1 | /* |
2 | * Copyright (C) 2011 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #include <wtf/MathExtras.h> |
29 | |
30 | namespace JSC { |
31 | |
32 | // Would be nice if this was a static const member, but the OS X linker |
33 | // seems to want a symbol in the binary in that case... |
34 | #define oneGreaterThanMaxUInt16 0x10000 |
35 | |
36 | // A uint16_t with an infinite precision fraction. Upon overflowing |
37 | // the uint16_t range, this class will clamp to oneGreaterThanMaxUInt16. |
38 | // This is used in converting the fraction part of a number to a string. |
39 | class Uint16WithFraction { |
40 | public: |
41 | explicit Uint16WithFraction(double number, uint16_t divideByExponent = 0) |
42 | { |
43 | ASSERT(number && std::isfinite(number) && !std::signbit(number)); |
44 | |
45 | // Check for values out of uint16_t range. |
46 | if (number >= oneGreaterThanMaxUInt16) { |
47 | m_values.append(oneGreaterThanMaxUInt16); |
48 | m_leadingZeros = 0; |
49 | return; |
50 | } |
51 | |
52 | // Append the units to m_values. |
53 | double integerPart = floor(number); |
54 | m_values.append(static_cast<uint32_t>(integerPart)); |
55 | |
56 | bool sign; |
57 | int32_t exponent; |
58 | uint64_t mantissa; |
59 | decomposeDouble(number - integerPart, sign, exponent, mantissa); |
60 | ASSERT(!sign && exponent < 0); |
61 | exponent -= divideByExponent; |
62 | |
63 | int32_t zeroBits = -exponent; |
64 | --zeroBits; |
65 | |
66 | // Append the append words for to m_values. |
67 | while (zeroBits >= 32) { |
68 | m_values.append(0); |
69 | zeroBits -= 32; |
70 | } |
71 | |
72 | // Left align the 53 bits of the mantissa within 96 bits. |
73 | uint32_t values[3]; |
74 | values[0] = static_cast<uint32_t>(mantissa >> 21); |
75 | values[1] = static_cast<uint32_t>(mantissa << 11); |
76 | values[2] = 0; |
77 | // Shift based on the remainder of the exponent. |
78 | if (zeroBits) { |
79 | values[2] = values[1] << (32 - zeroBits); |
80 | values[1] = (values[1] >> zeroBits) | (values[0] << (32 - zeroBits)); |
81 | values[0] = (values[0] >> zeroBits); |
82 | } |
83 | m_values.append(values[0]); |
84 | m_values.append(values[1]); |
85 | m_values.append(values[2]); |
86 | |
87 | // Canonicalize; remove any trailing zeros. |
88 | while (m_values.size() > 1 && !m_values.last()) |
89 | m_values.removeLast(); |
90 | |
91 | // Count the number of leading zero, this is useful in optimizing multiplies. |
92 | m_leadingZeros = 0; |
93 | while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) |
94 | ++m_leadingZeros; |
95 | } |
96 | |
97 | Uint16WithFraction& operator*=(uint16_t multiplier) |
98 | { |
99 | ASSERT(checkConsistency()); |
100 | |
101 | // iteratate backwards over the fraction until we reach the leading zeros, |
102 | // passing the carry from one calculation into the next. |
103 | uint64_t accumulator = 0; |
104 | for (size_t i = m_values.size(); i > m_leadingZeros; ) { |
105 | --i; |
106 | accumulator += static_cast<uint64_t>(m_values[i]) * static_cast<uint64_t>(multiplier); |
107 | m_values[i] = static_cast<uint32_t>(accumulator); |
108 | accumulator >>= 32; |
109 | } |
110 | |
111 | if (!m_leadingZeros) { |
112 | // With a multiplicand and multiplier in the uint16_t range, this cannot carry |
113 | // (even allowing for the infinity value). |
114 | ASSERT(!accumulator); |
115 | // Check for overflow & clamp to 'infinity'. |
116 | if (m_values[0] >= oneGreaterThanMaxUInt16) { |
117 | m_values.shrink(1); |
118 | m_values[0] = oneGreaterThanMaxUInt16; |
119 | m_leadingZeros = 0; |
120 | return *this; |
121 | } |
122 | } else if (accumulator) { |
123 | // Check for carry from the last multiply, if so overwrite last leading zero. |
124 | m_values[--m_leadingZeros] = static_cast<uint32_t>(accumulator); |
125 | // The limited range of the multiplier should mean that even if we carry into |
126 | // the units, we don't need to check for overflow of the uint16_t range. |
127 | ASSERT(m_values[0] < oneGreaterThanMaxUInt16); |
128 | } |
129 | |
130 | // Multiplication by an even value may introduce trailing zeros; if so, clean them |
131 | // up. (Keeping the value in a normalized form makes some of the comparison operations |
132 | // more efficient). |
133 | while (m_values.size() > 1 && !m_values.last()) |
134 | m_values.removeLast(); |
135 | ASSERT(checkConsistency()); |
136 | return *this; |
137 | } |
138 | |
139 | bool operator<(const Uint16WithFraction& other) |
140 | { |
141 | ASSERT(checkConsistency()); |
142 | ASSERT(other.checkConsistency()); |
143 | |
144 | // Iterate over the common lengths of arrays. |
145 | size_t minSize = std::min(m_values.size(), other.m_values.size()); |
146 | for (size_t index = 0; index < minSize; ++index) { |
147 | // If we find a value that is not equal, compare and return. |
148 | uint32_t fromThis = m_values[index]; |
149 | uint32_t fromOther = other.m_values[index]; |
150 | if (fromThis != fromOther) |
151 | return fromThis < fromOther; |
152 | } |
153 | // If these numbers have the same lengths, they are equal, |
