1 | /* |
2 | * Copyright (C) 2015-2019 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "B3ReduceDoubleToFloat.h" |
28 | |
29 | #if ENABLE(B3_JIT) |
30 | |
31 | #include "B3BasicBlock.h" |
32 | #include "B3InsertionSetInlines.h" |
33 | #include "B3PhaseScope.h" |
34 | #include "B3UseCounts.h" |
35 | #include "B3ValueInlines.h" |
36 | #include <wtf/IndexSet.h> |
37 | |
38 | namespace JSC { namespace B3 { |
39 | |
40 | namespace { |
41 | |
42 | namespace B3ReduceDoubleToFloatInternal { |
43 | static constexpr bool verbose = false; |
44 | } |
45 | bool printRemainingConversions = false; |
46 | |
47 | class DoubleToFloatReduction { |
48 | public: |
49 | DoubleToFloatReduction(Procedure& procedure) |
50 | : m_procedure(procedure) |
51 | { |
52 | } |
53 | |
54 | void run() |
55 | { |
56 | if (!findCandidates()) |
57 | return; |
58 | |
59 | findPhisContainingFloat(); |
60 | |
61 | simplify(); |
62 | |
63 | cleanUp(); |
64 | } |
65 | |
66 | private: |
67 | // This step find values that are used as Double and cannot be converted to Float.. |
68 | // It flows the information backward through Phi-Upsilons. |
69 | bool findCandidates() |
70 | { |
71 | bool foundConversionCandidate = false; |
72 | Vector<Value*, 32> upsilons; |
73 | |
74 | // First, we find all values that are strictly used as double. |
75 | // Those are values used by something else than DoubleToFloat. |
76 | // |
77 | // We don't know the state of Upsilons until their Phi has been |
78 | // set. We just keep a list of them and update them next. |
79 | for (BasicBlock* block : m_procedure) { |
80 | for (Value* value : *block) { |
81 | value->performSubstitution(); |
82 | |
83 | if (value->opcode() == DoubleToFloat) { |
84 | foundConversionCandidate = true; |
85 | |
86 | Value* child = value->child(0); |
87 | if (child->opcode() == FloatToDouble) { |
88 | // We don't really need to simplify this early but it simplifies debugging. |
89 | value->replaceWithIdentity(child->child(0)); |
90 | } |
91 | continue; |
92 | } |
93 | |
94 | if (value->opcode() == FloatToDouble) |
95 | foundConversionCandidate = true; |
96 | |
97 | if (value->opcode() == Upsilon) { |
98 | Value* child = value->child(0); |
99 | if (child->type() == Double) |
100 | upsilons.append(value); |
101 | continue; |
102 | } |
103 | |
104 | for (Value* child : value->children()) { |
105 | if (child->type() == Double) |
106 | m_valuesUsedAsDouble.add(child); |
107 | } |
108 | } |
109 | } |
110 | |
111 | if (!foundConversionCandidate) |
112 | return false; |
113 | |
114 | // Now we just need to propagate through Phi-Upsilon. |
115 | // A Upsilon can convert its input to float if its phi is never used as double. |
116 | // If we modify a phi, we need to continue until all the Upsilon-Phi converge. |
117 | bool changedPhiState; |
118 | do { |
119 | changedPhiState = false; |
120 | for (Value* value : upsilons) { |
121 | UpsilonValue* upsilon = value->as<UpsilonValue>(); |
122 | Value* phi = upsilon->phi(); |
123 | if (!m_valuesUsedAsDouble.contains(phi)) |
124 | continue; |
125 | |
126 | Value* child = value->child(0); |
127 | bool childChanged = m_valuesUsedAsDouble.add(child); |
128 | if (childChanged && child->opcode() == Phi) |
129 | changedPhiState = true; |
130 | } |
131 | } while (changedPhiState); |
132 | |
133 | if (B3ReduceDoubleToFloatInternal::verbose) { |
134 | dataLog("Conversion candidates:\n" ); |
135 | for (BasicBlock* block : m_procedure) { |
136 | for (Value* value : *block) { |
137 | if (value->type() == Double && !m_valuesUsedAsDouble.contains(value)) |
138 | dataLog(" " , deepDump(m_procedure, value), "\n" ); |
139 | } |
140 | } |
141 | dataLog("\n" ); |
142 | } |
143 | |
144 | return true; |
145 | } |
146 | |
147 | // This step finds Phis of type Double that effectively contains Float values. |
148 | // It flows that information forward through Phi-Upsilons. |
149 | void findPhisContainingFloat() |
150 | { |
151 | Vector<Value*, 32> upsilons; |
152 | |
153 | // The Double value that can be safely turned into a Float are: |
154 | // - FloatToDouble |
