1 | /* |
2 | * Copyright (C) 2013-2015 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "DFGBackwardsPropagationPhase.h" |
28 | |
29 | #if ENABLE(DFG_JIT) |
30 | |
31 | #include "DFGBasicBlockInlines.h" |
32 | #include "DFGGraph.h" |
33 | #include "DFGPhase.h" |
34 | #include "JSCInlines.h" |
35 | |
36 | namespace JSC { namespace DFG { |
37 | |
38 | class BackwardsPropagationPhase : public Phase { |
39 | public: |
40 | BackwardsPropagationPhase(Graph& graph) |
41 | : Phase(graph, "backwards propagation" ) |
42 | { |
43 | } |
44 | |
45 | bool run() |
46 | { |
47 | m_changed = true; |
48 | while (m_changed) { |
49 | m_changed = false; |
50 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
51 | BasicBlock* block = m_graph.block(blockIndex); |
52 | if (!block) |
53 | continue; |
54 | |
55 | // Prevent a tower of overflowing additions from creating a value that is out of the |
56 | // safe 2^48 range. |
57 | m_allowNestedOverflowingAdditions = block->size() < (1 << 16); |
58 | |
59 | for (unsigned indexInBlock = block->size(); indexInBlock--;) |
60 | propagate(block->at(indexInBlock)); |
61 | } |
62 | } |
63 | |
64 | return true; |
65 | } |
66 | |
67 | private: |
68 | bool isNotNegZero(Node* node) |
69 | { |
70 | if (!node->isNumberConstant()) |
71 | return false; |
72 | double value = node->asNumber(); |
73 | return (value || 1.0 / value > 0.0); |
74 | } |
75 | |
76 | bool isNotPosZero(Node* node) |
77 | { |
78 | if (!node->isNumberConstant()) |
79 | return false; |
80 | double value = node->asNumber(); |
81 | return (value || 1.0 / value < 0.0); |
82 | } |
83 | |
84 | // Tests if the absolute value is strictly less than the power of two. |
85 | template<int power> |
86 | bool isWithinPowerOfTwoForConstant(Node* node) |
87 | { |
88 | JSValue immediateValue = node->asJSValue(); |
89 | if (!immediateValue.isNumber()) |
90 | return false; |
91 | double immediate = immediateValue.asNumber(); |
92 | return immediate > -(static_cast<int64_t>(1) << power) && immediate < (static_cast<int64_t>(1) << power); |
93 | } |
94 | |
95 | template<int power> |
96 | bool isWithinPowerOfTwoNonRecursive(Node* node) |
97 | { |
98 | if (!node->isNumberConstant()) |
99 | return false; |
100 | return isWithinPowerOfTwoForConstant<power>(node); |
101 | } |
102 | |
103 | template<int power> |
104 | bool isWithinPowerOfTwo(Node* node) |
105 | { |
106 | switch (node->op()) { |
107 | case DoubleConstant: |
108 | case JSConstant: |
109 | case Int52Constant: { |
110 | return isWithinPowerOfTwoForConstant<power>(node); |
111 | } |
112 | |
113 | case ValueBitAnd: |
114 | case ArithBitAnd: { |
115 | if (power > 31) |
116 | return true; |
117 | |
118 | return isWithinPowerOfTwoNonRecursive<power>(node->child1().node()) |
119 | || isWithinPowerOfTwoNonRecursive<power>(node->child2().node()); |
120 | } |
121 | |
122 | case ArithBitOr: |
123 | case ArithBitXor: |
124 | case ValueBitOr: |
125 | case ValueBitXor: |
126 | case BitLShift: { |
127 | return power > 31; |
128 | } |
129 | |
130 | case BitRShift: |
131 | case BitURShift: { |
132 | if (power > 31) |
133 | return true; |
134 | |
135 | Node* shiftAmount = node->child2().node(); |
136 | if (!node->isNumberConstant()) |
137 | return false; |
138 | JSValue immediateValue = shiftAmount->asJSValue(); |
139 | if (!immediateValue.isInt32()) |
140 | return false; |
141 | return immediateValue.asInt32() > 32 - power; |
142 | } |
143 | |
144 | default: |
145 | return false; |
146 | } |
147 | } |
148 | |
149 | template<int power> |
150 | bool isWithinPowerOfTwo(Edge edge) |
151 | { |
152 | return isWithinPowerOfTwo<power>(edge.node()); |
153 | } |
154 | |
155 | bool mergeDefaultFlags(Node* node) |
156 | { |
157 | bool changed = false; |
158 | if (node->flags() & NodeHasVarArgs) { |
159 | for (unsigned childIdx = node->firstChild(); |
160 | childIdx < node->firstChild() + node->numChildren(); |
161 | childIdx++) { |
162 | if (!!m_graph.m_varArgChildren[childIdx]) |
