1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | |
31 | // Google Test - The Google C++ Testing and Mocking Framework |
32 | // |
33 | // This file implements a universal value printer that can print a |
34 | // value of any type T: |
35 | // |
36 | // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); |
37 | // |
38 | // A user can teach this function how to print a class type T by |
39 | // defining either operator<<() or PrintTo() in the namespace that |
40 | // defines T. More specifically, the FIRST defined function in the |
41 | // following list will be used (assuming T is defined in namespace |
42 | // foo): |
43 | // |
44 | // 1. foo::PrintTo(const T&, ostream*) |
45 | // 2. operator<<(ostream&, const T&) defined in either foo or the |
46 | // global namespace. |
47 | // |
48 | // However if T is an STL-style container then it is printed element-wise |
49 | // unless foo::PrintTo(const T&, ostream*) is defined. Note that |
50 | // operator<<() is ignored for container types. |
51 | // |
52 | // If none of the above is defined, it will print the debug string of |
53 | // the value if it is a protocol buffer, or print the raw bytes in the |
54 | // value otherwise. |
55 | // |
56 | // To aid debugging: when T is a reference type, the address of the |
57 | // value is also printed; when T is a (const) char pointer, both the |
58 | // pointer value and the NUL-terminated string it points to are |
59 | // printed. |
60 | // |
61 | // We also provide some convenient wrappers: |
62 | // |
63 | // // Prints a value to a string. For a (const or not) char |
64 | // // pointer, the NUL-terminated string (but not the pointer) is |
65 | // // printed. |
66 | // std::string ::testing::PrintToString(const T& value); |
67 | // |
68 | // // Prints a value tersely: for a reference type, the referenced |
69 | // // value (but not the address) is printed; for a (const or not) char |
70 | // // pointer, the NUL-terminated string (but not the pointer) is |
71 | // // printed. |
72 | // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); |
73 | // |
74 | // // Prints value using the type inferred by the compiler. The difference |
75 | // // from UniversalTersePrint() is that this function prints both the |
76 | // // pointer and the NUL-terminated string for a (const or not) char pointer. |
77 | // void ::testing::internal::UniversalPrint(const T& value, ostream*); |
78 | // |
79 | // // Prints the fields of a tuple tersely to a string vector, one |
80 | // // element for each field. Tuple support must be enabled in |
81 | // // gtest-port.h. |
82 | // std::vector<string> UniversalTersePrintTupleFieldsToStrings( |
83 | // const Tuple& value); |
84 | // |
85 | // Known limitation: |
86 | // |
87 | // The print primitives print the elements of an STL-style container |
88 | // using the compiler-inferred type of *iter where iter is a |
89 | // const_iterator of the container. When const_iterator is an input |
90 | // iterator but not a forward iterator, this inferred type may not |
91 | // match value_type, and the print output may be incorrect. In |
92 | // practice, this is rarely a problem as for most containers |
93 | // const_iterator is a forward iterator. We'll fix this if there's an |
94 | // actual need for it. Note that this fix cannot rely on value_type |
95 | // being defined as many user-defined container types don't have |
96 | // value_type. |
97 | |
98 | // GOOGLETEST_CM0001 DO NOT DELETE |
99 | |
100 | #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
101 | #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
102 | |
103 | #include <ostream> // NOLINT |
104 | #include <sstream> |
105 | #include <string> |
106 | #include <utility> |
107 | #include <vector> |
108 | #include "gtest/internal/gtest-port.h" |
109 | #include "gtest/internal/gtest-internal.h" |
110 | |
111 | #if GTEST_HAS_STD_TUPLE_ |
112 | # include <tuple> |
113 | #endif |
114 | |
115 | #if GTEST_HAS_ABSL |
116 | #include "absl/strings/string_view.h" |
117 | #include "absl/types/optional.h" |
118 | #include "absl/types/variant.h" |
119 | #endif // GTEST_HAS_ABSL |
120 | |
121 | namespace testing { |
122 | |
123 | // Definitions in the 'internal' and 'internal2' name spaces are |
124 | // subject to change without notice. DO NOT USE THEM IN USER CODE! |
125 | namespace internal2 { |
126 | |
127 | // Prints the given number of bytes in the given object to the given |
128 | // ostream. |
129 | GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, |
130 | size_t count, |
131 | ::std::ostream* os); |
132 | |
133 | // For selecting which printer to use when a given type has neither << |
134 | // nor PrintTo(). |
135 | enum TypeKind { |
136 | kProtobuf, // a protobuf type |
137 | kConvertibleToInteger, // a type implicitly convertible to BiggestInt |
138 | // (e.g. a named or unnamed enum type) |
139 | #if GTEST_HAS_ABSL |
140 | kConvertibleToStringView, // a type implicitly convertible to |
141 | // absl::string_view |
142 | #endif |
143 | kOtherType // anything else |
144 | }; |
145 | |
146 | // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called |
147 | // by the universal printer to print a value of type T when neither |
148 | // operator<< nor PrintTo() is defined for T, where kTypeKind is the |
149 | // "kind" of T as defined by enum TypeKind. |
150 | template <typename T, TypeKind kTypeKind> |
151 | class TypeWithoutFormatter { |
152 | public: |