155 | // - ConstDouble with a value that converts to Float without losing precision. |
156 | for (BasicBlock* block : m_procedure) { |
157 | for (Value* value : *block) { |
158 | if (value->opcode() != Upsilon) |
159 | continue; |
160 | |
161 | Value* child = value->child(0); |
162 | if (child->type() != Double |
163 | || child->opcode() == FloatToDouble) |
164 | continue; |
165 | |
166 | if (child->hasDouble()) { |
167 | double constValue = child->asDouble(); |
168 | if (isIdentical(static_cast<double>(static_cast<float>(constValue)), constValue)) |
169 | continue; |
170 | } |
171 | |
172 | if (child->opcode() == Phi) { |
173 | upsilons.append(value); |
174 | continue; |
175 | } |
176 | |
177 | UpsilonValue* upsilon = value->as<UpsilonValue>(); |
178 | Value* phi = upsilon->phi(); |
179 | m_phisContainingDouble.add(phi); |
180 | } |
181 | } |
182 | |
183 | // Propagate the flags forward. |
184 | bool changedPhiState; |
185 | do { |
186 | changedPhiState = false; |
187 | for (Value* value : upsilons) { |
188 | Value* child = value->child(0); |
189 | if (m_phisContainingDouble.contains(child)) { |
190 | UpsilonValue* upsilon = value->as<UpsilonValue>(); |
191 | Value* phi = upsilon->phi(); |
192 | changedPhiState |= m_phisContainingDouble.add(phi); |
193 | } |
194 | } |
195 | } while (changedPhiState); |
196 | |
197 | if (B3ReduceDoubleToFloatInternal::verbose) { |
198 | dataLog("Phis containing float values:\n" ); |
199 | for (BasicBlock* block : m_procedure) { |
200 | for (Value* value : *block) { |
201 | if (value->opcode() == Phi |
202 | && value->type() == Double |
203 | && !m_phisContainingDouble.contains(value)) |
204 | dataLog(" " , deepDump(m_procedure, value), "\n" ); |
205 | } |
206 | } |
207 | dataLog("\n" ); |
208 | } |
209 | } |
210 | |
211 | bool canBeTransformedToFloat(Value* value) |
212 | { |
213 | if (value->opcode() == FloatToDouble) |
214 | return true; |
215 | |
216 | if (value->hasDouble()) |
217 | return true; // Double constant truncated to float. |
218 | |
219 | if (value->opcode() == Phi) { |
220 | return value->type() == Float |
221 | || (value->type() == Double && !m_phisContainingDouble.contains(value)); |
222 | } |
223 | return false; |
224 | } |
225 | |
226 | Value* transformToFloat(Value* value, unsigned valueIndex, InsertionSet& insertionSet) |
227 | { |
228 | ASSERT(canBeTransformedToFloat(value)); |
229 | if (value->opcode() == FloatToDouble) |
230 | return value->child(0); |
231 | |
232 | if (value->hasDouble()) |
233 | return insertionSet.insert<ConstFloatValue>(valueIndex, value->origin(), static_cast<float>(value->asDouble())); |
234 | |
235 | if (value->opcode() == Phi) { |
236 | ASSERT(value->type() == Double || value->type() == Float); |
237 | if (value->type() == Double) |
238 | convertPhi(value); |
239 | return value; |
240 | } |
241 | RELEASE_ASSERT_NOT_REACHED(); |
242 | return nullptr; |
243 | } |
244 | |
245 | void convertPhi(Value* phi) |
246 | { |
247 | ASSERT(phi->opcode() == Phi); |
248 | ASSERT(phi->type() == Double); |
249 | phi->setType(Float); |
250 | m_convertedPhis.add(phi); |
251 | } |
252 | |
253 | bool attemptTwoOperandsSimplify(Value* candidate, unsigned candidateIndex, InsertionSet& insertionSet) |
254 | { |
255 | Value* left = candidate->child(0); |
256 | Value* right = candidate->child(1); |
257 | if (!canBeTransformedToFloat(left) || !canBeTransformedToFloat(right)) |
258 | return false; |
259 | |
260 | if (left->hasDouble() && right->hasDouble()) { |
261 | // If both inputs are constants, converting them to floats and performing |
262 | // the same operation is incorrect. It may produce a different value |
263 | // depending on the operation and the inputs. There are inputs where |
264 | // casting to float and performing the operation would result in the |
265 | // same value. Regardless, we don't prove when that is legal here since |
266 | // it isn't profitable to do. We leave it to strength reduction to handle |
267 | // reduce these cases. |
268 | return false; |
269 | } |
270 | |
271 | m_convertedValue.add(candidate); |
