1/*
2 * Copyright (C) 2015-2019 Apple Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26#include "config.h"
27#include "B3LowerToAir.h"
28
29#if ENABLE(B3_JIT)
30
31#include "AirBlockInsertionSet.h"
32#include "AirCCallSpecial.h"
33#include "AirCode.h"
34#include "AirHelpers.h"
35#include "AirInsertionSet.h"
36#include "AirInstInlines.h"
37#include "AirPrintSpecial.h"
38#include "AirStackSlot.h"
39#include "B3ArgumentRegValue.h"
40#include "B3AtomicValue.h"
41#include "B3BasicBlockInlines.h"
42#include "B3BlockWorklist.h"
43#include "B3CCallValue.h"
44#include "B3CheckSpecial.h"
45#include "B3Commutativity.h"
46#include "B3Dominators.h"
47#include "B3ExtractValue.h"
48#include "B3FenceValue.h"
49#include "B3MemoryValueInlines.h"
50#include "B3PatchpointSpecial.h"
51#include "B3PatchpointValue.h"
52#include "B3PhaseScope.h"
53#include "B3PhiChildren.h"
54#include "B3Procedure.h"
55#include "B3SlotBaseValue.h"
56#include "B3StackSlot.h"
57#include "B3UpsilonValue.h"
58#include "B3UseCounts.h"
59#include "B3ValueInlines.h"
60#include "B3Variable.h"
61#include "B3VariableValue.h"
62#include "B3WasmAddressValue.h"
63#include <wtf/IndexMap.h>
64#include <wtf/IndexSet.h>
65#include <wtf/ListDump.h>
66
67#if ASSERT_DISABLED
68IGNORE_RETURN_TYPE_WARNINGS_BEGIN
69#endif
70
71namespace JSC { namespace B3 {
72
73namespace {
74
75namespace B3LowerToAirInternal {
76static constexpr bool verbose = false;
77}
78
79using Arg = Air::Arg;
80using Inst = Air::Inst;
81using Code = Air::Code;
82using Tmp = Air::Tmp;
83
84using Air::moveForType;
85using Air::relaxedMoveForType;
86
87// FIXME: We wouldn't need this if Air supported Width modifiers in Air::Kind.
88// https://bugs.webkit.org/show_bug.cgi?id=169247
89#define OPCODE_FOR_WIDTH(opcode, width) ( \
90 (width) == Width8 ? Air::opcode ## 8 : \
91 (width) == Width16 ? Air::opcode ## 16 : \
92 (width) == Width32 ? Air::opcode ## 32 : \
93 Air::opcode ## 64)
94#define OPCODE_FOR_CANONICAL_WIDTH(opcode, width) ( \
95 (width) == Width64 ? Air::opcode ## 64 : Air::opcode ## 32)
96
97class LowerToAir {
98public:
99 LowerToAir(Procedure& procedure)
100 : m_valueToTmp(procedure.values().size())
101 , m_phiToTmp(procedure.values().size())
102 , m_blockToBlock(procedure.size())
103 , m_useCounts(procedure)
104 , m_phiChildren(procedure)
105 , m_dominators(procedure.dominators())
106 , m_procedure(procedure)
107 , m_code(procedure.code())
108 , m_blockInsertionSet(m_code)
109#if CPU(X86) || CPU(X86_64)
110 , m_eax(X86Registers::eax)
111 , m_ecx(X86Registers::ecx)
112 , m_edx(X86Registers::edx)
113#endif
114 {
115 }
116
117 void run()
118 {
119 using namespace Air;
120 for (B3::BasicBlock* block : m_procedure)
121 m_blockToBlock[block] = m_code.addBlock(block->frequency());
122
123 auto ensureTupleTmps = [&] (Value* tupleValue, auto& hashTable) {
124 hashTable.ensure(tupleValue, [&] {
125 const auto tuple = m_procedure.tupleForType(tupleValue->type());
126 Vector<Tmp> tmps(tuple.size());
127
128 for (unsigned i = 0; i < tuple.size(); ++i)
129 tmps[i] = tmpForType(tuple[i]);
130 return tmps;
131 });
132 };
133
134 for (Value* value : m_procedure.values()) {
135 switch (value->opcode()) {
136 case Phi: {
137 if (value->type().isTuple()) {
138 ensureTupleTmps(value, m_tuplePhiToTmps);
139 ensureTupleTmps(value, m_tupleValueToTmps);
140 break;
141 }
142
143 m_phiToTmp[value] = m_code.newTmp(value->resultBank());
144 if (B3LowerToAirInternal::verbose)
145 dataLog("Phi tmp for ", *value, ": ", m_phiToTmp[value], "\n");
146 break;
147 }
148 case Get:
149 case Patchpoint: {
150 if (value->type().isTuple())
151 ensureTupleTmps(value, m_tupleValueToTmps);
152 break;
153 }
154 default:
155 break;
156 }
157 }
158
159 for (B3::StackSlot* stack : m_procedure.stackSlots())
160 m_stackToStack.add(stack, m_code.addStackSlot(stack));
161 for (Variable* variable : m_procedure.variables()) {
162 auto addResult = m_variableToTmps.add(variable, Vector<Tmp, 1>(m_procedure.resultCount(variable->type())));
163 ASSERT(addResult.isNewEntry);
164 for (unsigned i = 0; i < m_procedure.resultCount(variable->type()); ++i)
165 addResult.iterator->value[i] = tmpForType(m_procedure.typeAtOffset(variable->type(), i));
166 }
167
168 // Figure out which blocks are not rare.
