1 | // Copyright 2008, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | |
31 | #include "gtest/internal/gtest-port.h" |
32 | |
33 | #include <limits.h> |
34 | #include <stdlib.h> |
35 | #include <stdio.h> |
36 | #include <string.h> |
37 | #include <fstream> |
38 | |
39 | #if GTEST_OS_WINDOWS |
40 | # include <windows.h> |
41 | # include <io.h> |
42 | # include <sys/stat.h> |
43 | # include <map> // Used in ThreadLocal. |
44 | #else |
45 | # include <unistd.h> |
46 | #endif // GTEST_OS_WINDOWS |
47 | |
48 | #if GTEST_OS_MAC |
49 | # include <mach/mach_init.h> |
50 | # include <mach/task.h> |
51 | # include <mach/vm_map.h> |
52 | #endif // GTEST_OS_MAC |
53 | |
54 | #if GTEST_OS_QNX |
55 | # include <devctl.h> |
56 | # include <fcntl.h> |
57 | # include <sys/procfs.h> |
58 | #endif // GTEST_OS_QNX |
59 | |
60 | #if GTEST_OS_AIX |
61 | # include <procinfo.h> |
62 | # include <sys/types.h> |
63 | #endif // GTEST_OS_AIX |
64 | |
65 | #if GTEST_OS_FUCHSIA |
66 | # include <zircon/process.h> |
67 | # include <zircon/syscalls.h> |
68 | #endif // GTEST_OS_FUCHSIA |
69 | |
70 | #include "gtest/gtest-spi.h" |
71 | #include "gtest/gtest-message.h" |
72 | #include "gtest/internal/gtest-internal.h" |
73 | #include "gtest/internal/gtest-string.h" |
74 | #include "src/gtest-internal-inl.h" |
75 | |
76 | namespace testing { |
77 | namespace internal { |
78 | |
79 | #if defined(_MSC_VER) || defined(__BORLANDC__) |
80 | // MSVC and C++Builder do not provide a definition of STDERR_FILENO. |
81 | const int kStdOutFileno = 1; |
82 | const int kStdErrFileno = 2; |
83 | #else |
84 | const int kStdOutFileno = STDOUT_FILENO; |
85 | const int kStdErrFileno = STDERR_FILENO; |
86 | #endif // _MSC_VER |
87 | |
88 | #if GTEST_OS_LINUX |
89 | |
90 | namespace { |
91 | template <typename T> |
92 | T ReadProcFileField(const std::string& filename, int field) { |
93 | std::string dummy; |
94 | std::ifstream file(filename.c_str()); |
95 | while (field-- > 0) { |
96 | file >> dummy; |
97 | } |
98 | T output = 0; |
99 | file >> output; |
100 | return output; |
101 | } |
102 | } // namespace |
103 | |
104 | // Returns the number of active threads, or 0 when there is an error. |
105 | size_t GetThreadCount() { |
106 | const std::string filename = |
107 | (Message() << "/proc/" << getpid() << "/stat" ).GetString(); |
108 | return ReadProcFileField<int>(filename, 19); |
109 | } |
110 | |
111 | #elif GTEST_OS_MAC |
112 | |
113 | size_t GetThreadCount() { |
114 | const task_t task = mach_task_self(); |
115 | mach_msg_type_number_t thread_count; |
116 | thread_act_array_t thread_list; |
117 | const kern_return_t status = task_threads(task, &thread_list, &thread_count); |
118 | if (status == KERN_SUCCESS) { |
119 | // task_threads allocates resources in thread_list and we need to free them |
120 | // to avoid leaks. |
121 | vm_deallocate(task, |
122 | reinterpret_cast<vm_address_t>(thread_list), |
123 | sizeof(thread_t) * thread_count); |
124 | return static_cast<size_t>(thread_count); |
125 | } else { |
126 | return 0; |
127 | } |
128 | } |
129 | |
130 | #elif GTEST_OS_QNX |
131 | |
132 | // Returns the number of threads running in the process, or 0 to indicate that |
133 | // we cannot detect it. |
134 | size_t GetThreadCount() { |
135 | const int fd = open("/proc/self/as" , O_RDONLY); |
136 | if (fd < 0) { |
137 | return 0; |
138 | } |
139 | procfs_info process_info; |
140 | const int status = |
141 | devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), NULL); |
142 | close(fd); |
143 | if (status == EOK) { |
144 | return static_cast<size_t>(process_info.num_threads); |
145 | } else { |
146 | return 0; |
147 | } |
148 | } |
149 | |
150 | #elif GTEST_OS_AIX |
151 | |
152 | size_t GetThreadCount() { |
153 | struct procentry64 entry; |
154 | pid_t pid = getpid(); |
155 | int status = getprocs64(&entry, sizeof(entry), NULL, 0, &pid, 1); |
156 | if (status == 1) { |
157 | return entry.pi_thcount; |
158 | } else { |
159 | return 0; |
160 | } |
161 | } |
162 | |
163 | #elif GTEST_OS_FUCHSIA |
164 | |
165 | size_t GetThreadCount() { |
166 | int dummy_buffer; |
167 | size_t avail; |
168 | zx_status_t status = zx_object_get_info( |
169 | zx_process_self(), |
170 | ZX_INFO_PROCESS_THREADS, |
171 | &dummy_buffer, |
172 | 0, |
173 | nullptr, |
174 | &avail); |
175 | if (status == ZX_OK) { |
176 | return avail; |
177 | } else { |
178 | return 0; |
179 | } |
180 | } |
181 | |
182 | #else |
183 | |
184 | size_t GetThreadCount() { |
185 | // There's no portable way to detect the number of threads, so we just |
186 | // return 0 to indicate that we cannot detect it. |
187 | return 0; |
188 | } |
189 | |
190 | #endif // GTEST_OS_LINUX |
191 | |
192 | #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS |
193 | |
194 | void SleepMilliseconds(int n) { |
195 | ::Sleep(n); |
196 | } |
197 | |
198 | AutoHandle::AutoHandle() |
199 | : handle_(INVALID_HANDLE_VALUE) {} |
200 | |
201 | AutoHandle::AutoHandle(Handle handle) |
202 | : handle_(handle) {} |
203 | |
204 | AutoHandle::~AutoHandle() { |
205 | Reset(); |
206 | } |
207 | |
208 | AutoHandle::Handle AutoHandle::Get() const { |
209 | return handle_; |
210 | } |
211 | |
212 | void AutoHandle::Reset() { |
213 | Reset(INVALID_HANDLE_VALUE); |
214 | } |
215 | |
216 | void AutoHandle::Reset(HANDLE handle) { |
217 | // Resetting with the same handle we already own is invalid. |
218 | if (handle_ != handle) { |
219 | if (IsCloseable()) { |
220 | ::CloseHandle(handle_); |
221 | } |
222 | handle_ = handle; |
223 | } else { |
224 | GTEST_CHECK_(!IsCloseable()) |
225 | << "Resetting a valid handle to itself is likely a programmer error " |
226 | "and thus not allowed." ; |
227 | } |
228 | } |
229 | |
230 | bool AutoHandle::IsCloseable() const { |
231 | // Different Windows APIs may use either of these values to represent an |
232 | // invalid handle. |
233 | return handle_ != NULL && handle_ != INVALID_HANDLE_VALUE; |
234 | } |
235 | |
236 | Notification::Notification() |
237 | : event_(::CreateEvent(NULL, // Default security attributes. |
238 | TRUE, // Do not reset automatically. |
239 | FALSE, // Initially unset. |
240 | NULL)) { // Anonymous event. |