153 | // This default version is called when kTypeKind is kOtherType. |
154 | static void PrintValue(const T& value, ::std::ostream* os) { |
155 | PrintBytesInObjectTo(static_cast<const unsigned char*>( |
156 | reinterpret_cast<const void*>(&value)), |
157 | sizeof(value), os); |
158 | } |
159 | }; |
160 | |
161 | // We print a protobuf using its ShortDebugString() when the string |
162 | // doesn't exceed this many characters; otherwise we print it using |
163 | // DebugString() for better readability. |
164 | const size_t kProtobufOneLinerMaxLength = 50; |
165 | |
166 | template <typename T> |
167 | class TypeWithoutFormatter<T, kProtobuf> { |
168 | public: |
169 | static void PrintValue(const T& value, ::std::ostream* os) { |
170 | std::string pretty_str = value.ShortDebugString(); |
171 | if (pretty_str.length() > kProtobufOneLinerMaxLength) { |
172 | pretty_str = "\n" + value.DebugString(); |
173 | } |
174 | *os << ("<" + pretty_str + ">" ); |
175 | } |
176 | }; |
177 | |
178 | template <typename T> |
179 | class TypeWithoutFormatter<T, kConvertibleToInteger> { |
180 | public: |
181 | // Since T has no << operator or PrintTo() but can be implicitly |
182 | // converted to BiggestInt, we print it as a BiggestInt. |
183 | // |
184 | // Most likely T is an enum type (either named or unnamed), in which |
185 | // case printing it as an integer is the desired behavior. In case |
186 | // T is not an enum, printing it as an integer is the best we can do |
187 | // given that it has no user-defined printer. |
188 | static void PrintValue(const T& value, ::std::ostream* os) { |
189 | const internal::BiggestInt kBigInt = value; |
190 | *os << kBigInt; |
191 | } |
192 | }; |
193 | |
194 | #if GTEST_HAS_ABSL |
195 | template <typename T> |
196 | class TypeWithoutFormatter<T, kConvertibleToStringView> { |
197 | public: |
198 | // Since T has neither operator<< nor PrintTo() but can be implicitly |
199 | // converted to absl::string_view, we print it as a absl::string_view. |
200 | // |
201 | // Note: the implementation is further below, as it depends on |
202 | // internal::PrintTo symbol which is defined later in the file. |
203 | static void PrintValue(const T& value, ::std::ostream* os); |
204 | }; |
205 | #endif |
206 | |
207 | // Prints the given value to the given ostream. If the value is a |
208 | // protocol message, its debug string is printed; if it's an enum or |
209 | // of a type implicitly convertible to BiggestInt, it's printed as an |
210 | // integer; otherwise the bytes in the value are printed. This is |
211 | // what UniversalPrinter<T>::Print() does when it knows nothing about |
212 | // type T and T has neither << operator nor PrintTo(). |
213 | // |
214 | // A user can override this behavior for a class type Foo by defining |
215 | // a << operator in the namespace where Foo is defined. |
216 | // |
217 | // We put this operator in namespace 'internal2' instead of 'internal' |
218 | // to simplify the implementation, as much code in 'internal' needs to |
219 | // use << in STL, which would conflict with our own << were it defined |
220 | // in 'internal'. |
221 | // |
222 | // Note that this operator<< takes a generic std::basic_ostream<Char, |
223 | // CharTraits> type instead of the more restricted std::ostream. If |
224 | // we define it to take an std::ostream instead, we'll get an |
225 | // "ambiguous overloads" compiler error when trying to print a type |
226 | // Foo that supports streaming to std::basic_ostream<Char, |
227 | // CharTraits>, as the compiler cannot tell whether |
228 | // operator<<(std::ostream&, const T&) or |
229 | // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more |
230 | // specific. |
231 | template <typename Char, typename CharTraits, typename T> |
232 | ::std::basic_ostream<Char, CharTraits>& operator<<( |
233 | ::std::basic_ostream<Char, CharTraits>& os, const T& x) { |
234 | TypeWithoutFormatter<T, (internal::IsAProtocolMessage<T>::value |
235 | ? kProtobuf |
236 | : internal::ImplicitlyConvertible< |
237 | const T&, internal::BiggestInt>::value |
238 | ? kConvertibleToInteger |
239 | : |
240 | #if GTEST_HAS_ABSL |
241 | internal::ImplicitlyConvertible< |
242 | const T&, absl::string_view>::value |
243 | ? kConvertibleToStringView |
244 | : |
245 | #endif |
246 | kOtherType)>::PrintValue(x, &os); |
247 | return os; |
248 | } |
249 | |
250 | } // namespace internal2 |
251 | } // namespace testing |
252 | |
253 | // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up |
254 | // magic needed for implementing UniversalPrinter won't work. |
255 | namespace testing_internal { |
256 | |
257 | // Used to print a value that is not an STL-style container when the |
258 | // user doesn't define PrintTo() for it. |
259 | template <typename T> |
260 | void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { |
261 | // With the following statement, during unqualified name lookup, |
262 | // testing::internal2::operator<< appears as if it was declared in |
263 | // the nearest enclosing namespace that contains both |
264 | // ::testing_internal and ::testing::internal2, i.e. the global |
265 | // namespace. For more details, refer to the C++ Standard section |
266 | // 7.3.4-1 [namespace.udir]. This allows us to fall back onto |
267 | // testing::internal2::operator<< in case T doesn't come with a << |
268 | // operator. |
269 | // |
270 | // We cannot write 'using ::testing::internal2::operator<<;', which |
271 | // gcc 3.3 fails to compile due to a compiler bug. |