272 | candidate->child(0) = transformToFloat(left, candidateIndex, insertionSet); |
273 | candidate->child(1) = transformToFloat(right, candidateIndex, insertionSet); |
274 | return true; |
275 | } |
276 | |
277 | // Simplify Double operations into Float operations. |
278 | void simplify() |
279 | { |
280 | Vector<Value*, 32> upsilonReferencingDoublePhi; |
281 | |
282 | InsertionSet insertionSet(m_procedure); |
283 | for (BasicBlock* block : m_procedure) { |
284 | for (unsigned index = 0; index < block->size(); ++index) { |
285 | Value* value = block->at(index); |
286 | |
287 | switch (value->opcode()) { |
288 | case Equal: |
289 | case NotEqual: |
290 | case LessThan: |
291 | case GreaterThan: |
292 | case LessEqual: |
293 | case GreaterEqual: |
294 | case EqualOrUnordered: |
295 | attemptTwoOperandsSimplify(value, index, insertionSet); |
296 | continue; |
297 | case Upsilon: { |
298 | Value* child = value->child(0); |
299 | if (child->opcode() == Phi && child->type() == Double) |
300 | upsilonReferencingDoublePhi.append(value); |
301 | continue; |
302 | } |
303 | default: |
304 | break; |
305 | } |
306 | |
307 | if (m_valuesUsedAsDouble.contains(value)) |
308 | continue; |
309 | |
310 | switch (value->opcode()) { |
311 | case Add: |
312 | case Sub: |
313 | case Mul: |
314 | case Div: |
315 | if (attemptTwoOperandsSimplify(value, index, insertionSet)) |
316 | value->setType(Float); |
317 | break; |
318 | case Abs: |
319 | case Ceil: |
320 | case Floor: |
321 | case Neg: |
322 | case Sqrt: { |
323 | Value* child = value->child(0); |
324 | if (canBeTransformedToFloat(child)) { |
325 | value->child(0) = transformToFloat(child, index, insertionSet); |
326 | value->setType(Float); |
327 | m_convertedValue.add(value); |
328 | } |
329 | break; |
330 | } |
331 | case IToD: { |
332 | Value* iToF = insertionSet.insert<Value>(index, IToF, value->origin(), value->child(0)); |
333 | value->setType(Float); |
334 | value->replaceWithIdentity(iToF); |
335 | m_convertedValue.add(value); |
336 | break; |
337 | } |
338 | case FloatToDouble: |
339 | // This happens if we round twice. |
340 | // Typically, this is indirect through Phi-Upsilons. |
341 | // The Upsilon rounds and the Phi rounds. |
342 | value->setType(Float); |
343 | value->replaceWithIdentity(value->child(0)); |
344 | m_convertedValue.add(value); |
345 | break; |
346 | case Phi: |
347 | // If a Phi is always converted to Float, we always make it into a float Phi-Upsilon. |
348 | // This is a simplistic view of things. Ideally we should keep type that will minimize |
349 | // the amount of conversion in the loop. |
350 | if (value->type() == Double) |
351 | convertPhi(value); |
352 | break; |
353 | default: |
354 | break; |
355 | } |
356 | } |
357 | insertionSet.execute(block); |
358 | } |
359 | |
360 | if (!upsilonReferencingDoublePhi.isEmpty()) { |
361 | // If a Phi contains Float values typed as Double, but is not used as Float |
362 | // by a non-trivial operation, we did not convert it. |
363 | // |
364 | // We fix that now by converting the remaining phis that contains |
365 | // float but where not converted to float. |
366 | bool changedPhi; |
367 | do { |
368 | changedPhi = false; |
369 | |
370 | for (Value* value : upsilonReferencingDoublePhi) { |
371 | UpsilonValue* upsilon = value->as<UpsilonValue>(); |
372 | Value* child = value->child(0); |
373 | Value* phi = upsilon->phi(); |
374 | if (phi->type() == Float && child->type() == Double |
375 | && !m_phisContainingDouble.contains(child)) { |
376 | convertPhi(child); |
377 | changedPhi = true; |
378 | } |
379 | } |
380 | |
381 | } while (changedPhi); |
382 | } |
383 | } |
384 | |
385 | // We are in an inconsistent state where we have |
386 | // DoubleToFloat nodes over values producing float and Phis that are |
387 | // float for Upsilons that are Double. |
388 | // |
389 | // This steps puts us back in a consistent state. |
390 | void cleanUp() |
391 | { |
392 | InsertionSet insertionSet(m_procedure); |
393 | |
394 | for (BasicBlock* block : m_procedure) { |