241 | GTEST_CHECK_(event_.Get() != NULL); |
242 | } |
243 | |
244 | void Notification::Notify() { |
245 | GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE); |
246 | } |
247 | |
248 | void Notification::WaitForNotification() { |
249 | GTEST_CHECK_( |
250 | ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0); |
251 | } |
252 | |
253 | Mutex::Mutex() |
254 | : owner_thread_id_(0), |
255 | type_(kDynamic), |
256 | critical_section_init_phase_(0), |
257 | critical_section_(new CRITICAL_SECTION) { |
258 | ::InitializeCriticalSection(critical_section_); |
259 | } |
260 | |
261 | Mutex::~Mutex() { |
262 | // Static mutexes are leaked intentionally. It is not thread-safe to try |
263 | // to clean them up. |
264 | // FIXME: Switch to Slim Reader/Writer (SRW) Locks, which requires |
265 | // nothing to clean it up but is available only on Vista and later. |
266 | // https://docs.microsoft.com/en-us/windows/desktop/Sync/slim-reader-writer--srw--locks |
267 | if (type_ == kDynamic) { |
268 | ::DeleteCriticalSection(critical_section_); |
269 | delete critical_section_; |
270 | critical_section_ = NULL; |
271 | } |
272 | } |
273 | |
274 | void Mutex::Lock() { |
275 | ThreadSafeLazyInit(); |
276 | ::EnterCriticalSection(critical_section_); |
277 | owner_thread_id_ = ::GetCurrentThreadId(); |
278 | } |
279 | |
280 | void Mutex::Unlock() { |
281 | ThreadSafeLazyInit(); |
282 | // We don't protect writing to owner_thread_id_ here, as it's the |
283 | // caller's responsibility to ensure that the current thread holds the |
284 | // mutex when this is called. |
285 | owner_thread_id_ = 0; |
286 | ::LeaveCriticalSection(critical_section_); |
287 | } |
288 | |
289 | // Does nothing if the current thread holds the mutex. Otherwise, crashes |
290 | // with high probability. |
291 | void Mutex::AssertHeld() { |
292 | ThreadSafeLazyInit(); |
293 | GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId()) |
294 | << "The current thread is not holding the mutex @" << this; |
295 | } |
296 | |
297 | namespace { |
298 | |
299 | // Use the RAII idiom to flag mem allocs that are intentionally never |
300 | // deallocated. The motivation is to silence the false positive mem leaks |
301 | // that are reported by the debug version of MS's CRT which can only detect |
302 | // if an alloc is missing a matching deallocation. |
303 | // Example: |
304 | // MemoryIsNotDeallocated memory_is_not_deallocated; |
305 | // critical_section_ = new CRITICAL_SECTION; |
306 | // |
307 | class MemoryIsNotDeallocated |
308 | { |
309 | public: |
310 | MemoryIsNotDeallocated() : old_crtdbg_flag_(0) { |
311 | #ifdef _MSC_VER |
312 | old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG); |
313 | // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT |
314 | // doesn't report mem leak if there's no matching deallocation. |
315 | _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF); |
316 | #endif // _MSC_VER |
317 | } |
318 | |
319 | ~MemoryIsNotDeallocated() { |
320 | #ifdef _MSC_VER |
321 | // Restore the original _CRTDBG_ALLOC_MEM_DF flag |
322 | _CrtSetDbgFlag(old_crtdbg_flag_); |
323 | #endif // _MSC_VER |
324 | } |
325 | |
326 | private: |
327 | int old_crtdbg_flag_; |
328 | |
329 | GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated); |
330 | }; |
331 | |
332 | } // namespace |
333 | |
334 | // Initializes owner_thread_id_ and critical_section_ in static mutexes. |
335 | void Mutex::ThreadSafeLazyInit() { |
336 | // Dynamic mutexes are initialized in the constructor. |
337 | if (type_ == kStatic) { |
338 | switch ( |
339 | ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) { |
340 | case 0: |
341 | // If critical_section_init_phase_ was 0 before the exchange, we |
342 | // are the first to test it and need to perform the initialization. |
343 | owner_thread_id_ = 0; |
344 | { |
345 | // Use RAII to flag that following mem alloc is never deallocated. |
346 | MemoryIsNotDeallocated memory_is_not_deallocated; |
347 | critical_section_ = new CRITICAL_SECTION; |
348 | } |
349 | ::InitializeCriticalSection(critical_section_); |
350 | // Updates the critical_section_init_phase_ to 2 to signal |
351 | // initialization complete. |
352 | GTEST_CHECK_(::InterlockedCompareExchange( |
353 | &critical_section_init_phase_, 2L, 1L) == |
354 | 1L); |
355 | break; |
356 | case 1: |
357 | // Somebody else is already initializing the mutex; spin until they |
358 | // are done. |
359 | while (::InterlockedCompareExchange(&critical_section_init_phase_, |
360 | 2L, |
361 | 2L) != 2L) { |
362 | // Possibly yields the rest of the thread's time slice to other |
363 | // threads. |
364 | ::Sleep(0); |
365 | } |
366 | break; |
367 | |
368 | case 2: |
369 | break; // The mutex is already initialized and ready for use. |
370 | |
371 | default: |
372 | GTEST_CHECK_(false) |
373 | << "Unexpected value of critical_section_init_phase_ " |
374 | << "while initializing a static mutex." ; |
375 | } |
376 | } |
377 | } |
378 | |
379 | namespace { |
380 | |
381 | class ThreadWithParamSupport : public ThreadWithParamBase { |
382 | public: |
383 | static HANDLE CreateThread(Runnable* runnable, |
384 | Notification* thread_can_start) { |
385 | ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start); |
386 | DWORD thread_id; |
387 | // FIXME: Consider to use _beginthreadex instead. |
388 | HANDLE thread_handle = ::CreateThread( |
389 | NULL, // Default security. |
390 | 0, // Default stack size. |
391 | &ThreadWithParamSupport::ThreadMain, |
392 | param, // Parameter to ThreadMainStatic |
393 | 0x0, // Default creation flags. |
394 | &thread_id); // Need a valid pointer for the call to work under Win98. |
395 | GTEST_CHECK_(thread_handle != NULL) << "CreateThread failed with error " |
396 | << ::GetLastError() << "." ; |
397 | if (thread_handle == NULL) { |
398 | delete param; |
399 | } |
400 | return thread_handle; |
401 | } |
402 | |
403 | private: |
404 | struct ThreadMainParam { |
405 | ThreadMainParam(Runnable* runnable, Notification* thread_can_start) |
406 | : runnable_(runnable), |
407 | thread_can_start_(thread_can_start) { |
408 | } |
409 | scoped_ptr<Runnable> runnable_; |
410 | // Does not own. |
