1 | /* |
2 | * Copyright (C) 2011 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #if ENABLE(DFG_JIT) |
29 | |
30 | #include "DFGCommon.h" |
31 | #include "FPRInfo.h" |
32 | #include "GPRInfo.h" |
33 | |
34 | namespace JSC { namespace DFG { |
35 | |
36 | // === RegisterBank === |
37 | // |
38 | // This class is used to implement the GPR and FPR register banks. |
39 | // All registers have two pieces of state associated with them: |
40 | // a lock count (used to indicate this register is already in use |
41 | // in code generation of the current node, and cannot be spilled or |
42 | // allocated as a temporary), and VirtualRegister 'name', recording |
43 | // which value (if any) a machine register currently holds. |
44 | // Either or both of these pieces of information may be valid for a |
45 | // given register. A register may be: |
46 | // |
47 | // - unlocked, and unnamed: Available for allocation. |
48 | // - locked, but unnamed: Already allocated as a temporary or |
49 | // result for the current node. |
50 | // - unlocked, but named: Contains the result of a prior operation, |
51 | // not yet in use for this node, |
52 | // - locked, but named: Contains the result of a prior operation, |
53 | // already allocated as a operand to the |
54 | // current operation. |
55 | // |
56 | // For every named register we also record a hint value indicating |
57 | // the order in which registers should be selected to be spilled; |
58 | // registers that can be more cheaply spilled and/or filled should |
59 | // be selected first. |
60 | // |
61 | // Locking register is a strong retention mechanism; a locked register |
62 | // will never be reallocated (this is used to ensure the operands to |
63 | // the current node are in registers). Naming, conversely, in a weak |
64 | // retention mechanism - allocating a register may force a named value |
65 | // to be spilled. |
66 | // |
67 | // All named values must be given a hint that is greater than Min and |
68 | // less than Max. |
69 | template<class BankInfo> |
70 | class RegisterBank { |
71 | typedef typename BankInfo::RegisterType RegID; |
72 | static const size_t NUM_REGS = BankInfo::numberOfRegisters; |
73 | |
74 | typedef uint32_t SpillHint; |
75 | static const SpillHint SpillHintInvalid = 0xffffffff; |
76 | |
77 | public: |
78 | RegisterBank() |
79 | { |
80 | } |
81 | |
82 | // Attempt to allocate a register - this function finds an unlocked |
83 | // register, locks it, and returns it. If none can be found, this |
84 | // returns -1 (InvalidGPRReg or InvalidFPRReg). |
85 | RegID tryAllocate() |
86 | { |
87 | VirtualRegister ignored = VirtualRegister(); |
88 | |
89 | for (uint32_t i = 0; i < NUM_REGS; ++i) { |
90 | if (!m_data[i].lockCount && !m_data[i].name.isValid()) |
91 | return allocateInternal(i, ignored); |
92 | } |
93 | |
94 | return (RegID)-1; |
95 | } |
96 | |
97 | // Allocate a register - this function finds an unlocked register, |
98 | // locks it, and returns it. If any named registers exist, one |
99 | // of these should be selected to be allocated. If all unlocked |
100 | // registers are named, then one of the named registers will need |
101 | // to be spilled. In this case the register selected to be spilled |
102 | // will be one of the registers that has the lowest 'spillOrder' |
103 | // cost associated with it. |
104 | // |
105 | // This method select the register to be allocated, and calls the |
106 | // private 'allocateInternal' method to update internal data |
107 | // structures accordingly. |
108 | RegID allocate(VirtualRegister &spillMe) |
109 | { |
110 | uint32_t currentLowest = NUM_REGS; |
111 | SpillHint currentSpillOrder = SpillHintInvalid; |
112 | |
113 | // This loop is broken into two halves, looping from the last allocated |
114 | // register (the register returned last time this method was called) to |
115 | // the maximum register value, then from 0 to the last allocated. |
116 | // This implements a simple round-robin like approach to try to reduce |