169 m_fastWorklist.push(m_procedure[0]);
170 while (B3::BasicBlock* block = m_fastWorklist.pop()) {
171 for (B3::FrequentedBlock& successor : block->successors()) {
172 if (!successor.isRare())
173 m_fastWorklist.push(successor.block());
174 }
175 }
176
177 m_procedure.resetValueOwners(); // Used by crossesInterference().
178
179 // Lower defs before uses on a global level. This is a good heuristic to lock down a
180 // hoisted address expression before we duplicate it back into the loop.
181 for (B3::BasicBlock* block : m_procedure.blocksInPreOrder()) {
182 m_block = block;
183
184 m_isRare = !m_fastWorklist.saw(block);
185
186 if (B3LowerToAirInternal::verbose)
187 dataLog("Lowering Block ", *block, ":\n");
188
189 // Make sure that the successors are set up correctly.
190 for (B3::FrequentedBlock successor : block->successors()) {
191 m_blockToBlock[block]->successors().append(
192 Air::FrequentedBlock(m_blockToBlock[successor.block()], successor.frequency()));
193 }
194
195 // Process blocks in reverse order so we see uses before defs. That's what allows us
196 // to match patterns effectively.
197 for (unsigned i = block->size(); i--;) {
198 m_index = i;
199 m_value = block->at(i);
200 if (m_locked.contains(m_value))
201 continue;
202 m_insts.append(Vector<Inst>());
203 if (B3LowerToAirInternal::verbose)
204 dataLog("Lowering ", deepDump(m_procedure, m_value), ":\n");
205 lower();
206 if (B3LowerToAirInternal::verbose) {
207 for (Inst& inst : m_insts.last())
208 dataLog(" ", inst, "\n");
209 }
210 }
211
212 finishAppendingInstructions(m_blockToBlock[block]);
213 }
214
215 m_blockInsertionSet.execute();
216
217 Air::InsertionSet insertionSet(m_code);
218 for (Inst& inst : m_prologue)
219 insertionSet.insertInst(0, WTFMove(inst));
220 insertionSet.execute(m_code[0]);
221 }
222
223private:
224 bool shouldCopyPropagate(Value* value)
225 {
226 switch (value->opcode()) {
227 case Trunc:
228 case Identity:
229 case Opaque:
230 return true;
231 default:
232 return false;
233 }
234 }
235
236 class ArgPromise {
237 WTF_MAKE_NONCOPYABLE(ArgPromise);
238 public:
239 ArgPromise() { }
240
241 ArgPromise(const Arg& arg, Value* valueToLock = nullptr)
242 : m_arg(arg)
243 , m_value(valueToLock)
244 {
245 }
246
247 void swap(ArgPromise& other)
248 {
249 std::swap(m_arg, other.m_arg);
250 std::swap(m_value, other.m_value);
251 std::swap(m_wasConsumed, other.m_wasConsumed);
252 std::swap(m_wasWrapped, other.m_wasWrapped);
253 std::swap(m_traps, other.m_traps);
254 }
255
256 ArgPromise(ArgPromise&& other)
257 {
258 swap(other);
259 }
260
261 ArgPromise& operator=(ArgPromise&& other)
262 {
263 swap(other);
264 return *this;
265 }
266
267 ~ArgPromise()
268 {
269 if (m_wasConsumed)
270 RELEASE_ASSERT(m_wasWrapped);
271 }
272
273 void setTraps(bool value)
274 {
275 m_traps = value;
276 }
277
278 static ArgPromise tmp(Value* value)
279 {
280 ArgPromise result;
281 result.m_value = value;
282 return result;
283 }
284
285 explicit operator bool() const { return m_arg || m_value; }
286
287 Arg::Kind kind() const
288 {
289 if (!m_arg && m_value)
290 return Arg::Tmp;
291 return m_arg.kind();
292 }
293
294 const Arg& peek() const
295 {
296 return m_arg;
297 }
298
299 Arg consume(LowerToAir& lower)
300 {
301 m_wasConsumed = true;
302 if (!m_arg && m_value)
303 return lower.tmp(m_value);
304 if (m_value)
305 lower.commitInternal(m_value);
306 return m_arg;
307 }
308
309 template<typename... Args>
310 Inst inst(Args&&... args)
311 {
312 Inst result(std::forward<Args>(args)...);
313 result.kind.effects |= m_traps;
314 m_wasWrapped = true;
315 return result;
316 }
317
318 private:
319 // Three forms:
320 // Everything null: invalid.