411 | Notification* thread_can_start_; |
412 | }; |
413 | |
414 | static DWORD WINAPI ThreadMain(void* ptr) { |
415 | // Transfers ownership. |
416 | scoped_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr)); |
417 | if (param->thread_can_start_ != NULL) |
418 | param->thread_can_start_->WaitForNotification(); |
419 | param->runnable_->Run(); |
420 | return 0; |
421 | } |
422 | |
423 | // Prohibit instantiation. |
424 | ThreadWithParamSupport(); |
425 | |
426 | GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport); |
427 | }; |
428 | |
429 | } // namespace |
430 | |
431 | ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable, |
432 | Notification* thread_can_start) |
433 | : thread_(ThreadWithParamSupport::CreateThread(runnable, |
434 | thread_can_start)) { |
435 | } |
436 | |
437 | ThreadWithParamBase::~ThreadWithParamBase() { |
438 | Join(); |
439 | } |
440 | |
441 | void ThreadWithParamBase::Join() { |
442 | GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0) |
443 | << "Failed to join the thread with error " << ::GetLastError() << "." ; |
444 | } |
445 | |
446 | // Maps a thread to a set of ThreadIdToThreadLocals that have values |
447 | // instantiated on that thread and notifies them when the thread exits. A |
448 | // ThreadLocal instance is expected to persist until all threads it has |
449 | // values on have terminated. |
450 | class ThreadLocalRegistryImpl { |
451 | public: |
452 | // Registers thread_local_instance as having value on the current thread. |
453 | // Returns a value that can be used to identify the thread from other threads. |
454 | static ThreadLocalValueHolderBase* GetValueOnCurrentThread( |
455 | const ThreadLocalBase* thread_local_instance) { |
456 | DWORD current_thread = ::GetCurrentThreadId(); |
457 | MutexLock lock(&mutex_); |
458 | ThreadIdToThreadLocals* const thread_to_thread_locals = |
459 | GetThreadLocalsMapLocked(); |
460 | ThreadIdToThreadLocals::iterator thread_local_pos = |
461 | thread_to_thread_locals->find(current_thread); |
462 | if (thread_local_pos == thread_to_thread_locals->end()) { |
463 | thread_local_pos = thread_to_thread_locals->insert( |
464 | std::make_pair(current_thread, ThreadLocalValues())).first; |
465 | StartWatcherThreadFor(current_thread); |
466 | } |
467 | ThreadLocalValues& thread_local_values = thread_local_pos->second; |
468 | ThreadLocalValues::iterator value_pos = |
469 | thread_local_values.find(thread_local_instance); |
470 | if (value_pos == thread_local_values.end()) { |
471 | value_pos = |
472 | thread_local_values |
473 | .insert(std::make_pair( |
474 | thread_local_instance, |
475 | linked_ptr<ThreadLocalValueHolderBase>( |
476 | thread_local_instance->NewValueForCurrentThread()))) |
477 | .first; |
478 | } |
479 | return value_pos->second.get(); |
480 | } |
481 | |
482 | static void OnThreadLocalDestroyed( |
483 | const ThreadLocalBase* thread_local_instance) { |
484 | std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders; |
485 | // Clean up the ThreadLocalValues data structure while holding the lock, but |
486 | // defer the destruction of the ThreadLocalValueHolderBases. |
487 | { |
488 | MutexLock lock(&mutex_); |
489 | ThreadIdToThreadLocals* const thread_to_thread_locals = |
490 | GetThreadLocalsMapLocked(); |
491 | for (ThreadIdToThreadLocals::iterator it = |
492 | thread_to_thread_locals->begin(); |
493 | it != thread_to_thread_locals->end(); |
494 | ++it) { |
495 | ThreadLocalValues& thread_local_values = it->second; |
496 | ThreadLocalValues::iterator value_pos = |
497 | thread_local_values.find(thread_local_instance); |
498 | if (value_pos != thread_local_values.end()) { |
499 | value_holders.push_back(value_pos->second); |
500 | thread_local_values.erase(value_pos); |
501 | // This 'if' can only be successful at most once, so theoretically we |
502 | // could break out of the loop here, but we don't bother doing so. |
503 | } |
504 | } |
505 | } |
506 | // Outside the lock, let the destructor for 'value_holders' deallocate the |
507 | // ThreadLocalValueHolderBases. |
508 | } |
509 | |
510 | static void OnThreadExit(DWORD thread_id) { |
511 | GTEST_CHECK_(thread_id != 0) << ::GetLastError(); |
512 | std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders; |
513 | // Clean up the ThreadIdToThreadLocals data structure while holding the |
514 | // lock, but defer the destruction of the ThreadLocalValueHolderBases. |
515 | { |
516 | MutexLock lock(&mutex_); |
517 | ThreadIdToThreadLocals* const thread_to_thread_locals = |
518 | GetThreadLocalsMapLocked(); |
519 | ThreadIdToThreadLocals::iterator thread_local_pos = |
520 | thread_to_thread_locals->find(thread_id); |
521 | if (thread_local_pos != thread_to_thread_locals->end()) { |
522 | ThreadLocalValues& thread_local_values = thread_local_pos->second; |
523 | for (ThreadLocalValues::iterator value_pos = |
524 | thread_local_values.begin(); |
525 | value_pos != thread_local_values.end(); |
526 | ++value_pos) { |
527 | value_holders.push_back(value_pos->second); |
528 | } |
529 | thread_to_thread_locals->erase(thread_local_pos); |
530 | } |
531 | } |
532 | // Outside the lock, let the destructor for 'value_holders' deallocate the |
533 | // ThreadLocalValueHolderBases. |
534 | } |
535 | |
536 | private: |
537 | // In a particular thread, maps a ThreadLocal object to its value. |
538 | typedef std::map<const ThreadLocalBase*, |
539 | linked_ptr<ThreadLocalValueHolderBase> > ThreadLocalValues; |
540 | // Stores all ThreadIdToThreadLocals having values in a thread, indexed by |
541 | // thread's ID. |
542 | typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals; |
543 | |
544 | // Holds the thread id and thread handle that we pass from |
545 | // StartWatcherThreadFor to WatcherThreadFunc. |
546 | typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle; |
547 | |
548 | static void StartWatcherThreadFor(DWORD thread_id) { |
549 | // The returned handle will be kept in thread_map and closed by |
550 | // watcher_thread in WatcherThreadFunc. |
551 | HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION, |
552 | FALSE, |
553 | thread_id); |
554 | GTEST_CHECK_(thread != NULL); |