117 | // thrash, and minimize time spent scanning locked registers in allocation. |
118 | // If a unlocked and unnamed register is found return it immediately. |
119 | // Otherwise, find the first unlocked register with the lowest spillOrder. |
120 | for (uint32_t i = 0 ; i < NUM_REGS; ++i) { |
121 | // (1) If the current register is locked, it is not a candidate. |
122 | if (m_data[i].lockCount) |
123 | continue; |
124 | // (2) If the current register's spill order is 0, pick this! – unassigned registers have spill order 0. |
125 | SpillHint spillOrder = m_data[i].spillOrder; |
126 | if (spillOrder == SpillHintInvalid) |
127 | return allocateInternal(i, spillMe); |
128 | // If this register is better (has a lower spill order value) than any prior |
129 | // candidate, then record it. |
130 | if (spillOrder < currentSpillOrder) { |
131 | currentSpillOrder = spillOrder; |
132 | currentLowest = i; |
133 | } |
134 | } |
135 | |
136 | // Deadlock check - this could only occur is all registers are locked! |
137 | ASSERT(currentLowest != NUM_REGS && currentSpillOrder != SpillHintInvalid); |
138 | // There were no available registers; currentLowest will need to be spilled. |
139 | return allocateInternal(currentLowest, spillMe); |
140 | } |
141 | |
142 | uint32_t lockedCount() const |
143 | { |
144 | uint32_t count = 0; |
145 | for (uint32_t i = 0 ; i < NUM_REGS; ++i) { |
146 | if (m_data[i].lockCount) |
147 | ++count; |
148 | } |
149 | return count; |
150 | } |
151 | |
152 | // Allocates the given register, even if this will force a spill. |
153 | VirtualRegister allocateSpecific(RegID reg) |
154 | { |
155 | unsigned index = BankInfo::toIndex(reg); |
156 | |
157 | ++m_data[index].lockCount; |
158 | VirtualRegister name = nameAtIndex(index); |
159 | if (name.isValid()) |
160 | releaseAtIndex(index); |
161 | |
162 | return name; |
163 | } |
164 | |
165 | // retain/release - these methods are used to associate/disassociate names |
166 | // with values in registers. retain should only be called on locked registers. |
167 | void retain(RegID reg, VirtualRegister name, SpillHint spillOrder) |
168 | { |
169 | unsigned index = BankInfo::toIndex(reg); |
170 | |
171 | // SpillHint must be valid. |
172 | ASSERT(spillOrder != SpillHintInvalid); |
173 | // 'index' must be a valid, locked register. |
174 | ASSERT(index < NUM_REGS); |
175 | ASSERT(m_data[index].lockCount); |
176 | // 'index' should not currently be named, the new name must be valid. |
177 | ASSERT(!m_data[index].name.isValid()); |
178 | ASSERT(name.isValid()); |
179 | // 'index' should not currently have a spillOrder. |
180 | ASSERT(m_data[index].spillOrder == SpillHintInvalid); |
181 | |
182 | m_data[index].name = name; |
183 | m_data[index].spillOrder = spillOrder; |
184 | } |
185 | void release(RegID reg) |
186 | { |
187 | releaseAtIndex(BankInfo::toIndex(reg)); |
188 | } |
189 | |
190 | // lock/unlock register, ensures that they are not spilled. |
191 | void lock(RegID reg) |
192 | { |
193 | unsigned index = BankInfo::toIndex(reg); |
194 | |
195 | ASSERT(index < NUM_REGS); |
196 | ++m_data[index].lockCount; |
197 | ASSERT(m_data[index].lockCount); |
198 | } |
199 | void unlock(RegID reg) |
200 | { |
201 | unsigned index = BankInfo::toIndex(reg); |
202 | |
203 | ASSERT(index < NUM_REGS); |
204 | ASSERT(m_data[index].lockCount); |
205 | --m_data[index].lockCount; |
206 | } |
207 | bool isLocked(RegID reg) const |
208 | { |
209 | return isLockedAtIndex(BankInfo::toIndex(reg)); |
210 | } |
211 | |
212 | // Get the name (VirtualRegister) associated with the |
213 | // given register (or default VirtualRegister() for none). |
214 | VirtualRegister name(RegID reg) const |
215 | { |
216 | return nameAtIndex(BankInfo::toIndex(reg)); |
217 | } |
218 | |
219 | bool isInUse(RegID reg) const |
220 | { |
221 | return isLocked(reg) || name(reg).isValid(); |
222 | } |
223 | |
224 | void dump() |
225 | { |
226 | // For each register, print the VirtualRegister 'name'. |
