1 | /* |
2 | * Copyright (C) 2005-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * This library is free software; you can redistribute it and/or |
5 | * modify it under the terms of the GNU Library General Public |
6 | * License as published by the Free Software Foundation; either |
7 | * version 2 of the License, or (at your option) any later version. |
8 | * |
9 | * This library is distributed in the hope that it will be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 | * Library General Public License for more details. |
13 | * |
14 | * You should have received a copy of the GNU Library General Public License |
15 | * along with this library; see the file COPYING.LIB. If not, write to |
16 | * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
17 | * Boston, MA 02110-1301, USA. |
18 | * |
19 | */ |
20 | |
21 | #pragma once |
22 | |
23 | #include <limits> |
24 | #include <utility> |
25 | #include <wtf/Forward.h> |
26 | #include <wtf/HashFunctions.h> |
27 | #include <wtf/KeyValuePair.h> |
28 | #include <wtf/Optional.h> |
29 | #include <wtf/StdLibExtras.h> |
30 | |
31 | #ifdef __OBJC__ |
32 | #include <CoreFoundation/CoreFoundation.h> |
33 | #endif |
34 | |
35 | namespace WTF { |
36 | |
37 | template<bool isInteger, typename T> struct GenericHashTraitsBase; |
38 | |
39 | template<typename T> struct GenericHashTraitsBase<false, T> { |
40 | // The emptyValueIsZero flag is used to optimize allocation of empty hash tables with zeroed memory. |
41 | static const bool emptyValueIsZero = false; |
42 | |
43 | // The hasIsEmptyValueFunction flag allows the hash table to automatically generate code to check |
44 | // for the empty value when it can be done with the equality operator, but allows custom functions |
45 | // for cases like String that need them. |
46 | static const bool hasIsEmptyValueFunction = false; |
47 | |
48 | // Used by WeakPtr to indicate that the value may become deleted without being explicitly removed. |
49 | static const bool hasIsReleasedWeakValueFunction = false; |
50 | |
51 | // The starting table size. Can be overridden when we know beforehand that |
52 | // a hash table will have at least N entries. |
53 | static const unsigned minimumTableSize = 8; |
54 | }; |
55 | |
56 | // Default integer traits disallow both 0 and -1 as keys (max value instead of -1 for unsigned). |
57 | template<typename T> struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> { |
58 | static const bool emptyValueIsZero = true; |
59 | static void constructDeletedValue(T& slot) { slot = static_cast<T>(-1); } |
60 | static bool isDeletedValue(T value) { return value == static_cast<T>(-1); } |
61 | }; |
62 | |
63 | template<typename T> struct GenericHashTraits : GenericHashTraitsBase<std::is_integral<T>::value, T> { |
64 | typedef T TraitType; |
65 | typedef T EmptyValueType; |
66 | |
67 | static T emptyValue() { return T(); } |
68 | |
69 | template<typename U, typename V> |
70 | static void assignToEmpty(U& emptyValue, V&& value) |
71 | { |
72 | emptyValue = std::forward<V>(value); |
73 | } |
74 | |
75 | template <typename Traits> |
76 | static void constructEmptyValue(T& slot) |
77 | { |
78 | new (NotNull, std::addressof(slot)) T(Traits::emptyValue()); |
79 | } |
80 | |
81 | // Type for return value of functions that do not transfer ownership, such as get. |
82 | typedef T PeekType; |
83 | template<typename U> static U&& peek(U&& value) { return std::forward<U>(value); } |
84 | |
85 | typedef T TakeType; |
86 | template<typename U> static TakeType take(U&& value) { return std::forward<U>(value); } |
87 | }; |
88 | |
89 | template<typename T> struct HashTraits : GenericHashTraits<T> { }; |
90 | |
91 | template<typename T> struct FloatHashTraits : GenericHashTraits<T> { |
92 | static T emptyValue() { return std::numeric_limits<T>::infinity(); } |
93 | static void constructDeletedValue(T& slot) { slot = -std::numeric_limits<T>::infinity(); } |
94 | static bool isDeletedValue(T value) { return value == -std::numeric_limits<T>::infinity(); } |