321 // Arg non-null, value null: just use the arg, nothing special.
322 // Arg null, value non-null: it's a tmp, pin it when necessary.
323 // Arg non-null, value non-null: use the arg, lock the value.
324 Arg m_arg;
325 Value* m_value { nullptr };
326 bool m_wasConsumed { false };
327 bool m_wasWrapped { false };
328 bool m_traps { false };
329 };
330
331 // Consider using tmpPromise() in cases where you aren't sure that you want to pin the value yet.
332 // Here are three canonical ways of using tmp() and tmpPromise():
333 //
334 // Idiom #1: You know that you want a tmp() and you know that it will be valid for the
335 // instruction you're emitting.
336 //
337 // append(Foo, tmp(bar));
338 //
339 // Idiom #2: You don't know if you want to use a tmp() because you haven't determined if the
340 // instruction will accept it, so you query first. Note that the call to tmp() happens only after
341 // you are sure that you will use it.
342 //
343 // if (isValidForm(Foo, Arg::Tmp))
344 // append(Foo, tmp(bar))
345 //
346 // Idiom #3: Same as Idiom #2, but using tmpPromise. Notice that this calls consume() only after
347 // it's sure it will use the tmp. That's deliberate. Also note that you're required to pass any
348 // Inst you create with consumed promises through that promise's inst() function.
349 //
350 // ArgPromise promise = tmpPromise(bar);
351 // if (isValidForm(Foo, promise.kind()))
352 // append(promise.inst(Foo, promise.consume(*this)))
353 //
354 // In both idiom #2 and idiom #3, we don't pin the value to a temporary except when we actually
355 // emit the instruction. Both tmp() and tmpPromise().consume(*this) will pin it. Pinning means
356 // that we will henceforth require that the value of 'bar' is generated as a separate
357 // instruction. We don't want to pin the value to a temporary if we might change our minds, and
358 // pass an address operand representing 'bar' to Foo instead.
359 //
360 // Because tmp() pins, the following is not an idiom you should use:
361 //
362 // Tmp tmp = this->tmp(bar);
363 // if (isValidForm(Foo, tmp.kind()))
364 // append(Foo, tmp);
365 //
366 // That's because if isValidForm() returns false, you will have already pinned the 'bar' to a
367 // temporary. You might later want to try to do something like loadPromise(), and that will fail.
368 // This arises in operations that have both a Addr,Tmp and Tmp,Addr forms. The following code
369 // seems right, but will actually fail to ever match the Tmp,Addr form because by then, the right
370 // value is already pinned.
371 //
372 // auto tryThings = [this] (const Arg& left, const Arg& right) {
373 // if (isValidForm(Foo, left.kind(), right.kind()))
374 // return Inst(Foo, m_value, left, right);
375 // return Inst();
376 // };
377 // if (Inst result = tryThings(loadAddr(left), tmp(right)))
378 // return result;
379 // if (Inst result = tryThings(tmp(left), loadAddr(right))) // this never succeeds.
380 // return result;
381 // return Inst(Foo, m_value, tmp(left), tmp(right));
382 //
383 // If you imagine that loadAddr(value) is just loadPromise(value).consume(*this), then this code
384 // will run correctly - it will generate OK code - but the second form is never matched.
385 // loadAddr(right) will never succeed because it will observe that 'right' is already pinned.
386 // Of course, it's exactly because of the risky nature of such code that we don't have a
387 // loadAddr() helper and require you to balance ArgPromise's in code like this. Such code will
388 // work fine if written as:
389 //
390 // auto tryThings = [this] (ArgPromise& left, ArgPromise& right) {
391 // if (isValidForm(Foo, left.kind(), right.kind()))
392 // return left.inst(right.inst(Foo, m_value, left.consume(*this), right.consume(*this)));
393 // return Inst();
394 // };
395 // if (Inst result = tryThings(loadPromise(left), tmpPromise(right)))
396 // return result;
397 // if (Inst result = tryThings(tmpPromise(left), loadPromise(right)))
398 // return result;
399 // return Inst(Foo, m_value, tmp(left), tmp(right));
400 //
401 // Notice that we did use tmp in the fall-back case at the end, because by then, we know for sure
402 // that we want a tmp. But using tmpPromise in the tryThings() calls ensures that doing so
403 // doesn't prevent us from trying loadPromise on the same value.