227 | for (uint32_t i =0; i < NUM_REGS; ++i) { |
228 | if (m_data[i].name.isValid()) |
229 | dataLogF("[%02d]" , m_data[i].name.offset()); |
230 | else |
231 | dataLogF("[--]" ); |
232 | } |
233 | dataLogF("\n" ); |
234 | } |
235 | |
236 | class iterator { |
237 | friend class RegisterBank<BankInfo>; |
238 | public: |
239 | VirtualRegister name() const |
240 | { |
241 | return m_bank->nameAtIndex(m_index); |
242 | } |
243 | |
244 | bool isLocked() const |
245 | { |
246 | return m_bank->isLockedAtIndex(m_index); |
247 | } |
248 | |
249 | void release() const |
250 | { |
251 | m_bank->releaseAtIndex(m_index); |
252 | } |
253 | |
254 | RegID regID() const |
255 | { |
256 | return BankInfo::toRegister(m_index); |
257 | } |
258 | |
259 | #ifndef NDEBUG |
260 | const char* debugName() const |
261 | { |
262 | return BankInfo::debugName(regID()); |
263 | } |
264 | #endif |
265 | |
266 | iterator& operator++() |
267 | { |
268 | ++m_index; |
269 | return *this; |
270 | } |
271 | |
272 | bool operator!=(const iterator& other) const |
273 | { |
274 | ASSERT(m_bank == other.m_bank); |
275 | return m_index != other.m_index; |
276 | } |
277 | |
278 | unsigned index() const |
279 | { |
280 | return m_index; |
281 | } |
282 | |
283 | private: |
284 | iterator(RegisterBank<BankInfo>* bank, unsigned index) |
285 | : m_bank(bank) |
286 | , m_index(index) |
287 | { |
288 | } |
289 | |
290 | RegisterBank<BankInfo>* m_bank; |
291 | unsigned m_index; |
292 | }; |
293 | |
294 | iterator begin() |
295 | { |
296 | return iterator(this, 0); |
297 | } |
298 | |
299 | iterator end() |
300 | { |
301 | return iterator(this, NUM_REGS); |
302 | } |
303 | |
304 | private: |
305 | bool isLockedAtIndex(unsigned index) const |
306 | { |
307 | ASSERT(index < NUM_REGS); |
308 | return m_data[index].lockCount; |
309 | } |
310 | |
311 | VirtualRegister nameAtIndex(unsigned index) const |
312 | { |
313 | ASSERT(index < NUM_REGS); |
314 | return m_data[index].name; |
315 | } |
316 | |
317 | void releaseAtIndex(unsigned index) |
318 | { |
319 | // 'index' must be a valid register. |
320 | ASSERT(index < NUM_REGS); |
321 | // 'index' should currently be named. |
322 | ASSERT(m_data[index].name.isValid()); |
323 | // 'index' should currently have a valid spill order. |
324 | ASSERT(m_data[index].spillOrder != SpillHintInvalid); |
325 | |
326 | m_data[index].name = VirtualRegister(); |
327 | m_data[index].spillOrder = SpillHintInvalid; |
328 | } |
329 | |
330 | // Used by 'allocate', above, to update inforamtion in the map. |
331 | RegID allocateInternal(uint32_t i, VirtualRegister &spillMe) |
332 | { |
333 | // 'i' must be a valid, unlocked register. |
334 | ASSERT(i < NUM_REGS && !m_data[i].lockCount); |
335 | |
336 | // Return the VirtualRegister of the named value currently stored in |
337 | // the register being returned - or default VirtualRegister() if none. |
338 | spillMe = m_data[i].name; |
339 | |
340 | // Clear any name/spillOrder currently associated with the register, |
341 | m_data[i] = MapEntry(); |
342 | // Mark the register as locked (with a lock count of 1). |
343 | m_data[i].lockCount = 1; |
344 | |
345 | return BankInfo::toRegister(i); |
346 | } |
347 | |
348 | // === MapEntry === |
349 | // |
350 | // This structure provides information for an individual machine register |
351 | // being managed by the RegisterBank. For each register we track a lock |
352 | // count, name and spillOrder hint. |
353 | struct MapEntry { |
354 | MapEntry() |
355 | : name(VirtualRegister()) |
356 | , spillOrder(SpillHintInvalid) |
357 | , lockCount(0) |
358 | { |
359 | } |
360 | |
361 | VirtualRegister name; |
362 | SpillHint spillOrder; |
363 | uint32_t lockCount; |
364 | }; |
365 | |
366 | // Holds the current status of all registers. |
367 | MapEntry m_data[NUM_REGS]; |
368 | }; |
369 | |
370 | typedef RegisterBank<GPRInfo>::iterator gpr_iterator; |
371 | typedef RegisterBank<FPRInfo>::iterator fpr_iterator; |
372 | |
373 | } } // namespace JSC::DFG |
374 | |
375 | #endif |
376 | |