272 | using namespace ::testing::internal2; // NOLINT |
273 | |
274 | // Assuming T is defined in namespace foo, in the next statement, |
275 | // the compiler will consider all of: |
276 | // |
277 | // 1. foo::operator<< (thanks to Koenig look-up), |
278 | // 2. ::operator<< (as the current namespace is enclosed in ::), |
279 | // 3. testing::internal2::operator<< (thanks to the using statement above). |
280 | // |
281 | // The operator<< whose type matches T best will be picked. |
282 | // |
283 | // We deliberately allow #2 to be a candidate, as sometimes it's |
284 | // impossible to define #1 (e.g. when foo is ::std, defining |
285 | // anything in it is undefined behavior unless you are a compiler |
286 | // vendor.). |
287 | *os << value; |
288 | } |
289 | |
290 | } // namespace testing_internal |
291 | |
292 | namespace testing { |
293 | namespace internal { |
294 | |
295 | // FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a |
296 | // value of type ToPrint that is an operand of a comparison assertion |
297 | // (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in |
298 | // the comparison, and is used to help determine the best way to |
299 | // format the value. In particular, when the value is a C string |
300 | // (char pointer) and the other operand is an STL string object, we |
301 | // want to format the C string as a string, since we know it is |
302 | // compared by value with the string object. If the value is a char |
303 | // pointer but the other operand is not an STL string object, we don't |
304 | // know whether the pointer is supposed to point to a NUL-terminated |
305 | // string, and thus want to print it as a pointer to be safe. |
306 | // |
307 | // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. |
308 | |
309 | // The default case. |
310 | template <typename ToPrint, typename OtherOperand> |
311 | class FormatForComparison { |
312 | public: |
313 | static ::std::string Format(const ToPrint& value) { |
314 | return ::testing::PrintToString(value); |
315 | } |
316 | }; |
317 | |
318 | // Array. |
319 | template <typename ToPrint, size_t N, typename OtherOperand> |
320 | class FormatForComparison<ToPrint[N], OtherOperand> { |
321 | public: |
322 | static ::std::string Format(const ToPrint* value) { |
323 | return FormatForComparison<const ToPrint*, OtherOperand>::Format(value); |
324 | } |
325 | }; |
326 | |
327 | // By default, print C string as pointers to be safe, as we don't know |
328 | // whether they actually point to a NUL-terminated string. |
329 | |
330 | #define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \ |
331 | template <typename OtherOperand> \ |
332 | class FormatForComparison<CharType*, OtherOperand> { \ |
333 | public: \ |
334 | static ::std::string Format(CharType* value) { \ |
335 | return ::testing::PrintToString(static_cast<const void*>(value)); \ |
336 | } \ |
337 | } |
338 | |
339 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char); |
340 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char); |
341 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t); |
342 | GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t); |
343 | |
344 | #undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_ |
345 | |
346 | // If a C string is compared with an STL string object, we know it's meant |
347 | // to point to a NUL-terminated string, and thus can print it as a string. |
348 | |
349 | #define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \ |
350 | template <> \ |
351 | class FormatForComparison<CharType*, OtherStringType> { \ |
352 | public: \ |
353 | static ::std::string Format(CharType* value) { \ |
354 | return ::testing::PrintToString(value); \ |
355 | } \ |
356 | } |
357 | |
358 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string); |
359 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string); |
360 | |
361 | #if GTEST_HAS_GLOBAL_STRING |
362 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::string); |
363 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::string); |
364 | #endif |
365 | |
366 | #if GTEST_HAS_GLOBAL_WSTRING |
367 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::wstring); |
368 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::wstring); |
369 | #endif |
370 | |
371 | #if GTEST_HAS_STD_WSTRING |
372 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring); |
373 | GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring); |
374 | #endif |
375 | |
376 | #undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_ |
377 | |
378 | // Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc) |
379 | // operand to be used in a failure message. The type (but not value) |
380 | // of the other operand may affect the format. This allows us to |
381 | // print a char* as a raw pointer when it is compared against another |
382 | // char* or void*, and print it as a C string when it is compared |
383 | // against an std::string object, for example. |
384 | // |
385 | // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. |
386 | template <typename T1, typename T2> |
387 | std::string FormatForComparisonFailureMessage( |
388 | const T1& value, const T2& /* other_operand */) { |
389 | return FormatForComparison<T1, T2>::Format(value); |
390 | } |
391 | |
392 | // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given |
393 | // value to the given ostream. The caller must ensure that |
394 | // 'ostream_ptr' is not NULL, or the behavior is undefined. |