163 | changed |= m_graph.m_varArgChildren[childIdx]->mergeFlags(NodeBytecodeUsesAsValue); |
164 | } |
165 | } else { |
166 | if (!node->child1()) |
167 | return changed; |
168 | changed |= node->child1()->mergeFlags(NodeBytecodeUsesAsValue); |
169 | if (!node->child2()) |
170 | return changed; |
171 | changed |= node->child2()->mergeFlags(NodeBytecodeUsesAsValue); |
172 | if (!node->child3()) |
173 | return changed; |
174 | changed |= node->child3()->mergeFlags(NodeBytecodeUsesAsValue); |
175 | } |
176 | return changed; |
177 | } |
178 | |
179 | void propagate(Node* node) |
180 | { |
181 | NodeFlags flags = node->flags() & NodeBytecodeBackPropMask; |
182 | |
183 | switch (node->op()) { |
184 | case GetLocal: { |
185 | VariableAccessData* variableAccessData = node->variableAccessData(); |
186 | flags &= ~NodeBytecodeUsesAsInt; // We don't care about cross-block uses-as-int. |
187 | m_changed |= variableAccessData->mergeFlags(flags); |
188 | break; |
189 | } |
190 | |
191 | case SetLocal: { |
192 | VariableAccessData* variableAccessData = node->variableAccessData(); |
193 | if (!variableAccessData->isLoadedFrom()) |
194 | break; |
195 | flags = variableAccessData->flags(); |
196 | RELEASE_ASSERT(!(flags & ~NodeBytecodeBackPropMask)); |
197 | flags |= NodeBytecodeUsesAsNumber; // Account for the fact that control flow may cause overflows that our modeling can't handle. |
198 | node->child1()->mergeFlags(flags); |
199 | break; |
200 | } |
201 | |
202 | case Flush: { |
203 | VariableAccessData* variableAccessData = node->variableAccessData(); |
204 | m_changed |= variableAccessData->mergeFlags(NodeBytecodeUsesAsValue); |
205 | break; |
206 | } |
207 | |
208 | case MovHint: |
209 | case Check: |
210 | case CheckVarargs: |
211 | break; |
212 | |
213 | case ValueBitNot: |
214 | case ArithBitNot: { |
215 | flags |= NodeBytecodeUsesAsInt; |
216 | flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeUsesAsOther); |
217 | flags &= ~NodeBytecodeUsesAsArrayIndex; |
218 | node->child1()->mergeFlags(flags); |
219 | break; |
220 | } |
221 | |
222 | case ArithBitAnd: |
223 | case ArithBitOr: |
224 | case ArithBitXor: |
225 | case ValueBitAnd: |
226 | case ValueBitOr: |
227 | case ValueBitXor: |
228 | case BitRShift: |
229 | case BitLShift: |
230 | case BitURShift: |
231 | case ArithIMul: { |
232 | flags |= NodeBytecodeUsesAsInt; |
233 | flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeUsesAsOther); |
234 | flags &= ~NodeBytecodeUsesAsArrayIndex; |
235 | node->child1()->mergeFlags(flags); |
236 | node->child2()->mergeFlags(flags); |
237 | break; |
238 | } |
239 | |
240 | case StringCharCodeAt: { |
241 | node->child1()->mergeFlags(NodeBytecodeUsesAsValue); |
242 | node->child2()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
243 | break; |
244 | } |
245 | |
246 | case StringSlice: { |
247 | node->child1()->mergeFlags(NodeBytecodeUsesAsValue); |
248 | node->child2()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
249 | if (node->child3()) |
250 | node->child3()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
251 | break; |
252 | } |
253 | |
254 | case ArraySlice: { |
255 | m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue); |
256 | |
257 | if (node->numChildren() == 2) |
258 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsValue); |
259 | else if (node->numChildren() == 3) { |
260 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
261 | m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsValue); |
262 | } else if (node->numChildren() == 4) { |
263 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
264 | m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
265 | m_graph.varArgChild(node, 3)->mergeFlags(NodeBytecodeUsesAsValue); |
266 | } |
267 | break; |
268 | } |
269 | |
270 | |
271 | case UInt32ToNumber: { |
272 | node->child1()->mergeFlags(flags); |
273 | break; |
274 | } |
275 | |
276 | case ValueAdd: { |
277 | if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node())) |
278 | flags &= ~NodeBytecodeNeedsNegZero; |