404 Tmp tmp(Value* value)
405 {
406 Tmp& tmp = m_valueToTmp[value];
407 if (!tmp) {
408 while (shouldCopyPropagate(value))
409 value = value->child(0);
410
411 if (value->opcode() == FramePointer)
412 return Tmp(GPRInfo::callFrameRegister);
413
414 Tmp& realTmp = m_valueToTmp[value];
415 if (!realTmp) {
416 realTmp = m_code.newTmp(value->resultBank());
417 if (m_procedure.isFastConstant(value->key()))
418 m_code.addFastTmp(realTmp);
419 if (B3LowerToAirInternal::verbose)
420 dataLog("Tmp for ", *value, ": ", realTmp, "\n");
421 }
422 tmp = realTmp;
423 }
424 return tmp;
425 }
426
427 ArgPromise tmpPromise(Value* value)
428 {
429 return ArgPromise::tmp(value);
430 }
431
432 Tmp tmpForType(Type type)
433 {
434 return m_code.newTmp(bankForType(type));
435 }
436
437 const Vector<Tmp>& tmpsForTuple(Value* tupleValue)
438 {
439 ASSERT(tupleValue->type().isTuple());
440
441 switch (tupleValue->opcode()) {
442 case Phi:
443 case Patchpoint: {
444 return m_tupleValueToTmps.find(tupleValue)->value;
445 }
446 case Get:
447 case Set:
448 return m_variableToTmps.find(tupleValue->as<VariableValue>()->variable())->value;
449 default:
450 break;
451 }
452 RELEASE_ASSERT_NOT_REACHED();
453 }
454
455 bool canBeInternal(Value* value)
456 {
457 // If one of the internal things has already been computed, then we don't want to cause
458 // it to be recomputed again.
459 if (m_valueToTmp[value])
460 return false;
461
462 // We require internals to have only one use - us. It's not clear if this should be numUses() or
463 // numUsingInstructions(). Ideally, it would be numUsingInstructions(), except that it's not clear
464 // if we'd actually do the right thing when matching over such a DAG pattern. For now, it simply
465 // doesn't matter because we don't implement patterns that would trigger this.
466 if (m_useCounts.numUses(value) != 1)
467 return false;
468
469 return true;
470 }
471
472 // If you ask canBeInternal() and then construct something from that, and you commit to emitting
473 // that code, then you must commitInternal() on that value. This is tricky, and you only need to
474 // do it if you're pattern matching by hand rather than using the patterns language. Long story
475 // short, you should avoid this by using the pattern matcher to match patterns.
476 void commitInternal(Value* value)
477 {
478 if (value)
479 m_locked.add(value);
480 }
481
482 bool crossesInterference(Value* value)
483 {
484 // If it's in a foreign block, then be conservative. We could handle this if we were
485 // willing to do heavier analysis. For example, if we had liveness, then we could label
486 // values as "crossing interference" if they interfere with anything that they are live
487 // across. But, it's not clear how useful this would be.
488 if (value->owner != m_value->owner)
489 return true;
490
491 Effects effects = value->effects();
492
493 for (unsigned i = m_index; i--;) {
494 Value* otherValue = m_block->at(i);
495 if (otherValue == value)
496 return false;
497 if (effects.interferes(otherValue->effects()))
498 return true;
499 }
500
501 ASSERT_NOT_REACHED();
502 return true;
503 }
504
505 template<typename Int, typename = Value::IsLegalOffset<Int>>
506 Optional<unsigned> scaleForShl(Value* shl, Int offset, Optional<Width> width = WTF::nullopt)
507 {
508 if (shl->opcode() != Shl)
509 return WTF::nullopt;
510 if (!shl->child(1)->hasInt32())
511 return WTF::nullopt;
512 unsigned logScale = shl->child(1)->asInt32();
513 if (shl->type() == Int32)
514 logScale &= 31;
515 else
516 logScale &= 63;
517 // Use 64-bit math to perform the shift so that <<32 does the right thing, but then switch
518 // to signed since that's what all of our APIs want.