395 | // |
396 | // We define UniversalPrinter as a class template (as opposed to a |
397 | // function template), as we need to partially specialize it for |
398 | // reference types, which cannot be done with function templates. |
399 | template <typename T> |
400 | class UniversalPrinter; |
401 | |
402 | template <typename T> |
403 | void UniversalPrint(const T& value, ::std::ostream* os); |
404 | |
405 | enum DefaultPrinterType { |
406 | kPrintContainer, |
407 | kPrintPointer, |
408 | kPrintFunctionPointer, |
409 | kPrintOther, |
410 | }; |
411 | template <DefaultPrinterType type> struct WrapPrinterType {}; |
412 | |
413 | // Used to print an STL-style container when the user doesn't define |
414 | // a PrintTo() for it. |
415 | template <typename C> |
416 | void DefaultPrintTo(WrapPrinterType<kPrintContainer> /* dummy */, |
417 | const C& container, ::std::ostream* os) { |
418 | const size_t kMaxCount = 32; // The maximum number of elements to print. |
419 | *os << '{'; |
420 | size_t count = 0; |
421 | for (typename C::const_iterator it = container.begin(); |
422 | it != container.end(); ++it, ++count) { |
423 | if (count > 0) { |
424 | *os << ','; |
425 | if (count == kMaxCount) { // Enough has been printed. |
426 | *os << " ..." ; |
427 | break; |
428 | } |
429 | } |
430 | *os << ' '; |
431 | // We cannot call PrintTo(*it, os) here as PrintTo() doesn't |
432 | // handle *it being a native array. |
433 | internal::UniversalPrint(*it, os); |
434 | } |
435 | |
436 | if (count > 0) { |
437 | *os << ' '; |
438 | } |
439 | *os << '}'; |
440 | } |
441 | |
442 | // Used to print a pointer that is neither a char pointer nor a member |
443 | // pointer, when the user doesn't define PrintTo() for it. (A member |
444 | // variable pointer or member function pointer doesn't really point to |
445 | // a location in the address space. Their representation is |
446 | // implementation-defined. Therefore they will be printed as raw |
447 | // bytes.) |
448 | template <typename T> |
449 | void DefaultPrintTo(WrapPrinterType<kPrintPointer> /* dummy */, |
450 | T* p, ::std::ostream* os) { |
451 | if (p == NULL) { |
452 | *os << "NULL" ; |
453 | } else { |
454 | // T is not a function type. We just call << to print p, |
455 | // relying on ADL to pick up user-defined << for their pointer |
456 | // types, if any. |
457 | *os << p; |
458 | } |
459 | } |
460 | template <typename T> |
461 | void DefaultPrintTo(WrapPrinterType<kPrintFunctionPointer> /* dummy */, |
462 | T* p, ::std::ostream* os) { |
463 | if (p == NULL) { |
464 | *os << "NULL" ; |
465 | } else { |
466 | // T is a function type, so '*os << p' doesn't do what we want |
467 | // (it just prints p as bool). We want to print p as a const |
468 | // void*. |
469 | *os << reinterpret_cast<const void*>(p); |
470 | } |
471 | } |
472 | |
473 | // Used to print a non-container, non-pointer value when the user |
474 | // doesn't define PrintTo() for it. |
475 | template <typename T> |
476 | void DefaultPrintTo(WrapPrinterType<kPrintOther> /* dummy */, |
477 | const T& value, ::std::ostream* os) { |
478 | ::testing_internal::DefaultPrintNonContainerTo(value, os); |
479 | } |
480 | |
481 | // Prints the given value using the << operator if it has one; |
482 | // otherwise prints the bytes in it. This is what |
483 | // UniversalPrinter<T>::Print() does when PrintTo() is not specialized |
484 | // or overloaded for type T. |
485 | // |
486 | // A user can override this behavior for a class type Foo by defining |
487 | // an overload of PrintTo() in the namespace where Foo is defined. We |
488 | // give the user this option as sometimes defining a << operator for |
489 | // Foo is not desirable (e.g. the coding style may prevent doing it, |
490 | // or there is already a << operator but it doesn't do what the user |
491 | // wants). |
492 | template <typename T> |
493 | void PrintTo(const T& value, ::std::ostream* os) { |
494 | // DefaultPrintTo() is overloaded. The type of its first argument |
495 | // determines which version will be picked. |
496 | // |
497 | // Note that we check for container types here, prior to we check |
498 | // for protocol message types in our operator<<. The rationale is: |
499 | // |
500 | // For protocol messages, we want to give people a chance to |
501 | // override Google Mock's format by defining a PrintTo() or |
502 | // operator<<. For STL containers, other formats can be |
503 | // incompatible with Google Mock's format for the container |
504 | // elements; therefore we check for container types here to ensure |
505 | // that our format is used. |
506 | // |
507 | // Note that MSVC and clang-cl do allow an implicit conversion from |
508 | // pointer-to-function to pointer-to-object, but clang-cl warns on it. |
509 | // So don't use ImplicitlyConvertible if it can be helped since it will |
510 | // cause this warning, and use a separate overload of DefaultPrintTo for |
511 | // function pointers so that the `*os << p` in the object pointer overload |
512 | // doesn't cause that warning either. |
513 | DefaultPrintTo( |
514 | WrapPrinterType < |
515 | (sizeof(IsContainerTest<T>(0)) == sizeof(IsContainer)) && |
516 | !IsRecursiveContainer<T>::value |
517 | ? kPrintContainer |
518 | : !is_pointer<T>::value |
519 | ? kPrintOther |
520 | #if GTEST_LANG_CXX11 |
521 | : std::is_function<typename std::remove_pointer<T>::type>::value |
522 | #else |
523 | : !internal::ImplicitlyConvertible<T, const void*>::value |