279 | if (node->child1()->hasNumericResult() || node->child2()->hasNumericResult() || node->child1()->hasNumberResult() || node->child2()->hasNumberResult()) |
280 | flags &= ~NodeBytecodeUsesAsOther; |
281 | if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2())) |
282 | flags |= NodeBytecodeUsesAsNumber; |
283 | if (!m_allowNestedOverflowingAdditions) |
284 | flags |= NodeBytecodeUsesAsNumber; |
285 | |
286 | node->child1()->mergeFlags(flags); |
287 | node->child2()->mergeFlags(flags); |
288 | break; |
289 | } |
290 | |
291 | case ArithAdd: { |
292 | flags &= ~NodeBytecodeUsesAsOther; |
293 | if (isNotNegZero(node->child1().node()) || isNotNegZero(node->child2().node())) |
294 | flags &= ~NodeBytecodeNeedsNegZero; |
295 | if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2())) |
296 | flags |= NodeBytecodeUsesAsNumber; |
297 | if (!m_allowNestedOverflowingAdditions) |
298 | flags |= NodeBytecodeUsesAsNumber; |
299 | |
300 | node->child1()->mergeFlags(flags); |
301 | node->child2()->mergeFlags(flags); |
302 | break; |
303 | } |
304 | |
305 | case ArithClz32: { |
306 | flags &= ~(NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero | NodeBytecodeUsesAsOther | ~NodeBytecodeUsesAsArrayIndex); |
307 | flags |= NodeBytecodeUsesAsInt; |
308 | node->child1()->mergeFlags(flags); |
309 | break; |
310 | } |
311 | |
312 | case ArithSub: { |
313 | flags &= ~NodeBytecodeUsesAsOther; |
314 | if (isNotNegZero(node->child1().node()) || isNotPosZero(node->child2().node())) |
315 | flags &= ~NodeBytecodeNeedsNegZero; |
316 | if (!isWithinPowerOfTwo<32>(node->child1()) && !isWithinPowerOfTwo<32>(node->child2())) |
317 | flags |= NodeBytecodeUsesAsNumber; |
318 | if (!m_allowNestedOverflowingAdditions) |
319 | flags |= NodeBytecodeUsesAsNumber; |
320 | |
321 | node->child1()->mergeFlags(flags); |
322 | node->child2()->mergeFlags(flags); |
323 | break; |
324 | } |
325 | |
326 | case ArithNegate: { |
327 | flags &= ~NodeBytecodeUsesAsOther; |
328 | |
329 | node->child1()->mergeFlags(flags); |
330 | break; |
331 | } |
332 | |
333 | case ValueMul: |
334 | case ArithMul: { |
335 | // As soon as a multiply happens, we can easily end up in the part |
336 | // of the double domain where the point at which you do truncation |
337 | // can change the outcome. So, ArithMul always forces its inputs to |
338 | // check for overflow. Additionally, it will have to check for overflow |
339 | // itself unless we can prove that there is no way for the values |
340 | // produced to cause double rounding. |
341 | |
342 | if (!isWithinPowerOfTwo<22>(node->child1().node()) |
343 | && !isWithinPowerOfTwo<22>(node->child2().node())) |
344 | flags |= NodeBytecodeUsesAsNumber; |
345 | |
346 | node->mergeFlags(flags); |
347 | |
348 | flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero; |
349 | flags &= ~NodeBytecodeUsesAsOther; |
350 | |
351 | node->child1()->mergeFlags(flags); |
352 | node->child2()->mergeFlags(flags); |
353 | break; |
354 | } |
355 | |
356 | case ValueDiv: |
357 | case ArithDiv: { |
358 | flags |= NodeBytecodeUsesAsNumber | NodeBytecodeNeedsNegZero; |
359 | flags &= ~NodeBytecodeUsesAsOther; |
360 | |
361 | node->child1()->mergeFlags(flags); |
362 | node->child2()->mergeFlags(flags); |
363 | break; |
364 | } |
365 | |
366 | case ValueMod: |
367 | case ArithMod: { |
368 | flags |= NodeBytecodeUsesAsNumber; |
369 | flags &= ~NodeBytecodeUsesAsOther; |
370 | |
371 | node->child1()->mergeFlags(flags); |
372 | node->child2()->mergeFlags(flags & ~NodeBytecodeNeedsNegZero); |
373 | break; |
374 | } |
375 | |
376 | case GetByVal: { |
377 | m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue); |
378 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
379 | break; |
380 | } |
381 | |
382 | case NewTypedArray: |
383 | case NewArrayWithSize: { |
384 | // Negative zero is not observable. NaN versus undefined are only observable |
385 | // in that you would get a different exception message. So, like, whatever: we |