154 | // otherwise which ever number has a longer fraction in larger. |
155 | return other.m_values.size() > minSize; |
156 | } |
157 | |
158 | // Return the floor (non-fractional portion) of the number, clearing this to zero, |
159 | // leaving the fractional part unchanged. |
160 | uint32_t floorAndSubtract() |
161 | { |
162 | // 'floor' is simple the integer portion of the value. |
163 | uint32_t floor = m_values[0]; |
164 | |
165 | // If floor is non-zero, |
166 | if (floor) { |
167 | m_values[0] = 0; |
168 | m_leadingZeros = 1; |
169 | while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) |
170 | ++m_leadingZeros; |
171 | } |
172 | |
173 | return floor; |
174 | } |
175 | |
176 | // Compare this value to 0.5, returns -1 for less than, 0 for equal, 1 for greater. |
177 | int comparePoint5() |
178 | { |
179 | ASSERT(checkConsistency()); |
180 | // If units != 0, this is greater than 0.5. |
181 | if (m_values[0]) |
182 | return 1; |
183 | // If size == 1 this value is 0, hence < 0.5. |
184 | if (m_values.size() == 1) |
185 | return -1; |
186 | // Compare to 0.5. |
187 | if (m_values[1] > 0x80000000ul) |
188 | return 1; |
189 | if (m_values[1] < 0x80000000ul) |
190 | return -1; |
191 | // Check for more words - since normalized numbers have no trailing zeros, if |
192 | // there are more that two digits we can assume at least one more is non-zero, |
193 | // and hence the value is > 0.5. |
194 | return m_values.size() > 2 ? 1 : 0; |
195 | } |
196 | |
197 | // Return true if the sum of this plus addend would be greater than 1. |
198 | bool sumGreaterThanOne(const Uint16WithFraction& addend) |
199 | { |
200 | ASSERT(checkConsistency()); |
201 | ASSERT(addend.checkConsistency()); |
202 | |
203 | // First, sum the units. If the result is greater than one, return true. |
204 | // If equal to one, return true if either number has a fractional part. |
205 | uint32_t sum = m_values[0] + addend.m_values[0]; |
206 | if (sum) |
207 | return sum > 1 || std::max(m_values.size(), addend.m_values.size()) > 1; |
208 | |
209 | // We could still produce a result greater than zero if addition of the next |
210 | // word from the fraction were to carry, leaving a result > 0. |
211 | |
212 | // Iterate over the common lengths of arrays. |
213 | size_t minSize = std::min(m_values.size(), addend.m_values.size()); |
214 | for (size_t index = 1; index < minSize; ++index) { |
215 | // Sum the next word from this & the addend. |
216 | uint32_t fromThis = m_values[index]; |
217 | uint32_t fromAddend = addend.m_values[index]; |
218 | sum = fromThis + fromAddend; |
219 | |
220 | // Check for overflow. If so, check whether the remaining result is non-zero, |
221 | // or if there are any further words in the fraction. |
222 | if (sum < fromThis) |
223 | return sum || (index + 1) < std::max(m_values.size(), addend.m_values.size()); |
224 | |
225 | // If the sum is uint32_t max, then we would carry a 1 if addition of the next |
226 | // digits in the number were to overflow. |
227 | if (sum != 0xFFFFFFFF) |
228 | return false; |
229 | } |
230 | return false; |
231 | } |
232 | |
233 | private: |
234 | bool checkConsistency() const |
235 | { |
236 | // All values should have at least one value. |
237 | return (m_values.size()) |
238 | // The units value must be a uint16_t, or the value is the overflow value. |
239 | && (m_values[0] < oneGreaterThanMaxUInt16 || (m_values[0] == oneGreaterThanMaxUInt16 && m_values.size() == 1)) |
240 | // There should be no trailing zeros (unless this value is zero!). |
241 | && (m_values.last() || m_values.size() == 1); |
242 | } |
243 | |
244 | // The internal storage of the number. This vector is always at least one entry in size, |
245 | // with the first entry holding the portion of the number greater than zero. The first |
246 | // value always hold a value in the uint16_t range, or holds the value oneGreaterThanMaxUInt16 to |
247 | // indicate the value has overflowed to >= 0x10000. If the units value is oneGreaterThanMaxUInt16, |
248 | // there can be no fraction (size must be 1). |
249 | // |
250 | // Subsequent values in the array represent portions of the fractional part of this number. |
251 | // The total value of the number is the sum of (m_values[i] / pow(2^32, i)), for each i |
252 | // in the array. The vector should contain no trailing zeros, except for the value '0', |
253 | // represented by a vector contianing a single zero value. These constraints are checked |
254 | // by 'checkConsistency()', above. |
255 | // |
256 | // The inline capacity of the vector is set to be able to contain any IEEE double (1 for |
257 | // the units column, 32 for zeros introduced due to an exponent up to -3FE, and 2 for |
258 | // bits taken from the mantissa). |
259 | Vector<uint32_t, 36> m_values; |
260 | |
261 | // Cache a count of the number of leading zeros in m_values. We can use this to optimize |
262 | // methods that would otherwise need visit all words in the vector, e.g. multiplication. |
263 | size_t m_leadingZeros; |
264 | }; |
265 | |
266 | } // namespace JSC |
267 | |