 | point--; |
258 | int digit = static_cast<int>(fractionals >> point); |
259 | ASSERT(digit <= 9); |
260 | buffer[*length] = static_cast<char>('0' + digit); |
261 | (*length)++; |
262 | fractionals -= static_cast<uint64_t>(digit) << point; |
263 | } |
264 | // If the first bit after the point is set we have to round up. |
265 | ASSERT(fractionals == 0 || point - 1 >= 0); |
266 | if ((fractionals != 0) && ((fractionals >> (point - 1)) & 1) == 1) { |
267 | RoundUp(buffer, length, decimal_point); |
268 | } |
269 | } else { // We need 128 bits. |
270 | ASSERT(64 < -exponent && -exponent <= 128); |
271 | UInt128 fractionals128 = UInt128(fractionals, 0); |
272 | fractionals128.Shift(-exponent - 64); |
273 | int point = 128; |
274 | for (int i = 0; i < fractional_count; ++i) { |
275 | if (fractionals128.IsZero()) break; |
276 | // As before: instead of multiplying by 10 we multiply by 5 and adjust the |
277 | // point location. |
278 | // This multiplication will not overflow for the same reasons as before. |
279 | fractionals128.Multiply(5); |
280 | point--; |
281 | int digit = fractionals128.DivModPowerOf2(point); |
282 | ASSERT(digit <= 9); |
283 | buffer[*length] = static_cast<char>('0' + digit); |
284 | (*length)++; |
285 | } |
286 | if (fractionals128.BitAt(point - 1) == 1) { |
287 | RoundUp(buffer, length, decimal_point); |
288 | } |
289 | } |
290 | } |
291 | |
292 | |
293 | // Removes leading and trailing zeros. |
294 | // If leading zeros are removed then the decimal point position is adjusted. |
295 | static void TrimZeros(BufferReference<char> buffer, int* length, int* decimal_point) { |
296 | while (*length > 0 && buffer[(*length) - 1] == '0') { |
297 | (*length)--; |
298 | } |
299 | int first_non_zero = 0; |
300 | while (first_non_zero < *length && buffer[first_non_zero] == '0') { |
301 | first_non_zero++; |
302 | } |
303 | if (first_non_zero != 0) { |
304 | for (int i = first_non_zero; i < *length; ++i) { |
305 | buffer[i - first_non_zero] = buffer[i]; |
306 | } |
307 | *length -= first_non_zero; |
308 | *decimal_point -= first_non_zero; |
309 | } |
310 | } |
311 | |
312 | |
313 | bool FastFixedDtoa(double v, |
314 | int fractional_count, |
315 | BufferReference<char> buffer, |
316 | int* length, |
317 | int* decimal_point) { |
318 | const uint32_t kMaxUInt32 = 0xFFFFFFFF; |
319 | uint64_t significand = Double(v).Significand(); |
320 | int exponent = Double(v).Exponent(); |
321 | // v = significand * 2^exponent (with significand a 53bit integer). |
322 | // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we |
323 | // don't know how to compute the representation. 2^73 ~= 9.5*10^21. |
324 | // If necessary this limit could probably be increased, but we don't need |
325 | // more. |
326 | if (exponent > 20) return false; |
327 | if (fractional_count > 20) return false; |
328 | *length = 0; |
329 | // At most kDoubleSignificandSize bits of the significand are non-zero. |
330 | // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero |
331 | // bits: 0..11*..0xxx..53*..xx |
332 | if (exponent + kDoubleSignificandSize > 64) { |
333 | // The exponent must be > 11. |
334 | // |
335 | // We know that v = significand * 2^exponent. |
336 | // And the exponent > 11. |
337 | // We simplify the task by dividing v by 10^17. |
338 | // The quotient delivers the first digits, and the remainder fits into a 64 |
339 | // bit number. |
340 | // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. |
341 | const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17 |
342 | uint64_t divisor = kFive17; |
343 | int divisor_power = 17; |
344 | uint64_t dividend = significand; |
345 | uint32_t quotient; |
346 | uint64_t remainder; |
347 | // Let v = f * 2^e with f == significand and e == exponent. |
348 | // Then need q (quotient) and r (remainder) as follows: |
349 | // v = q * 10^17 + r |
350 | // f * 2^e = q * 10^17 + r |
351 | // f * 2^e = q * 5^17 * 2^17 + r |
352 | // If e > 17 then |
353 | // f * 2^(e-17) = q * 5^17 + r/2^17 |
354 | // else |
355 | // f = q * 5^17 * 2^(17-e) + r/2^e |
356 | if (exponent > divisor_power) { |
357 | // We only allow exponents of up to 20 and therefore (17 - e) <= 3 |
358 | dividend <<= exponent - divisor_power; |
359 | quotient = static_cast<uint32_t>(dividend / divisor); |
360 | remainder = (dividend % divisor) << divisor_power; |
361 | } else { |
362 | divisor <<= divisor_power - exponent; |
363 | quotient = static_cast<uint32_t>(dividend / divisor); |
364 | remainder = (dividend % divisor) << exponent; |
365 | } |
366 | FillDigits32(quotient, buffer, length); |
367 | FillDigits64FixedLength(remainder, buffer, length); |
368 | *decimal_point = *length; |
369 | } else if (exponent >= 0) { |
370 | // 0 <= exponent <= 11 |
371 | significand <<= exponent; |
372 | FillDigits64(significand, buffer, length); |
373 | *decimal_point = *length; |
374 | } else if (exponent > -kDoubleSignificandSize) { |
375 | // We have to cut the number. |
376 | uint64_t integrals = significand >> -exponent; |
377 | uint64_t fractionals = significand - (integrals << -exponent); |
378 | if (integrals > kMaxUInt32) { |
379 | FillDigits64(integrals, buffer, length); |
380 | } else { |
381 | FillDigits32(static_cast<uint32_t>(integrals), buffer, length); |
382 | } |
383 | *decimal_point = *length; |
384 | FillFractionals(fractionals, exponent, fractional_count, |
385 | buffer, length, decimal_point); |
386 | } else if (exponent < -128) { |
387 | // This configuration (with at most 20 digits) means that all digits must be |
388 | // 0. |
389 | ASSERT(fractional_count <= 20); |
390 | buffer[0] = '\0'; |
391 | *length = 0; |
392 | *decimal_point = -fractional_count; |
393 | } else { |
394 | *decimal_point = 0; |
395 | FillFractionals(significand, exponent, fractional_count, |
396 | buffer, length, decimal_point); |
397 | } |
398 | TrimZeros(buffer, length, decimal_point); |
399 | buffer[*length] = '\0'; |
400 | if ((*length) == 0) { |
401 | // The string is empty and the decimal_point thus has no importance. Mimick |
402 | // Gay's dtoa and and set it to -fractional_count. |
403 | *decimal_point = -fractional_count; |
404 | } |
405 | return true; |
406 | } |
407 | |
408 | } // namespace double_conversion |
409 | } // namespace WTF |
410 | |