524 | #endif |
525 | ? kPrintFunctionPointer |
526 | : kPrintPointer > (), |
527 | value, os); |
528 | } |
529 | |
530 | // The following list of PrintTo() overloads tells |
531 | // UniversalPrinter<T>::Print() how to print standard types (built-in |
532 | // types, strings, plain arrays, and pointers). |
533 | |
534 | // Overloads for various char types. |
535 | GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); |
536 | GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); |
537 | inline void PrintTo(char c, ::std::ostream* os) { |
538 | // When printing a plain char, we always treat it as unsigned. This |
539 | // way, the output won't be affected by whether the compiler thinks |
540 | // char is signed or not. |
541 | PrintTo(static_cast<unsigned char>(c), os); |
542 | } |
543 | |
544 | // Overloads for other simple built-in types. |
545 | inline void PrintTo(bool x, ::std::ostream* os) { |
546 | *os << (x ? "true" : "false" ); |
547 | } |
548 | |
549 | // Overload for wchar_t type. |
550 | // Prints a wchar_t as a symbol if it is printable or as its internal |
551 | // code otherwise and also as its decimal code (except for L'\0'). |
552 | // The L'\0' char is printed as "L'\\0'". The decimal code is printed |
553 | // as signed integer when wchar_t is implemented by the compiler |
554 | // as a signed type and is printed as an unsigned integer when wchar_t |
555 | // is implemented as an unsigned type. |
556 | GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); |
557 | |
558 | // Overloads for C strings. |
559 | GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); |
560 | inline void PrintTo(char* s, ::std::ostream* os) { |
561 | PrintTo(ImplicitCast_<const char*>(s), os); |
562 | } |
563 | |
564 | // signed/unsigned char is often used for representing binary data, so |
565 | // we print pointers to it as void* to be safe. |
566 | inline void PrintTo(const signed char* s, ::std::ostream* os) { |
567 | PrintTo(ImplicitCast_<const void*>(s), os); |
568 | } |
569 | inline void PrintTo(signed char* s, ::std::ostream* os) { |
570 | PrintTo(ImplicitCast_<const void*>(s), os); |
571 | } |
572 | inline void PrintTo(const unsigned char* s, ::std::ostream* os) { |
573 | PrintTo(ImplicitCast_<const void*>(s), os); |
574 | } |
575 | inline void PrintTo(unsigned char* s, ::std::ostream* os) { |
576 | PrintTo(ImplicitCast_<const void*>(s), os); |
577 | } |
578 | |
579 | // MSVC can be configured to define wchar_t as a typedef of unsigned |
580 | // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native |
581 | // type. When wchar_t is a typedef, defining an overload for const |
582 | // wchar_t* would cause unsigned short* be printed as a wide string, |
583 | // possibly causing invalid memory accesses. |
584 | #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) |
585 | // Overloads for wide C strings |
586 | GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); |
587 | inline void PrintTo(wchar_t* s, ::std::ostream* os) { |
588 | PrintTo(ImplicitCast_<const wchar_t*>(s), os); |
589 | } |
590 | #endif |
591 | |
592 | // Overload for C arrays. Multi-dimensional arrays are printed |
593 | // properly. |
594 | |
595 | // Prints the given number of elements in an array, without printing |
596 | // the curly braces. |
597 | template <typename T> |
598 | void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { |
599 | UniversalPrint(a[0], os); |
600 | for (size_t i = 1; i != count; i++) { |
601 | *os << ", " ; |
602 | UniversalPrint(a[i], os); |
603 | } |
604 | } |
605 | |
606 | // Overloads for ::string and ::std::string. |
607 | #if GTEST_HAS_GLOBAL_STRING |
608 | GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); |
609 | inline void PrintTo(const ::string& s, ::std::ostream* os) { |
610 | PrintStringTo(s, os); |
611 | } |
612 | #endif // GTEST_HAS_GLOBAL_STRING |
613 | |
614 | GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); |
615 | inline void PrintTo(const ::std::string& s, ::std::ostream* os) { |
616 | PrintStringTo(s, os); |
617 | } |
618 | |
619 | // Overloads for ::wstring and ::std::wstring. |
620 | #if GTEST_HAS_GLOBAL_WSTRING |
621 | GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); |
622 | inline void PrintTo(const ::wstring& s, ::std::ostream* os) { |
623 | PrintWideStringTo(s, os); |
624 | } |
625 | #endif // GTEST_HAS_GLOBAL_WSTRING |
626 | |
627 | #if GTEST_HAS_STD_WSTRING |
628 | GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); |
629 | inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { |
630 | PrintWideStringTo(s, os); |
631 | } |
632 | #endif // GTEST_HAS_STD_WSTRING |
633 | |
634 | #if GTEST_HAS_ABSL |
635 | // Overload for absl::string_view. |
636 | inline void PrintTo(absl::string_view sp, ::std::ostream* os) { |
637 | PrintTo(::std::string(sp), os); |
638 | } |
639 | #endif // GTEST_HAS_ABSL |
640 | |
641 | #if GTEST_LANG_CXX11 |
642 | inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)" ; } |
643 | #endif // GTEST_LANG_CXX11 |
644 | |
645 | #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ |
646 | // Helper function for printing a tuple. T must be instantiated with |
647 | // a tuple type. |
648 | template <typename T> |
649 | void PrintTupleTo(const T& t, ::std::ostream* os); |
650 | #endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ |
651 | |
652 | #if GTEST_HAS_TR1_TUPLE |
653 | // Overload for ::std::tr1::tuple. Needed for printing function arguments, |