95 | }; |
96 | |
97 | template<> struct HashTraits<float> : FloatHashTraits<float> { }; |
98 | template<> struct HashTraits<double> : FloatHashTraits<double> { }; |
99 | |
100 | // Default unsigned traits disallow both 0 and max as keys -- use these traits to allow zero and disallow max - 1. |
101 | template<typename T> struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> { |
102 | static const bool emptyValueIsZero = false; |
103 | static T emptyValue() { return std::numeric_limits<T>::max(); } |
104 | static void constructDeletedValue(T& slot) { slot = std::numeric_limits<T>::max() - 1; } |
105 | static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max() - 1; } |
106 | }; |
107 | |
108 | template<typename T> struct SignedWithZeroKeyHashTraits : GenericHashTraits<T> { |
109 | static const bool emptyValueIsZero = false; |
110 | static T emptyValue() { return std::numeric_limits<T>::min(); } |
111 | static void constructDeletedValue(T& slot) { slot = std::numeric_limits<T>::max(); } |
112 | static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max(); } |
113 | }; |
114 | |
115 | // Can be used with strong enums, allows zero as key. |
116 | template<typename T> struct StrongEnumHashTraits : GenericHashTraits<T> { |
117 | using UnderlyingType = typename std::underlying_type<T>::type; |
118 | static const bool emptyValueIsZero = false; |
119 | static T emptyValue() { return static_cast<T>(std::numeric_limits<UnderlyingType>::max()); } |
120 | static void constructDeletedValue(T& slot) { slot = static_cast<T>(std::numeric_limits<UnderlyingType>::max() - 1); } |
121 | static bool isDeletedValue(T value) { return value == static_cast<T>(std::numeric_limits<UnderlyingType>::max() - 1); } |
122 | }; |
123 | |
124 | template<typename P> struct HashTraits<P*> : GenericHashTraits<P*> { |
125 | static const bool emptyValueIsZero = true; |
126 | static void constructDeletedValue(P*& slot) { slot = reinterpret_cast<P*>(-1); } |
127 | static bool isDeletedValue(P* value) { return value == reinterpret_cast<P*>(-1); } |
128 | }; |
129 | |
130 | #ifdef __OBJC__ |
131 | |
132 | template<> struct HashTraits<__unsafe_unretained id> : GenericHashTraits<__unsafe_unretained id> { |
133 | static const bool emptyValueIsZero = true; |
134 | static void constructDeletedValue(__unsafe_unretained id& slot) { slot = (__bridge __unsafe_unretained id)reinterpret_cast<CFTypeRef>(-1); } |
135 | static bool isDeletedValue(__unsafe_unretained id value) { return (__bridge CFTypeRef)value == reinterpret_cast<CFTypeRef>(-1); } |
136 | }; |
137 | |
138 | #endif |
139 | |
140 | template<typename T> struct SimpleClassHashTraits : GenericHashTraits<T> { |
141 | static const bool emptyValueIsZero = true; |
142 | static void constructDeletedValue(T& slot) { new (NotNull, std::addressof(slot)) T(HashTableDeletedValue); } |
143 | static bool isDeletedValue(const T& value) { return value.isHashTableDeletedValue(); } |
144 | }; |
145 | |
146 | template<typename T, typename Deleter> struct HashTraits<std::unique_ptr<T, Deleter>> : SimpleClassHashTraits<std::unique_ptr<T, Deleter>> { |
147 | typedef std::nullptr_t EmptyValueType; |
148 | static EmptyValueType emptyValue() { return nullptr; } |
149 | |
150 | static void constructDeletedValue(std::unique_ptr<T, Deleter>& slot) { new (NotNull, std::addressof(slot)) std::unique_ptr<T, Deleter> { reinterpret_cast<T*>(-1) }; } |
151 | static bool isDeletedValue(const std::unique_ptr<T, Deleter>& value) { return value.get() == reinterpret_cast<T*>(-1); } |
152 | |
153 | typedef T* PeekType; |
154 | static T* peek(const std::unique_ptr<T, Deleter>& value) { return value.get(); } |
155 | static T* peek(std::nullptr_t) { return nullptr; } |
156 | |
157 | static void customDeleteBucket(std::unique_ptr<T, Deleter>& value) |
158 | { |
159 | // The custom delete function exists to avoid a dead store before the value is destructed. |
160 | // The normal destruction sequence of a bucket would be: |