555 | // We need to pass a valid thread ID pointer into CreateThread for it |
556 | // to work correctly under Win98. |
557 | DWORD watcher_thread_id; |
558 | HANDLE watcher_thread = ::CreateThread( |
559 | NULL, // Default security. |
560 | 0, // Default stack size |
561 | &ThreadLocalRegistryImpl::WatcherThreadFunc, |
562 | reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)), |
563 | CREATE_SUSPENDED, |
564 | &watcher_thread_id); |
565 | GTEST_CHECK_(watcher_thread != NULL); |
566 | // Give the watcher thread the same priority as ours to avoid being |
567 | // blocked by it. |
568 | ::SetThreadPriority(watcher_thread, |
569 | ::GetThreadPriority(::GetCurrentThread())); |
570 | ::ResumeThread(watcher_thread); |
571 | ::CloseHandle(watcher_thread); |
572 | } |
573 | |
574 | // Monitors exit from a given thread and notifies those |
575 | // ThreadIdToThreadLocals about thread termination. |
576 | static DWORD WINAPI WatcherThreadFunc(LPVOID param) { |
577 | const ThreadIdAndHandle* tah = |
578 | reinterpret_cast<const ThreadIdAndHandle*>(param); |
579 | GTEST_CHECK_( |
580 | ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0); |
581 | OnThreadExit(tah->first); |
582 | ::CloseHandle(tah->second); |
583 | delete tah; |
584 | return 0; |
585 | } |
586 | |
587 | // Returns map of thread local instances. |
588 | static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() { |
589 | mutex_.AssertHeld(); |
590 | MemoryIsNotDeallocated memory_is_not_deallocated; |
591 | static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals(); |
592 | return map; |
593 | } |
594 | |
595 | // Protects access to GetThreadLocalsMapLocked() and its return value. |
596 | static Mutex mutex_; |
597 | // Protects access to GetThreadMapLocked() and its return value. |
598 | static Mutex thread_map_mutex_; |
599 | }; |
600 | |
601 | Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex); |
602 | Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex); |
603 | |
604 | ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread( |
605 | const ThreadLocalBase* thread_local_instance) { |
606 | return ThreadLocalRegistryImpl::GetValueOnCurrentThread( |
607 | thread_local_instance); |
608 | } |
609 | |
610 | void ThreadLocalRegistry::OnThreadLocalDestroyed( |
611 | const ThreadLocalBase* thread_local_instance) { |
612 | ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance); |
613 | } |
614 | |
615 | #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS |
616 | |
617 | #if GTEST_USES_POSIX_RE |
618 | |
619 | // Implements RE. Currently only needed for death tests. |
620 | |
621 | RE::~RE() { |
622 | if (is_valid_) { |
623 | // regfree'ing an invalid regex might crash because the content |
624 | // of the regex is undefined. Since the regex's are essentially |
625 | // the same, one cannot be valid (or invalid) without the other |
626 | // being so too. |
627 | regfree(&partial_regex_); |
628 | regfree(&full_regex_); |
629 | } |
630 | free(const_cast<char*>(pattern_)); |
631 | } |
632 | |
633 | // Returns true iff regular expression re matches the entire str. |
634 | bool RE::FullMatch(const char* str, const RE& re) { |
635 | if (!re.is_valid_) return false; |
636 | |
637 | regmatch_t match; |
638 | return regexec(&re.full_regex_, str, 1, &match, 0) == 0; |
639 | } |
640 | |
641 | // Returns true iff regular expression re matches a substring of str |
642 | // (including str itself). |
643 | bool RE::PartialMatch(const char* str, const RE& re) { |
644 | if (!re.is_valid_) return false; |
645 | |
646 | regmatch_t match; |
647 | return regexec(&re.partial_regex_, str, 1, &match, 0) == 0; |
648 | } |
649 | |
650 | // Initializes an RE from its string representation. |
651 | void RE::Init(const char* regex) { |
652 | pattern_ = posix::StrDup(regex); |
653 | |
654 | // Reserves enough bytes to hold the regular expression used for a |
655 | // full match. |
656 | const size_t full_regex_len = strlen(regex) + 10; |
657 | char* const full_pattern = new char[full_regex_len]; |
658 | |
659 | snprintf(full_pattern, full_regex_len, "^(%s)$" , regex); |
660 | is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0; |
661 | // We want to call regcomp(&partial_regex_, ...) even if the |
662 | // previous expression returns false. Otherwise partial_regex_ may |
663 | // not be properly initialized can may cause trouble when it's |
664 | // freed. |
665 | // |
666 | // Some implementation of POSIX regex (e.g. on at least some |
667 | // versions of Cygwin) doesn't accept the empty string as a valid |
668 | // regex. We change it to an equivalent form "()" to be safe. |
669 | if (is_valid_) { |
670 | const char* const partial_regex = (*regex == '\0') ? "()" : regex; |
671 | is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0; |
672 | } |
673 | EXPECT_TRUE(is_valid_) |
674 | << "Regular expression \"" << regex |
675 | << "\" is not a valid POSIX Extended regular expression." ; |
676 | |
677 | delete[] full_pattern; |
678 | } |
679 | |
680 | #elif GTEST_USES_SIMPLE_RE |
681 | |
682 | // Returns true iff ch appears anywhere in str (excluding the |
683 | // terminating '\0' character). |
684 | bool IsInSet(char ch, const char* str) { |
685 | return ch != '\0' && strchr(str, ch) != NULL; |
686 | } |
687 | |
688 | // Returns true iff ch belongs to the given classification. Unlike |
689 | // similar functions in <ctype.h>, these aren't affected by the |
690 | // current locale. |
691 | bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; } |
692 | bool IsAsciiPunct(char ch) { |
693 | return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~" ); |
694 | } |
695 | bool IsRepeat(char ch) { return IsInSet(ch, "?*+" ); } |
696 | bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v" ); } |
697 | bool IsAsciiWordChar(char ch) { |
698 | return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') || |
699 | ('0' <= ch && ch <= '9') || ch == '_'; |
700 | } |
701 | |
702 | // Returns true iff "\\c" is a supported escape sequence. |
703 | bool IsValidEscape(char c) { |
704 | return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW" )); |
705 | } |
706 | |