654 | // which are packed as tuples. |
655 | |
656 | // Overloaded PrintTo() for tuples of various arities. We support |
657 | // tuples of up-to 10 fields. The following implementation works |
658 | // regardless of whether tr1::tuple is implemented using the |
659 | // non-standard variadic template feature or not. |
660 | |
661 | inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { |
662 | PrintTupleTo(t, os); |
663 | } |
664 | |
665 | template <typename T1> |
666 | void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { |
667 | PrintTupleTo(t, os); |
668 | } |
669 | |
670 | template <typename T1, typename T2> |
671 | void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { |
672 | PrintTupleTo(t, os); |
673 | } |
674 | |
675 | template <typename T1, typename T2, typename T3> |
676 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { |
677 | PrintTupleTo(t, os); |
678 | } |
679 | |
680 | template <typename T1, typename T2, typename T3, typename T4> |
681 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { |
682 | PrintTupleTo(t, os); |
683 | } |
684 | |
685 | template <typename T1, typename T2, typename T3, typename T4, typename T5> |
686 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, |
687 | ::std::ostream* os) { |
688 | PrintTupleTo(t, os); |
689 | } |
690 | |
691 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
692 | typename T6> |
693 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, |
694 | ::std::ostream* os) { |
695 | PrintTupleTo(t, os); |
696 | } |
697 | |
698 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
699 | typename T6, typename T7> |
700 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, |
701 | ::std::ostream* os) { |
702 | PrintTupleTo(t, os); |
703 | } |
704 | |
705 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
706 | typename T6, typename T7, typename T8> |
707 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, |
708 | ::std::ostream* os) { |
709 | PrintTupleTo(t, os); |
710 | } |
711 | |
712 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
713 | typename T6, typename T7, typename T8, typename T9> |
714 | void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, |
715 | ::std::ostream* os) { |
716 | PrintTupleTo(t, os); |
717 | } |
718 | |
719 | template <typename T1, typename T2, typename T3, typename T4, typename T5, |
720 | typename T6, typename T7, typename T8, typename T9, typename T10> |
721 | void PrintTo( |
722 | const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, |
723 | ::std::ostream* os) { |
724 | PrintTupleTo(t, os); |
725 | } |
726 | #endif // GTEST_HAS_TR1_TUPLE |
727 | |
728 | #if GTEST_HAS_STD_TUPLE_ |
729 | template <typename... Types> |
730 | void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) { |
731 | PrintTupleTo(t, os); |
732 | } |
733 | #endif // GTEST_HAS_STD_TUPLE_ |
734 | |
735 | // Overload for std::pair. |
736 | template <typename T1, typename T2> |
737 | void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { |
738 | *os << '('; |
739 | // We cannot use UniversalPrint(value.first, os) here, as T1 may be |
740 | // a reference type. The same for printing value.second. |
741 | UniversalPrinter<T1>::Print(value.first, os); |
742 | *os << ", " ; |
743 | UniversalPrinter<T2>::Print(value.second, os); |
744 | *os << ')'; |
745 | } |
746 | |
747 | // Implements printing a non-reference type T by letting the compiler |
748 | // pick the right overload of PrintTo() for T. |
749 | template <typename T> |
750 | class UniversalPrinter { |
751 | public: |
752 | // MSVC warns about adding const to a function type, so we want to |
753 | // disable the warning. |
754 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) |
755 | |
756 | // Note: we deliberately don't call this PrintTo(), as that name |
757 | // conflicts with ::testing::internal::PrintTo in the body of the |
758 | // function. |
759 | static void Print(const T& value, ::std::ostream* os) { |
760 | // By default, ::testing::internal::PrintTo() is used for printing |
761 | // the value. |
762 | // |
763 | // Thanks to Koenig look-up, if T is a class and has its own |
764 | // PrintTo() function defined in its namespace, that function will |
765 | // be visible here. Since it is more specific than the generic ones |
766 | // in ::testing::internal, it will be picked by the compiler in the |
767 | // following statement - exactly what we want. |
768 | PrintTo(value, os); |
769 | } |
770 | |
771 | GTEST_DISABLE_MSC_WARNINGS_POP_() |
772 | }; |
773 | |
774 | #if GTEST_HAS_ABSL |
775 | |
776 | // Printer for absl::optional |
777 | |
778 | template <typename T> |
779 | class UniversalPrinter<::absl::optional<T>> { |
780 | public: |
781 | static void Print(const ::absl::optional<T>& value, ::std::ostream* os) { |
782 | *os << '('; |
783 | if (!value) { |
784 | *os << "nullopt" ; |
785 | } else { |
786 | UniversalPrint(*value, os); |
787 | } |
788 | *os << ')'; |
789 | } |
790 | }; |
791 | |
792 | // Printer for absl::variant |
793 | |
794 | template <typename... T> |
795 | class UniversalPrinter<::absl::variant<T...>> { |
796 | public: |
797 | static void Print(const ::absl::variant<T...>& value, ::std::ostream* os) { |
798 | *os << '('; |
799 | absl::visit(Visitor{os}, value); |
800 | *os << ')'; |
801 | } |
802 | |
803 | private: |
804 | struct Visitor { |
805 | template <typename U> |
806 | void operator()(const U& u) const { |
807 | *os << "'" << GetTypeName<U>() << "' with value " ; |