161 | // 1) Call the destructor of unique_ptr. |
162 | // 2) unique_ptr store a zero for its internal pointer. |
163 | // 3) unique_ptr destroys its value. |
164 | // 4) Call constructDeletedValue() to set the bucket as destructed. |
165 | // |
166 | // The problem is the call in (3) prevents the compile from eliminating the dead store in (2) |
167 | // becase a side effect of free() could be observing the value. |
168 | // |
169 | // This version of deleteBucket() ensures the dead 2 stores changing "value" |
170 | // are on the same side of the function call. |
171 | ASSERT(!isDeletedValue(value)); |
172 | T* pointer = value.release(); |
173 | constructDeletedValue(value); |
174 | |
175 | // The null case happens if a caller uses std::move() to remove the pointer before calling remove() |
176 | // with an iterator. This is very uncommon. |
177 | if (LIKELY(pointer)) |
178 | Deleter()(pointer); |
179 | } |
180 | }; |
181 | |
182 | template<typename P> struct HashTraits<RefPtr<P>> : SimpleClassHashTraits<RefPtr<P>> { |
183 | static P* emptyValue() { return nullptr; } |
184 | |
185 | typedef P* PeekType; |
186 | static PeekType peek(const RefPtr<P>& value) { return value.get(); } |
187 | static PeekType peek(P* value) { return value; } |
188 | |
189 | static void customDeleteBucket(RefPtr<P>& value) |
190 | { |
191 | // See unique_ptr's customDeleteBucket() for an explanation. |
192 | ASSERT(!SimpleClassHashTraits<RefPtr<P>>::isDeletedValue(value)); |
193 | auto valueToBeDestroyed = WTFMove(value); |
194 | SimpleClassHashTraits<RefPtr<P>>::constructDeletedValue(value); |
195 | } |
196 | }; |
197 | |
198 | template<typename P> struct RefHashTraits : SimpleClassHashTraits<Ref<P>> { |
199 | static const bool emptyValueIsZero = true; |
200 | static Ref<P> emptyValue() { return HashTableEmptyValue; } |
201 | |
202 | template <typename> |
203 | static void constructEmptyValue(Ref<P>& slot) |
204 | { |
205 | new (NotNull, std::addressof(slot)) Ref<P>(HashTableEmptyValue); |
206 | } |
207 | |
208 | static const bool hasIsEmptyValueFunction = true; |
209 | static bool isEmptyValue(const Ref<P>& value) { return value.isHashTableEmptyValue(); } |
210 | |
211 | static void assignToEmpty(Ref<P>& emptyValue, Ref<P>&& newValue) { ASSERT(isEmptyValue(emptyValue)); emptyValue.assignToHashTableEmptyValue(WTFMove(newValue)); } |
212 | |
213 | typedef P* PeekType; |
214 | static PeekType peek(const Ref<P>& value) { return const_cast<PeekType>(value.ptrAllowingHashTableEmptyValue()); } |
215 | static PeekType peek(P* value) { return value; } |
216 | |
217 | typedef Optional<Ref<P>> TakeType; |
218 | static TakeType take(Ref<P>&& value) { return isEmptyValue(value) ? WTF::nullopt : Optional<Ref<P>>(WTFMove(value)); } |
219 | }; |
220 | |
221 | template<typename P> struct HashTraits<Ref<P>> : RefHashTraits<P> { }; |
222 | |
223 | template<> struct HashTraits<String> : SimpleClassHashTraits<String> { |
224 | static const bool hasIsEmptyValueFunction = true; |
225 | static bool isEmptyValue(const String&); |
226 | |
227 | static void customDeleteBucket(String&); |
228 | }; |
229 | |
230 | // This struct template is an implementation detail of the isHashTraitsEmptyValue function, |
231 | // which selects either the emptyValue function or the isEmptyValue function to check for empty values. |
232 | template<typename Traits, bool hasEmptyValueFunction> struct HashTraitsEmptyValueChecker; |
233 | template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, true> { |
234 | template<typename T> static bool isEmptyValue(const T& value) { return Traits::isEmptyValue(value); } |
235 | }; |
236 | template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, false> { |
237 | template<typename T> static bool isEmptyValue(const T& value) { return value == Traits::emptyValue(); } |
238 | }; |
239 | template<typename Traits, typename T> inline bool isHashTraitsEmptyValue(const T& value) |
240 | { |