707 | // Returns true iff the given atom (specified by escaped and pattern) |
708 | // matches ch. The result is undefined if the atom is invalid. |
709 | bool AtomMatchesChar(bool escaped, char pattern_char, char ch) { |
710 | if (escaped) { // "\\p" where p is pattern_char. |
711 | switch (pattern_char) { |
712 | case 'd': return IsAsciiDigit(ch); |
713 | case 'D': return !IsAsciiDigit(ch); |
714 | case 'f': return ch == '\f'; |
715 | case 'n': return ch == '\n'; |
716 | case 'r': return ch == '\r'; |
717 | case 's': return IsAsciiWhiteSpace(ch); |
718 | case 'S': return !IsAsciiWhiteSpace(ch); |
719 | case 't': return ch == '\t'; |
720 | case 'v': return ch == '\v'; |
721 | case 'w': return IsAsciiWordChar(ch); |
722 | case 'W': return !IsAsciiWordChar(ch); |
723 | } |
724 | return IsAsciiPunct(pattern_char) && pattern_char == ch; |
725 | } |
726 | |
727 | return (pattern_char == '.' && ch != '\n') || pattern_char == ch; |
728 | } |
729 | |
730 | // Helper function used by ValidateRegex() to format error messages. |
731 | static std::string FormatRegexSyntaxError(const char* regex, int index) { |
732 | return (Message() << "Syntax error at index " << index |
733 | << " in simple regular expression \"" << regex << "\": " ).GetString(); |
734 | } |
735 | |
736 | // Generates non-fatal failures and returns false if regex is invalid; |
737 | // otherwise returns true. |
738 | bool ValidateRegex(const char* regex) { |
739 | if (regex == NULL) { |
740 | // FIXME: fix the source file location in the |
741 | // assertion failures to match where the regex is used in user |
742 | // code. |
743 | ADD_FAILURE() << "NULL is not a valid simple regular expression." ; |
744 | return false; |
745 | } |
746 | |
747 | bool is_valid = true; |
748 | |
749 | // True iff ?, *, or + can follow the previous atom. |
750 | bool prev_repeatable = false; |
751 | for (int i = 0; regex[i]; i++) { |
752 | if (regex[i] == '\\') { // An escape sequence |
753 | i++; |
754 | if (regex[i] == '\0') { |
755 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) |
756 | << "'\\' cannot appear at the end." ; |
757 | return false; |
758 | } |
759 | |
760 | if (!IsValidEscape(regex[i])) { |
761 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) |
762 | << "invalid escape sequence \"\\" << regex[i] << "\"." ; |
763 | is_valid = false; |
764 | } |
765 | prev_repeatable = true; |
766 | } else { // Not an escape sequence. |
767 | const char ch = regex[i]; |
768 | |
769 | if (ch == '^' && i > 0) { |
770 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i) |
771 | << "'^' can only appear at the beginning." ; |
772 | is_valid = false; |
773 | } else if (ch == '$' && regex[i + 1] != '\0') { |
774 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i) |
775 | << "'$' can only appear at the end." ; |
776 | is_valid = false; |
777 | } else if (IsInSet(ch, "()[]{}|" )) { |
778 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i) |
779 | << "'" << ch << "' is unsupported." ; |
780 | is_valid = false; |
781 | } else if (IsRepeat(ch) && !prev_repeatable) { |
782 | ADD_FAILURE() << FormatRegexSyntaxError(regex, i) |
783 | << "'" << ch << "' can only follow a repeatable token." ; |
784 | is_valid = false; |
785 | } |
786 | |
787 | prev_repeatable = !IsInSet(ch, "^$?*+" ); |
788 | } |
789 | } |
790 | |
791 | return is_valid; |
792 | } |
793 | |
794 | // Matches a repeated regex atom followed by a valid simple regular |
795 | // expression. The regex atom is defined as c if escaped is false, |
796 | // or \c otherwise. repeat is the repetition meta character (?, *, |
797 | // or +). The behavior is undefined if str contains too many |
798 | // characters to be indexable by size_t, in which case the test will |
799 | // probably time out anyway. We are fine with this limitation as |
800 | // std::string has it too. |
801 | bool MatchRepetitionAndRegexAtHead( |
802 | bool escaped, char c, char repeat, const char* regex, |
803 | const char* str) { |
804 | const size_t min_count = (repeat == '+') ? 1 : 0; |
805 | const size_t max_count = (repeat == '?') ? 1 : |
806 | static_cast<size_t>(-1) - 1; |
807 | // We cannot call numeric_limits::max() as it conflicts with the |
808 | // max() macro on Windows. |
809 | |
810 | for (size_t i = 0; i <= max_count; ++i) { |
811 | // We know that the atom matches each of the first i characters in str. |
812 | if (i >= min_count && MatchRegexAtHead(regex, str + i)) { |
813 | // We have enough matches at the head, and the tail matches too. |
814 | // Since we only care about *whether* the pattern matches str |
815 | // (as opposed to *how* it matches), there is no need to find a |
816 | // greedy match. |
817 | return true; |
818 | } |
819 | if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i])) |
820 | return false; |
821 | } |
822 | return false; |
823 | } |
824 | |
825 | // Returns true iff regex matches a prefix of str. regex must be a |
826 | // valid simple regular expression and not start with "^", or the |
827 | // result is undefined. |
828 | bool MatchRegexAtHead(const char* regex, const char* str) { |
829 | if (*regex == '\0') // An empty regex matches a prefix of anything. |
830 | return true; |
831 | |
832 | // "$" only matches the end of a string. Note that regex being |
833 | // valid guarantees that there's nothing after "$" in it. |
834 | if (*regex == '$') |
835 | return *str == '\0'; |
836 | |
837 | // Is the first thing in regex an escape sequence? |
838 | const bool escaped = *regex == '\\'; |
839 | if (escaped) |
840 | ++regex; |
841 | if (IsRepeat(regex[1])) { |
842 | // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so |
843 | // here's an indirect recursion. It terminates as the regex gets |
844 | // shorter in each recursion. |
845 | return MatchRepetitionAndRegexAtHead( |
846 | escaped, regex[0], regex[1], regex + 2, str); |
847 | } else { |
848 | // regex isn't empty, isn't "$", and doesn't start with a |
849 | // repetition. We match the first atom of regex with the first |
850 | // character of str and recurse. |
851 | return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) && |
852 | MatchRegexAtHead(regex + 1, str + 1); |
853 | } |