808 | UniversalPrint(u, os); |
809 | } |
810 | ::std::ostream* os; |
811 | }; |
812 | }; |
813 | |
814 | #endif // GTEST_HAS_ABSL |
815 | |
816 | // UniversalPrintArray(begin, len, os) prints an array of 'len' |
817 | // elements, starting at address 'begin'. |
818 | template <typename T> |
819 | void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { |
820 | if (len == 0) { |
821 | *os << "{}" ; |
822 | } else { |
823 | *os << "{ " ; |
824 | const size_t kThreshold = 18; |
825 | const size_t kChunkSize = 8; |
826 | // If the array has more than kThreshold elements, we'll have to |
827 | // omit some details by printing only the first and the last |
828 | // kChunkSize elements. |
829 | // FIXME: let the user control the threshold using a flag. |
830 | if (len <= kThreshold) { |
831 | PrintRawArrayTo(begin, len, os); |
832 | } else { |
833 | PrintRawArrayTo(begin, kChunkSize, os); |
834 | *os << ", ..., " ; |
835 | PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); |
836 | } |
837 | *os << " }" ; |
838 | } |
839 | } |
840 | // This overload prints a (const) char array compactly. |
841 | GTEST_API_ void UniversalPrintArray( |
842 | const char* begin, size_t len, ::std::ostream* os); |
843 | |
844 | // This overload prints a (const) wchar_t array compactly. |
845 | GTEST_API_ void UniversalPrintArray( |
846 | const wchar_t* begin, size_t len, ::std::ostream* os); |
847 | |
848 | // Implements printing an array type T[N]. |
849 | template <typename T, size_t N> |
850 | class UniversalPrinter<T[N]> { |
851 | public: |
852 | // Prints the given array, omitting some elements when there are too |
853 | // many. |
854 | static void Print(const T (&a)[N], ::std::ostream* os) { |
855 | UniversalPrintArray(a, N, os); |
856 | } |
857 | }; |
858 | |
859 | // Implements printing a reference type T&. |
860 | template <typename T> |
861 | class UniversalPrinter<T&> { |
862 | public: |
863 | // MSVC warns about adding const to a function type, so we want to |
864 | // disable the warning. |
865 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) |
866 | |
867 | static void Print(const T& value, ::std::ostream* os) { |
868 | // Prints the address of the value. We use reinterpret_cast here |
869 | // as static_cast doesn't compile when T is a function type. |
870 | *os << "@" << reinterpret_cast<const void*>(&value) << " " ; |
871 | |
872 | // Then prints the value itself. |
873 | UniversalPrint(value, os); |
874 | } |
875 | |
876 | GTEST_DISABLE_MSC_WARNINGS_POP_() |
877 | }; |
878 | |
879 | // Prints a value tersely: for a reference type, the referenced value |
880 | // (but not the address) is printed; for a (const) char pointer, the |
881 | // NUL-terminated string (but not the pointer) is printed. |
882 | |
883 | template <typename T> |
884 | class UniversalTersePrinter { |
885 | public: |
886 | static void Print(const T& value, ::std::ostream* os) { |
887 | UniversalPrint(value, os); |
888 | } |
889 | }; |
890 | template <typename T> |
891 | class UniversalTersePrinter<T&> { |
892 | public: |
893 | static void Print(const T& value, ::std::ostream* os) { |
894 | UniversalPrint(value, os); |
895 | } |
896 | }; |
897 | template <typename T, size_t N> |
898 | class UniversalTersePrinter<T[N]> { |
899 | public: |
900 | static void Print(const T (&value)[N], ::std::ostream* os) { |
901 | UniversalPrinter<T[N]>::Print(value, os); |
902 | } |
903 | }; |
904 | template <> |
905 | class UniversalTersePrinter<const char*> { |
906 | public: |
907 | static void Print(const char* str, ::std::ostream* os) { |
908 | if (str == NULL) { |
909 | *os << "NULL" ; |
910 | } else { |
911 | UniversalPrint(std::string(str), os); |
912 | } |
913 | } |
914 | }; |
915 | template <> |
916 | class UniversalTersePrinter<char*> { |
917 | public: |
918 | static void Print(char* str, ::std::ostream* os) { |
919 | UniversalTersePrinter<const char*>::Print(str, os); |
920 | } |
921 | }; |
922 | |
923 | #if GTEST_HAS_STD_WSTRING |
924 | template <> |
925 | class UniversalTersePrinter<const wchar_t*> { |
926 | public: |
927 | static void Print(const wchar_t* str, ::std::ostream* os) { |
928 | if (str == NULL) { |
929 | *os << "NULL" ; |
930 | } else { |
931 | UniversalPrint(::std::wstring(str), os); |
932 | } |
933 | } |
934 | }; |
935 | #endif |
936 | |
937 | template <> |
938 | class UniversalTersePrinter<wchar_t*> { |
939 | public: |
940 | static void Print(wchar_t* str, ::std::ostream* os) { |
941 | UniversalTersePrinter<const wchar_t*>::Print(str, os); |
942 | } |
943 | }; |
944 | |
945 | template <typename T> |
946 | void UniversalTersePrint(const T& value, ::std::ostream* os) { |
947 | UniversalTersePrinter<T>::Print(value, os); |
948 | } |
949 | |
950 | // Prints a value using the type inferred by the compiler. The |
951 | // difference between this and UniversalTersePrint() is that for a |
952 | // (const) char pointer, this prints both the pointer and the |
953 | // NUL-terminated string. |
954 | template <typename T> |
955 | void UniversalPrint(const T& value, ::std::ostream* os) { |
956 | // A workarond for the bug in VC++ 7.1 that prevents us from instantiating |
957 | // UniversalPrinter with T directly. |
958 | typedef T T1; |
959 | UniversalPrinter<T1>::Print(value, os); |
960 | } |
961 | |
962 | typedef ::std::vector< ::std::string> Strings; |
963 | |
964 | // TuplePolicy<TupleT> must provide: |
965 | // - tuple_size |
966 | // size of tuple TupleT. |
967 | // - get<size_t I>(const TupleT& t) |