241 | return HashTraitsEmptyValueChecker<Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value); |
242 | } |
243 | |
244 | template<typename Traits, bool hasIsReleasedWeakValueFunction> struct HashTraitsReleasedWeakValueChecker; |
245 | template<typename Traits> struct HashTraitsReleasedWeakValueChecker<Traits, true> { |
246 | template<typename T> static bool isReleasedWeakValue(const T& value) { return Traits::isReleasedWeakValue(value); } |
247 | }; |
248 | template<typename Traits> struct HashTraitsReleasedWeakValueChecker<Traits, false> { |
249 | template<typename T> static bool isReleasedWeakValue(const T&) { return false; } |
250 | }; |
251 | template<typename Traits, typename T> inline bool isHashTraitsReleasedWeakValue(const T& value) |
252 | { |
253 | return HashTraitsReleasedWeakValueChecker<Traits, Traits::hasIsReleasedWeakValueFunction>::isReleasedWeakValue(value); |
254 | } |
255 | |
256 | template<typename Traits, typename T> |
257 | struct HashTraitHasCustomDelete { |
258 | static T& bucketArg; |
259 | template<typename X> static std::true_type TestHasCustomDelete(X*, decltype(X::customDeleteBucket(bucketArg))* = nullptr); |
260 | static std::false_type TestHasCustomDelete(...); |
261 | typedef decltype(TestHasCustomDelete(static_cast<Traits*>(nullptr))) ResultType; |
262 | static const bool value = ResultType::value; |
263 | }; |
264 | |
265 | template<typename Traits, typename T> |
266 | typename std::enable_if<HashTraitHasCustomDelete<Traits, T>::value>::type |
267 | hashTraitsDeleteBucket(T& value) |
268 | { |
269 | Traits::customDeleteBucket(value); |
270 | } |
271 | |
272 | template<typename Traits, typename T> |
273 | typename std::enable_if<!HashTraitHasCustomDelete<Traits, T>::value>::type |
274 | hashTraitsDeleteBucket(T& value) |
275 | { |
276 | value.~T(); |
277 | Traits::constructDeletedValue(value); |
278 | } |
279 | |
280 | template<typename FirstTraitsArg, typename SecondTraitsArg> |
281 | struct PairHashTraits : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType, typename SecondTraitsArg::TraitType>> { |
282 | typedef FirstTraitsArg FirstTraits; |
283 | typedef SecondTraitsArg SecondTraits; |
284 | typedef std::pair<typename FirstTraits::TraitType, typename SecondTraits::TraitType> TraitType; |
285 | typedef std::pair<typename FirstTraits::EmptyValueType, typename SecondTraits::EmptyValueType> EmptyValueType; |
286 | |
287 | static const bool emptyValueIsZero = FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero; |
288 | static EmptyValueType emptyValue() { return std::make_pair(FirstTraits::emptyValue(), SecondTraits::emptyValue()); } |
289 | |
290 | static const unsigned minimumTableSize = FirstTraits::minimumTableSize; |
291 | |
292 | static void constructDeletedValue(TraitType& slot) { FirstTraits::constructDeletedValue(slot.first); } |
293 | static bool isDeletedValue(const TraitType& value) { return FirstTraits::isDeletedValue(value.first); } |
294 | }; |
295 | |
296 | template<typename First, typename Second> |
297 | struct HashTraits<std::pair<First, Second>> : public PairHashTraits<HashTraits<First>, HashTraits<Second>> { }; |
298 | |
299 | template<typename FirstTrait, typename... Traits> |
300 | struct TupleHashTraits : GenericHashTraits<std::tuple<typename FirstTrait::TraitType, typename Traits::TraitType...>> { |
301 | typedef std::tuple<typename FirstTrait::TraitType, typename Traits::TraitType...> TraitType; |
302 | typedef std::tuple<typename FirstTrait::EmptyValueType, typename Traits::EmptyValueType...> EmptyValueType; |
303 | |
304 | // We should use emptyValueIsZero = Traits::emptyValueIsZero &&... whenever we switch to C++17. We can't do anything |
305 | // better here right now because GCC can't do C++. |
306 | template<typename BoolType> |
307 | static constexpr bool allTrue(BoolType value) { return value; } |
308 | template<typename BoolType, typename... BoolTypes> |
309 | static constexpr bool allTrue(BoolType value, BoolTypes... values) { return value && allTrue(values...); } |