854 | } |
855 | |
856 | // Returns true iff regex matches any substring of str. regex must be |
857 | // a valid simple regular expression, or the result is undefined. |
858 | // |
859 | // The algorithm is recursive, but the recursion depth doesn't exceed |
860 | // the regex length, so we won't need to worry about running out of |
861 | // stack space normally. In rare cases the time complexity can be |
862 | // exponential with respect to the regex length + the string length, |
863 | // but usually it's must faster (often close to linear). |
864 | bool MatchRegexAnywhere(const char* regex, const char* str) { |
865 | if (regex == NULL || str == NULL) |
866 | return false; |
867 | |
868 | if (*regex == '^') |
869 | return MatchRegexAtHead(regex + 1, str); |
870 | |
871 | // A successful match can be anywhere in str. |
872 | do { |
873 | if (MatchRegexAtHead(regex, str)) |
874 | return true; |
875 | } while (*str++ != '\0'); |
876 | return false; |
877 | } |
878 | |
879 | // Implements the RE class. |
880 | |
881 | RE::~RE() { |
882 | free(const_cast<char*>(pattern_)); |
883 | free(const_cast<char*>(full_pattern_)); |
884 | } |
885 | |
886 | // Returns true iff regular expression re matches the entire str. |
887 | bool RE::FullMatch(const char* str, const RE& re) { |
888 | return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str); |
889 | } |
890 | |
891 | // Returns true iff regular expression re matches a substring of str |
892 | // (including str itself). |
893 | bool RE::PartialMatch(const char* str, const RE& re) { |
894 | return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str); |
895 | } |
896 | |
897 | // Initializes an RE from its string representation. |
898 | void RE::Init(const char* regex) { |
899 | pattern_ = full_pattern_ = NULL; |
900 | if (regex != NULL) { |
901 | pattern_ = posix::StrDup(regex); |
902 | } |
903 | |
904 | is_valid_ = ValidateRegex(regex); |
905 | if (!is_valid_) { |
906 | // No need to calculate the full pattern when the regex is invalid. |
907 | return; |
908 | } |
909 | |
910 | const size_t len = strlen(regex); |
911 | // Reserves enough bytes to hold the regular expression used for a |
912 | // full match: we need space to prepend a '^', append a '$', and |
913 | // terminate the string with '\0'. |
914 | char* buffer = static_cast<char*>(malloc(len + 3)); |
915 | full_pattern_ = buffer; |
916 | |
917 | if (*regex != '^') |
918 | *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'. |
919 | |
920 | // We don't use snprintf or strncpy, as they trigger a warning when |
921 | // compiled with VC++ 8.0. |
922 | memcpy(buffer, regex, len); |
923 | buffer += len; |
924 | |
925 | if (len == 0 || regex[len - 1] != '$') |
926 | *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'. |
927 | |
928 | *buffer = '\0'; |
929 | } |
930 | |
931 | #endif // GTEST_USES_POSIX_RE |
932 | |
933 | const char kUnknownFile[] = "unknown file" ; |
934 | |
935 | // Formats a source file path and a line number as they would appear |
936 | // in an error message from the compiler used to compile this code. |
937 | GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) { |
938 | const std::string file_name(file == NULL ? kUnknownFile : file); |
939 | |
940 | if (line < 0) { |
941 | return file_name + ":" ; |
942 | } |
943 | #ifdef _MSC_VER |
944 | return file_name + "(" + StreamableToString(line) + "):" ; |
945 | #else |
946 | return file_name + ":" + StreamableToString(line) + ":" ; |
947 | #endif // _MSC_VER |
948 | } |
949 | |
950 | // Formats a file location for compiler-independent XML output. |
951 | // Although this function is not platform dependent, we put it next to |
952 | // FormatFileLocation in order to contrast the two functions. |
953 | // Note that FormatCompilerIndependentFileLocation() does NOT append colon |
954 | // to the file location it produces, unlike FormatFileLocation(). |
955 | GTEST_API_ ::std::string FormatCompilerIndependentFileLocation( |
956 | const char* file, int line) { |
957 | const std::string file_name(file == NULL ? kUnknownFile : file); |
958 | |
959 | if (line < 0) |
960 | return file_name; |
961 | else |
962 | return file_name + ":" + StreamableToString(line); |
963 | } |
964 | |
965 | GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line) |
966 | : severity_(severity) { |
967 | const char* const marker = |
968 | severity == GTEST_INFO ? "[ INFO ]" : |
969 | severity == GTEST_WARNING ? "[WARNING]" : |
970 | severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]" ; |
971 | GetStream() << ::std::endl << marker << " " |
972 | << FormatFileLocation(file, line).c_str() << ": " ; |
973 | } |
974 | |
975 | // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program. |
976 | GTestLog::~GTestLog() { |
977 | GetStream() << ::std::endl; |
978 | if (severity_ == GTEST_FATAL) { |
979 | fflush(stderr); |
980 | posix::Abort(); |
981 | } |
982 | } |
983 | |
984 | // Disable Microsoft deprecation warnings for POSIX functions called from |
985 | // this class (creat, dup, dup2, and close) |
986 | GTEST_DISABLE_MSC_DEPRECATED_PUSH_() |
987 | |
988 | #if GTEST_HAS_STREAM_REDIRECTION |
989 | |
990 | // Object that captures an output stream (stdout/stderr). |
991 | class CapturedStream { |
992 | public: |
993 | // The ctor redirects the stream to a temporary file. |
994 | explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) { |
995 | # if GTEST_OS_WINDOWS |
996 | char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT |
997 | char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT |
998 | |
999 | ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path); |
1000 | const UINT success = ::GetTempFileNameA(temp_dir_path, |
1001 | "gtest_redir" , |
1002 | 0, // Generate unique file name. |
1003 | temp_file_path); |
1004 | GTEST_CHECK_(success != 0) |
1005 | << "Unable to create a temporary file in " << temp_dir_path; |
1006 | const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE); |
1007 | GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file " |
1008 | << temp_file_path; |
1009 | filename_ = temp_file_path; |
1010 | # else |
1011 | // There's no guarantee that a test has write access to the current |