395 | for (unsigned index = 0; index < block->size(); ++index) { |
396 | Value* value = block->at(index); |
397 | if (value->opcode() == DoubleToFloat && value->child(0)->type() == Float) { |
398 | value->replaceWithIdentity(value->child(0)); |
399 | continue; |
400 | } |
401 | |
402 | if (value->opcode() == Upsilon) { |
403 | UpsilonValue* upsilon = value->as<UpsilonValue>(); |
404 | Value* child = value->child(0); |
405 | Value* phi = upsilon->phi(); |
406 | |
407 | if (phi->type() == Float) { |
408 | if (child->type() == Double) { |
409 | Value* newChild = nullptr; |
410 | if (child->opcode() == FloatToDouble) |
411 | newChild = child->child(0); |
412 | else if (child->hasDouble()) |
413 | newChild = insertionSet.insert<ConstFloatValue>(index, child->origin(), static_cast<float>(child->asDouble())); |
414 | else |
415 | newChild = insertionSet.insert<Value>(index, DoubleToFloat, upsilon->origin(), child); |
416 | upsilon->child(0) = newChild; |
417 | } |
418 | continue; |
419 | } |
420 | } |
421 | |
422 | if (!m_convertedValue.contains(value)) { |
423 | // Phis can be converted from Double to Float if the value they contain |
424 | // is not more precise than a Float. |
425 | // If the value is needed as Double, it has to be converted back. |
426 | for (Value*& child : value->children()) { |
427 | if (m_convertedPhis.contains(child)) |
428 | child = insertionSet.insert<Value>(index, FloatToDouble, value->origin(), child); |
429 | } |
430 | } |
431 | } |
432 | insertionSet.execute(block); |
433 | } |
434 | } |
435 | |
436 | Procedure& m_procedure; |
437 | |
438 | // Set of all the Double values that are actually used as Double. |
439 | // Converting any of them to Float would lose precision. |
440 | IndexSet<Value*> m_valuesUsedAsDouble; |
441 | |
442 | // Set of all the Phi of type Double that really contains a Double. |
443 | // Any Double Phi not in the set can be converted to Float without losing precision. |
444 | IndexSet<Value*> m_phisContainingDouble; |
445 | |
446 | // Any value that was converted from producing a Double to producing a Float. |
447 | // This set does not include Phi-Upsilons. |
448 | IndexSet<Value*> m_convertedValue; |
449 | |
450 | // Any value that previously produced Double and now produce Float. |
451 | IndexSet<Value*> m_convertedPhis; |
452 | }; |
453 | |
454 | void printGraphIfConverting(Procedure& procedure) |
455 | { |
456 | if (!printRemainingConversions) |
457 | return; |
458 | |
459 | UseCounts useCount(procedure); |
460 | |
461 | Vector<Value*> doubleToFloat; |
462 | Vector<Value*> floatToDouble; |
463 | |
464 | for (BasicBlock* block : procedure) { |
465 | for (Value* value : *block) { |
466 | if (!useCount.numUses(value)) |
467 | continue; |
468 | |
469 | if (value->opcode() == DoubleToFloat) |
470 | doubleToFloat.append(value); |
471 | if (value->opcode() == FloatToDouble) |
472 | floatToDouble.append(value); |
473 | } |
474 | } |
475 | |
476 | if (doubleToFloat.isEmpty() && floatToDouble.isEmpty()) |
477 | return; |
478 | |
479 | dataLog("Procedure with Float-Double conversion:\n" , procedure, "\n" ); |
480 | dataLog("Converting nodes:\n" ); |
481 | for (Value* value : doubleToFloat) |
482 | dataLog(" " , deepDump(procedure, value), "\n" ); |
483 | for (Value* value : floatToDouble) |
484 | dataLog(" " , deepDump(procedure, value), "\n" ); |
485 | |
486 | } |
487 | |
488 | } // anonymous namespace. |
489 | |
490 | void reduceDoubleToFloat(Procedure& procedure) |
491 | { |
492 | PhaseScope phaseScope(procedure, "reduceDoubleToFloat" ); |
493 | |
494 | if (B3ReduceDoubleToFloatInternal::verbose) |
495 | dataLog("Before DoubleToFloatReduction:\n" , procedure, "\n" ); |
496 | |
497 | DoubleToFloatReduction doubleToFloatReduction(procedure); |
498 | doubleToFloatReduction.run(); |
499 | |
500 | if (B3ReduceDoubleToFloatInternal::verbose) |
501 | dataLog("After DoubleToFloatReduction:\n" , procedure, "\n" ); |
502 | |
503 | printGraphIfConverting(procedure); |
504 | } |
505 | |
506 | } } // namespace JSC::B3 |
507 | |
508 | #endif // ENABLE(B3_JIT) |
509 | |
510 | |