968 | // static function extracting element I of tuple TupleT. |
969 | // - tuple_element<size_t I>::type |
970 | // type of element I of tuple TupleT. |
971 | template <typename TupleT> |
972 | struct TuplePolicy; |
973 | |
974 | #if GTEST_HAS_TR1_TUPLE |
975 | template <typename TupleT> |
976 | struct TuplePolicy { |
977 | typedef TupleT Tuple; |
978 | static const size_t tuple_size = ::std::tr1::tuple_size<Tuple>::value; |
979 | |
980 | template <size_t I> |
981 | struct tuple_element : ::std::tr1::tuple_element<static_cast<int>(I), Tuple> { |
982 | }; |
983 | |
984 | template <size_t I> |
985 | static typename AddReference<const typename ::std::tr1::tuple_element< |
986 | static_cast<int>(I), Tuple>::type>::type |
987 | get(const Tuple& tuple) { |
988 | return ::std::tr1::get<I>(tuple); |
989 | } |
990 | }; |
991 | template <typename TupleT> |
992 | const size_t TuplePolicy<TupleT>::tuple_size; |
993 | #endif // GTEST_HAS_TR1_TUPLE |
994 | |
995 | #if GTEST_HAS_STD_TUPLE_ |
996 | template <typename... Types> |
997 | struct TuplePolicy< ::std::tuple<Types...> > { |
998 | typedef ::std::tuple<Types...> Tuple; |
999 | static const size_t tuple_size = ::std::tuple_size<Tuple>::value; |
1000 | |
1001 | template <size_t I> |
1002 | struct tuple_element : ::std::tuple_element<I, Tuple> {}; |
1003 | |
1004 | template <size_t I> |
1005 | static const typename ::std::tuple_element<I, Tuple>::type& get( |
1006 | const Tuple& tuple) { |
1007 | return ::std::get<I>(tuple); |
1008 | } |
1009 | }; |
1010 | template <typename... Types> |
1011 | const size_t TuplePolicy< ::std::tuple<Types...> >::tuple_size; |
1012 | #endif // GTEST_HAS_STD_TUPLE_ |
1013 | |
1014 | #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ |
1015 | // This helper template allows PrintTo() for tuples and |
1016 | // UniversalTersePrintTupleFieldsToStrings() to be defined by |
1017 | // induction on the number of tuple fields. The idea is that |
1018 | // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N |
1019 | // fields in tuple t, and can be defined in terms of |
1020 | // TuplePrefixPrinter<N - 1>. |
1021 | // |
1022 | // The inductive case. |
1023 | template <size_t N> |
1024 | struct TuplePrefixPrinter { |
1025 | // Prints the first N fields of a tuple. |
1026 | template <typename Tuple> |
1027 | static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { |
1028 | TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); |
1029 | GTEST_INTENTIONAL_CONST_COND_PUSH_() |
1030 | if (N > 1) { |
1031 | GTEST_INTENTIONAL_CONST_COND_POP_() |
1032 | *os << ", " ; |
1033 | } |
1034 | UniversalPrinter< |
1035 | typename TuplePolicy<Tuple>::template tuple_element<N - 1>::type> |
1036 | ::Print(TuplePolicy<Tuple>::template get<N - 1>(t), os); |
1037 | } |
1038 | |
1039 | // Tersely prints the first N fields of a tuple to a string vector, |
1040 | // one element for each field. |
1041 | template <typename Tuple> |
1042 | static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { |
1043 | TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); |
1044 | ::std::stringstream ss; |
1045 | UniversalTersePrint(TuplePolicy<Tuple>::template get<N - 1>(t), &ss); |
1046 | strings->push_back(ss.str()); |
1047 | } |
1048 | }; |
1049 | |
1050 | // Base case. |
1051 | template <> |
1052 | struct TuplePrefixPrinter<0> { |
1053 | template <typename Tuple> |
1054 | static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} |
1055 | |
1056 | template <typename Tuple> |
1057 | static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} |
1058 | }; |
1059 | |
1060 | // Helper function for printing a tuple. |
1061 | // Tuple must be either std::tr1::tuple or std::tuple type. |
1062 | template <typename Tuple> |
1063 | void PrintTupleTo(const Tuple& t, ::std::ostream* os) { |
1064 | *os << "(" ; |
1065 | TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>::PrintPrefixTo(t, os); |
1066 | *os << ")" ; |
1067 | } |
1068 | |
1069 | // Prints the fields of a tuple tersely to a string vector, one |
1070 | // element for each field. See the comment before |
1071 | // UniversalTersePrint() for how we define "tersely". |
1072 | template <typename Tuple> |
1073 | Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { |
1074 | Strings result; |
1075 | TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>:: |
1076 | TersePrintPrefixToStrings(value, &result); |
1077 | return result; |
1078 | } |
1079 | #endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ |
1080 | |
1081 | } // namespace internal |
1082 | |
1083 | #if GTEST_HAS_ABSL |
1084 | namespace internal2 { |
1085 | template <typename T> |
1086 | void TypeWithoutFormatter<T, kConvertibleToStringView>::PrintValue( |
1087 | const T& value, ::std::ostream* os) { |
1088 | internal::PrintTo(absl::string_view(value), os); |
1089 | } |
1090 | } // namespace internal2 |
1091 | #endif |
1092 | |
1093 | template <typename T> |
1094 | ::std::string PrintToString(const T& value) { |
1095 | ::std::stringstream ss; |
1096 | internal::UniversalTersePrinter<T>::Print(value, &ss); |
1097 | return ss.str(); |
1098 | } |
1099 | |
1100 | } // namespace testing |
1101 | |
1102 | // Include any custom printer added by the local installation. |
1103 | // We must include this header at the end to make sure it can use the |
1104 | // declarations from this file. |
1105 | #include "gtest/internal/custom/gtest-printers.h" |
1106 | |
1107 | #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
1108 | |