1012 | // directory, so we create the temporary file in the /tmp directory |
1013 | // instead. We use /tmp on most systems, and /sdcard on Android. |
1014 | // That's because Android doesn't have /tmp. |
1015 | # if GTEST_OS_LINUX_ANDROID |
1016 | // Note: Android applications are expected to call the framework's |
1017 | // Context.getExternalStorageDirectory() method through JNI to get |
1018 | // the location of the world-writable SD Card directory. However, |
1019 | // this requires a Context handle, which cannot be retrieved |
1020 | // globally from native code. Doing so also precludes running the |
1021 | // code as part of a regular standalone executable, which doesn't |
1022 | // run in a Dalvik process (e.g. when running it through 'adb shell'). |
1023 | // |
1024 | // The location /sdcard is directly accessible from native code |
1025 | // and is the only location (unofficially) supported by the Android |
1026 | // team. It's generally a symlink to the real SD Card mount point |
1027 | // which can be /mnt/sdcard, /mnt/sdcard0, /system/media/sdcard, or |
1028 | // other OEM-customized locations. Never rely on these, and always |
1029 | // use /sdcard. |
1030 | char name_template[] = "/sdcard/gtest_captured_stream.XXXXXX" ; |
1031 | # else |
1032 | char name_template[] = "/tmp/captured_stream.XXXXXX" ; |
1033 | # endif // GTEST_OS_LINUX_ANDROID |
1034 | const int captured_fd = mkstemp(name_template); |
1035 | filename_ = name_template; |
1036 | # endif // GTEST_OS_WINDOWS |
1037 | fflush(NULL); |
1038 | dup2(captured_fd, fd_); |
1039 | close(captured_fd); |
1040 | } |
1041 | |
1042 | ~CapturedStream() { |
1043 | remove(filename_.c_str()); |
1044 | } |
1045 | |
1046 | std::string GetCapturedString() { |
1047 | if (uncaptured_fd_ != -1) { |
1048 | // Restores the original stream. |
1049 | fflush(NULL); |
1050 | dup2(uncaptured_fd_, fd_); |
1051 | close(uncaptured_fd_); |
1052 | uncaptured_fd_ = -1; |
1053 | } |
1054 | |
1055 | FILE* const file = posix::FOpen(filename_.c_str(), "r" ); |
1056 | const std::string content = ReadEntireFile(file); |
1057 | posix::FClose(file); |
1058 | return content; |
1059 | } |
1060 | |
1061 | private: |
1062 | const int fd_; // A stream to capture. |
1063 | int uncaptured_fd_; |
1064 | // Name of the temporary file holding the stderr output. |
1065 | ::std::string filename_; |
1066 | |
1067 | GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream); |
1068 | }; |
1069 | |
1070 | GTEST_DISABLE_MSC_DEPRECATED_POP_() |
1071 | |
1072 | static CapturedStream* g_captured_stderr = NULL; |
1073 | static CapturedStream* g_captured_stdout = NULL; |
1074 | |
1075 | // Starts capturing an output stream (stdout/stderr). |
1076 | static void CaptureStream(int fd, const char* stream_name, |
1077 | CapturedStream** stream) { |
1078 | if (*stream != NULL) { |
1079 | GTEST_LOG_(FATAL) << "Only one " << stream_name |
1080 | << " capturer can exist at a time." ; |
1081 | } |
1082 | *stream = new CapturedStream(fd); |
1083 | } |
1084 | |
1085 | // Stops capturing the output stream and returns the captured string. |
1086 | static std::string GetCapturedStream(CapturedStream** captured_stream) { |
1087 | const std::string content = (*captured_stream)->GetCapturedString(); |
1088 | |
1089 | delete *captured_stream; |
1090 | *captured_stream = NULL; |
1091 | |
1092 | return content; |
1093 | } |
1094 | |
1095 | // Starts capturing stdout. |
1096 | void CaptureStdout() { |
1097 | CaptureStream(kStdOutFileno, "stdout" , &g_captured_stdout); |
1098 | } |
1099 | |
1100 | // Starts capturing stderr. |
1101 | void CaptureStderr() { |
1102 | CaptureStream(kStdErrFileno, "stderr" , &g_captured_stderr); |
1103 | } |
1104 | |
1105 | // Stops capturing stdout and returns the captured string. |
1106 | std::string GetCapturedStdout() { |
1107 | return GetCapturedStream(&g_captured_stdout); |
1108 | } |
1109 | |
1110 | // Stops capturing stderr and returns the captured string. |
1111 | std::string GetCapturedStderr() { |
1112 | return GetCapturedStream(&g_captured_stderr); |
1113 | } |
1114 | |
1115 | #endif // GTEST_HAS_STREAM_REDIRECTION |
1116 | |
1117 | |
1118 | |
1119 | |
1120 | |
1121 | size_t GetFileSize(FILE* file) { |
1122 | fseek(file, 0, SEEK_END); |
1123 | return static_cast<size_t>(ftell(file)); |
1124 | } |
1125 | |
1126 | std::string ReadEntireFile(FILE* file) { |
1127 | const size_t file_size = GetFileSize(file); |
1128 | char* const buffer = new char[file_size]; |
1129 | |
1130 | size_t bytes_last_read = 0; // # of bytes read in the last fread() |
1131 | size_t bytes_read = 0; // # of bytes read so far |
1132 | |
1133 | fseek(file, 0, SEEK_SET); |
1134 | |
1135 | // Keeps reading the file until we cannot read further or the |
1136 | // pre-determined file size is reached. |
1137 | do { |
1138 | bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file); |
1139 | bytes_read += bytes_last_read; |
1140 | } while (bytes_last_read > 0 && bytes_read < file_size); |
1141 | |
1142 | const std::string content(buffer, bytes_read); |
1143 | delete[] buffer; |
1144 | |
1145 | return content; |
1146 | } |
1147 | |
1148 | #if GTEST_HAS_DEATH_TEST |
1149 | static const std::vector<std::string>* g_injected_test_argvs = NULL; // Owned. |
1150 | |
1151 | std::vector<std::string> GetInjectableArgvs() { |
1152 | if (g_injected_test_argvs != NULL) { |
1153 | return *g_injected_test_argvs; |
1154 | } |
1155 | return GetArgvs(); |
1156 | } |
1157 | |
1158 | void SetInjectableArgvs(const std::vector<std::string>* new_argvs) { |
1159 | if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs; |
1160 | g_injected_test_argvs = new_argvs; |
1161 | } |
1162 | |
1163 | void SetInjectableArgvs(const std::vector<std::string>& new_argvs) { |
1164 | SetInjectableArgvs( |
1165 | new std::vector<std::string>(new_argvs.begin(), new_argvs.end())); |
1166 | } |
1167 | |
1168 | #if GTEST_HAS_GLOBAL_STRING |
1169 | void SetInjectableArgvs(const std::vector< ::string>& new_argvs) { |
1170 | SetInjectableArgvs( |
1171 | new std::vector<std::string>(new_argvs.begin(), new_argvs.end())); |
1172 | } |
1173 | #endif // GTEST_HAS_GLOBAL_STRING |