386 | // claim here that NaN v. undefined is observable. |
387 | node->child1()->mergeFlags(NodeBytecodeUsesAsInt | NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsArrayIndex); |
388 | break; |
389 | } |
390 | |
391 | case StringCharAt: { |
392 | node->child1()->mergeFlags(NodeBytecodeUsesAsValue); |
393 | node->child2()->mergeFlags(NodeBytecodeUsesAsValue | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
394 | break; |
395 | } |
396 | |
397 | case ToString: |
398 | case CallStringConstructor: { |
399 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther); |
400 | break; |
401 | } |
402 | |
403 | case ToPrimitive: |
404 | case ToNumber: { |
405 | node->child1()->mergeFlags(flags); |
406 | break; |
407 | } |
408 | |
409 | case CompareLess: |
410 | case CompareLessEq: |
411 | case CompareGreater: |
412 | case CompareGreaterEq: |
413 | case CompareBelow: |
414 | case CompareBelowEq: |
415 | case CompareEq: |
416 | case CompareStrictEq: { |
417 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther); |
418 | node->child2()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther); |
419 | break; |
420 | } |
421 | |
422 | case PutByValDirect: |
423 | case PutByVal: { |
424 | m_graph.varArgChild(node, 0)->mergeFlags(NodeBytecodeUsesAsValue); |
425 | m_graph.varArgChild(node, 1)->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther | NodeBytecodeUsesAsInt | NodeBytecodeUsesAsArrayIndex); |
426 | m_graph.varArgChild(node, 2)->mergeFlags(NodeBytecodeUsesAsValue); |
427 | break; |
428 | } |
429 | |
430 | case Switch: { |
431 | SwitchData* data = node->switchData(); |
432 | switch (data->kind) { |
433 | case SwitchImm: |
434 | // We don't need NodeBytecodeNeedsNegZero because if the cases are all integers |
435 | // then -0 and 0 are treated the same. We don't need NodeBytecodeUsesAsOther |
436 | // because if all of the cases are integers then NaN and undefined are |
437 | // treated the same (i.e. they will take default). |
438 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsInt); |
439 | break; |
440 | case SwitchChar: { |
441 | // We don't need NodeBytecodeNeedsNegZero because if the cases are all strings |
442 | // then -0 and 0 are treated the same. We don't need NodeBytecodeUsesAsOther |
443 | // because if all of the cases are single-character strings then NaN |
444 | // and undefined are treated the same (i.e. they will take default). |
445 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber); |
446 | break; |
447 | } |
448 | case SwitchString: |
449 | // We don't need NodeBytecodeNeedsNegZero because if the cases are all strings |
450 | // then -0 and 0 are treated the same. |
451 | node->child1()->mergeFlags(NodeBytecodeUsesAsNumber | NodeBytecodeUsesAsOther); |
452 | break; |
453 | case SwitchCell: |
454 | // There is currently no point to being clever here since this is used for switching |
455 | // on objects. |
456 | mergeDefaultFlags(node); |
457 | break; |
458 | } |
459 | break; |
460 | } |
461 | |
462 | case Identity: |
463 | // This would be trivial to handle but we just assert that we cannot see these yet. |
464 | RELEASE_ASSERT_NOT_REACHED(); |
465 | break; |
466 | |
467 | // Note: ArithSqrt, ArithUnary and other math intrinsics don't have special |
468 | // rules in here because they are always followed by Phantoms to signify that if the |
469 | // method call speculation fails, the bytecode may use the arguments in arbitrary ways. |
470 | // This corresponds to that possibility of someone doing something like: |
471 | // Math.sin = function(x) { doArbitraryThingsTo(x); } |
472 | |
473 | default: |
474 | mergeDefaultFlags(node); |
475 | break; |
476 | } |
477 | } |
478 | |
479 | bool m_allowNestedOverflowingAdditions; |
480 | bool m_changed; |
481 | }; |
482 | |
483 | bool performBackwardsPropagation(Graph& graph) |
484 | { |
485 | return runPhase<BackwardsPropagationPhase>(graph); |
486 | } |
487 | |
488 | } } // namespace JSC::DFG |
489 | |
490 | #endif // ENABLE(DFG_JIT) |
491 | |
492 | |