310 | static const bool emptyValueIsZero = allTrue(FirstTrait::emptyValueIsZero, Traits::emptyValueIsZero...); |
311 | static EmptyValueType emptyValue() { return std::make_tuple(FirstTrait::emptyValue(), Traits::emptyValue()...); } |
312 | |
313 | static const unsigned minimumTableSize = FirstTrait::minimumTableSize; |
314 | |
315 | static void constructDeletedValue(TraitType& slot) { FirstTrait::constructDeletedValue(std::get<0>(slot)); } |
316 | static bool isDeletedValue(const TraitType& value) { return FirstTrait::isDeletedValue(std::get<0>(value)); } |
317 | }; |
318 | |
319 | template<typename... Traits> |
320 | struct HashTraits<std::tuple<Traits...>> : public TupleHashTraits<HashTraits<Traits>...> { }; |
321 | |
322 | template<typename KeyTraitsArg, typename ValueTraitsArg> |
323 | struct KeyValuePairHashTraits : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType, typename ValueTraitsArg::TraitType>> { |
324 | typedef KeyTraitsArg KeyTraits; |
325 | typedef ValueTraitsArg ValueTraits; |
326 | typedef KeyValuePair<typename KeyTraits::TraitType, typename ValueTraits::TraitType> TraitType; |
327 | typedef KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType> EmptyValueType; |
328 | typedef typename ValueTraitsArg::TraitType ValueType; |
329 | |
330 | static const bool emptyValueIsZero = KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero; |
331 | static EmptyValueType emptyValue() { return KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType>(KeyTraits::emptyValue(), ValueTraits::emptyValue()); } |
332 | |
333 | template <typename> |
334 | static void constructEmptyValue(TraitType& slot) |
335 | { |
336 | KeyTraits::template constructEmptyValue<KeyTraits>(slot.key); |
337 | ValueTraits::template constructEmptyValue<ValueTraits>(slot.value); |
338 | } |
339 | |
340 | static const unsigned minimumTableSize = KeyTraits::minimumTableSize; |
341 | |
342 | static void constructDeletedValue(TraitType& slot) { KeyTraits::constructDeletedValue(slot.key); } |
343 | static bool isDeletedValue(const TraitType& value) { return KeyTraits::isDeletedValue(value.key); } |
344 | |
345 | static void customDeleteBucket(TraitType& value) |
346 | { |
347 | static_assert(std::is_trivially_destructible<KeyValuePair<int, int>>::value, |
348 | "The wrapper itself has to be trivially destructible for customDeleteBucket() to make sense, since we do not destruct the wrapper itself." ); |
349 | |
350 | hashTraitsDeleteBucket<KeyTraits>(value.key); |
351 | value.value.~ValueType(); |
352 | } |
353 | }; |
354 | |
355 | template<typename Key, typename Value> |
356 | struct HashTraits<KeyValuePair<Key, Value>> : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value>> { }; |
357 | |
358 | template<typename T> |
359 | struct NullableHashTraits : public HashTraits<T> { |
360 | static const bool emptyValueIsZero = false; |
361 | static T emptyValue() { return reinterpret_cast<T>(1); } |
362 | }; |
363 | |
364 | // Useful for classes that want complete control over what is empty and what is deleted, |
365 | // and how to construct both. |
366 | template<typename T> |
367 | struct CustomHashTraits : public GenericHashTraits<T> { |
368 | static const bool emptyValueIsZero = false; |
369 | static const bool hasIsEmptyValueFunction = true; |
370 | |
371 | static void constructDeletedValue(T& slot) |
372 | { |
373 | new (NotNull, std::addressof(slot)) T(T::DeletedValue); |
374 | } |
375 | |
376 | static bool isDeletedValue(const T& value) |
377 | { |
378 | return value.isDeletedValue(); |
379 | } |
380 | |
381 | static T emptyValue() |
382 | { |
383 | return T(T::EmptyValue); |
384 | } |
385 | |
386 | static bool isEmptyValue(const T& value) |
387 | { |
388 | return value.isEmptyValue(); |
389 | } |
390 | }; |
391 | |
392 | } // namespace WTF |
393 | |
394 | using WTF::HashTraits; |
395 | using WTF::KeyValuePair; |
396 | using WTF::PairHashTraits; |
397 | using WTF::NullableHashTraits; |
398 | using WTF::SimpleClassHashTraits; |
399 | |