1174 | |
1175 | void ClearInjectableArgvs() { |
1176 | delete g_injected_test_argvs; |
1177 | g_injected_test_argvs = NULL; |
1178 | } |
1179 | #endif // GTEST_HAS_DEATH_TEST |
1180 | |
1181 | #if GTEST_OS_WINDOWS_MOBILE |
1182 | namespace posix { |
1183 | void Abort() { |
1184 | DebugBreak(); |
1185 | TerminateProcess(GetCurrentProcess(), 1); |
1186 | } |
1187 | } // namespace posix |
1188 | #endif // GTEST_OS_WINDOWS_MOBILE |
1189 | |
1190 | // Returns the name of the environment variable corresponding to the |
1191 | // given flag. For example, FlagToEnvVar("foo") will return |
1192 | // "GTEST_FOO" in the open-source version. |
1193 | static std::string FlagToEnvVar(const char* flag) { |
1194 | const std::string full_flag = |
1195 | (Message() << GTEST_FLAG_PREFIX_ << flag).GetString(); |
1196 | |
1197 | Message env_var; |
1198 | for (size_t i = 0; i != full_flag.length(); i++) { |
1199 | env_var << ToUpper(full_flag.c_str()[i]); |
1200 | } |
1201 | |
1202 | return env_var.GetString(); |
1203 | } |
1204 | |
1205 | // Parses 'str' for a 32-bit signed integer. If successful, writes |
1206 | // the result to *value and returns true; otherwise leaves *value |
1207 | // unchanged and returns false. |
1208 | bool ParseInt32(const Message& src_text, const char* str, Int32* value) { |
1209 | // Parses the environment variable as a decimal integer. |
1210 | char* end = NULL; |
1211 | const long long_value = strtol(str, &end, 10); // NOLINT |
1212 | |
1213 | // Has strtol() consumed all characters in the string? |
1214 | if (*end != '\0') { |
1215 | // No - an invalid character was encountered. |
1216 | Message msg; |
1217 | msg << "WARNING: " << src_text |
1218 | << " is expected to be a 32-bit integer, but actually" |
1219 | << " has value \"" << str << "\".\n" ; |
1220 | printf("%s" , msg.GetString().c_str()); |
1221 | fflush(stdout); |
1222 | return false; |
1223 | } |
1224 | |
1225 | // Is the parsed value in the range of an Int32? |
1226 | const Int32 result = static_cast<Int32>(long_value); |
1227 | if (long_value == LONG_MAX || long_value == LONG_MIN || |
1228 | // The parsed value overflows as a long. (strtol() returns |
1229 | // LONG_MAX or LONG_MIN when the input overflows.) |
1230 | result != long_value |
1231 | // The parsed value overflows as an Int32. |
1232 | ) { |
1233 | Message msg; |
1234 | msg << "WARNING: " << src_text |
1235 | << " is expected to be a 32-bit integer, but actually" |
1236 | << " has value " << str << ", which overflows.\n" ; |
1237 | printf("%s" , msg.GetString().c_str()); |
1238 | fflush(stdout); |
1239 | return false; |
1240 | } |
1241 | |
1242 | *value = result; |
1243 | return true; |
1244 | } |
1245 | |
1246 | // Reads and returns the Boolean environment variable corresponding to |
1247 | // the given flag; if it's not set, returns default_value. |
1248 | // |
1249 | // The value is considered true iff it's not "0". |
1250 | bool BoolFromGTestEnv(const char* flag, bool default_value) { |
1251 | #if defined(GTEST_GET_BOOL_FROM_ENV_) |
1252 | return GTEST_GET_BOOL_FROM_ENV_(flag, default_value); |
1253 | #else |
1254 | const std::string env_var = FlagToEnvVar(flag); |
1255 | const char* const string_value = posix::GetEnv(env_var.c_str()); |
1256 | return string_value == NULL ? |
1257 | default_value : strcmp(string_value, "0" ) != 0; |
1258 | #endif // defined(GTEST_GET_BOOL_FROM_ENV_) |
1259 | } |
1260 | |
1261 | // Reads and returns a 32-bit integer stored in the environment |
1262 | // variable corresponding to the given flag; if it isn't set or |
1263 | // doesn't represent a valid 32-bit integer, returns default_value. |
1264 | Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) { |
1265 | #if defined(GTEST_GET_INT32_FROM_ENV_) |
1266 | return GTEST_GET_INT32_FROM_ENV_(flag, default_value); |
1267 | #else |
1268 | const std::string env_var = FlagToEnvVar(flag); |
1269 | const char* const string_value = posix::GetEnv(env_var.c_str()); |
1270 | if (string_value == NULL) { |
1271 | // The environment variable is not set. |
1272 | return default_value; |
1273 | } |
1274 | |
1275 | Int32 result = default_value; |
1276 | if (!ParseInt32(Message() << "Environment variable " << env_var, |
1277 | string_value, &result)) { |
1278 | printf("The default value %s is used.\n" , |
1279 | (Message() << default_value).GetString().c_str()); |
1280 | fflush(stdout); |
1281 | return default_value; |
1282 | } |
1283 | |
1284 | return result; |
1285 | #endif // defined(GTEST_GET_INT32_FROM_ENV_) |
1286 | } |
1287 | |
1288 | // As a special case for the 'output' flag, if GTEST_OUTPUT is not |
1289 | // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build |
1290 | // system. The value of XML_OUTPUT_FILE is a filename without the |
1291 | // "xml:" prefix of GTEST_OUTPUT. |
1292 | // Note that this is meant to be called at the call site so it does |
1293 | // not check that the flag is 'output' |
1294 | // In essence this checks an env variable called XML_OUTPUT_FILE |
1295 | // and if it is set we prepend "xml:" to its value, if it not set we return "" |
1296 | std::string OutputFlagAlsoCheckEnvVar(){ |
1297 | std::string default_value_for_output_flag = "" ; |
1298 | const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE" ); |
1299 | if (NULL != xml_output_file_env) { |
1300 | default_value_for_output_flag = std::string("xml:" ) + xml_output_file_env; |
1301 | } |
1302 | return default_value_for_output_flag; |
1303 | } |
1304 | |
1305 | // Reads and returns the string environment variable corresponding to |
1306 | // the given flag; if it's not set, returns default_value. |
1307 | const char* StringFromGTestEnv(const char* flag, const char* default_value) { |
1308 | #if defined(GTEST_GET_STRING_FROM_ENV_) |
1309 | return GTEST_GET_STRING_FROM_ENV_(flag, default_value); |
1310 | #else |
1311 | const std::string env_var = FlagToEnvVar(flag); |
1312 | const char* const value = posix::GetEnv(env_var.c_str()); |
1313 | return value == NULL ? default_value : value; |
1314 | #endif // defined(GTEST_GET_STRING_FROM_ENV_) |
1315 | } |
1316 | |
1317 | } // namespace internal |
1318 | } // namespace testing |
1319 | |