519 int64_t bigScale = static_cast<uint64_t>(1) << static_cast<uint64_t>(logScale);
520 if (!isRepresentableAs<int32_t>(bigScale))
521 return WTF::nullopt;
522 unsigned scale = static_cast<int32_t>(bigScale);
523 if (!Arg::isValidIndexForm(scale, offset, width))
524 return WTF::nullopt;
525 return scale;
526 }
527
528 // This turns the given operand into an address.
529 template<typename Int, typename = Value::IsLegalOffset<Int>>
530 Arg effectiveAddr(Value* address, Int offset, Width width)
531 {
532 ASSERT(Arg::isValidAddrForm(offset, width));
533
534 auto fallback = [&] () -> Arg {
535 return Arg::addr(tmp(address), offset);
536 };
537
538 static constexpr unsigned lotsOfUses = 10; // This is arbitrary and we should tune it eventually.
539
540 // Only match if the address value isn't used in some large number of places.
541 if (m_useCounts.numUses(address) > lotsOfUses)
542 return fallback();
543
544 switch (address->opcode()) {
545 case Add: {
546 Value* left = address->child(0);
547 Value* right = address->child(1);
548
549 auto tryIndex = [&] (Value* index, Value* base) -> Arg {
550 Optional<unsigned> scale = scaleForShl(index, offset, width);
551 if (!scale)
552 return Arg();
553 if (m_locked.contains(index->child(0)) || m_locked.contains(base))
554 return Arg();
555 return Arg::index(tmp(base), tmp(index->child(0)), *scale, offset);
556 };
557
558 if (Arg result = tryIndex(left, right))
559 return result;
560 if (Arg result = tryIndex(right, left))
561 return result;
562
563 if (m_locked.contains(left) || m_locked.contains(right)
564 || !Arg::isValidIndexForm(1, offset, width))
565 return fallback();
566
567 return Arg::index(tmp(left), tmp(right), 1, offset);
568 }
569
570 case Shl: {
571 Value* left = address->child(0);
572
573 // We'll never see child(1)->isInt32(0), since that would have been reduced. If the shift
574 // amount is greater than 1, then there isn't really anything smart that we could do here.
575 // We avoid using baseless indexes because their encoding isn't particularly efficient.
576 if (m_locked.contains(left) || !address->child(1)->isInt32(1)
577 || !Arg::isValidIndexForm(1, offset, width))
578 return fallback();
579
580 return Arg::index(tmp(left), tmp(left), 1, offset);
581 }
582
583 case FramePointer:
584 return Arg::addr(Tmp(GPRInfo::callFrameRegister), offset);
585
586 case SlotBase:
587 return Arg::stack(m_stackToStack.get(address->as<SlotBaseValue>()->slot()), offset);
588
589 case WasmAddress: {
590 WasmAddressValue* wasmAddress = address->as<WasmAddressValue>();
591 Value* pointer = wasmAddress->child(0);
592 if (!Arg::isValidIndexForm(1, offset, width) || m_locked.contains(pointer))
593 return fallback();
594
595 // FIXME: We should support ARM64 LDR 32-bit addressing, which will
596 // allow us to fuse a Shl ptr, 2 into the address. Additionally, and
597 // perhaps more importantly, it would allow us to avoid a truncating
598 // move. See: https://bugs.webkit.org/show_bug.cgi?id=163465
599
600 return Arg::index(Tmp(wasmAddress->pinnedGPR()), tmp(pointer), 1, offset);
601 }
602
603 default:
604 return fallback();
605 }
606 }
607
608 // This gives you the address of the given Load or Store. If it's not a Load or Store, then
609 // it returns Arg().
610 Arg addr(Value* memoryValue)
611 {
612 MemoryValue* value = memoryValue->as<MemoryValue>();
613 if (!value)
614 return Arg();
615
616 if (value->requiresSimpleAddr())
617 return Arg::simpleAddr(tmp(value->lastChild()));
618
619 Value::OffsetType offset = value->offset();
620 Width width = value->accessWidth();
621
622 Arg result = effectiveAddr(value->lastChild(), offset, width);
623 RELEASE_ASSERT(result.isValidForm(width));
624
625 return result;
626 }
627
628 template<typename... Args>
629 Inst trappingInst(bool traps, Args&&... args)
630 {
631 Inst result(std::forward<Args>(args)...);
632 result.kind.effects |= traps;
633 return result;
634 }
635
636 template<typename... Args>
637 Inst trappingInst(Value* value, Args&&... args)
638 {
639 return trappingInst(value->traps(), std::forward<Args>(args)...);
640 }
641
642 ArgPromise loadPromiseAnyOpcode(Value* loadValue)
643 {
644 RELEASE_ASSERT(loadValue->as<MemoryValue>());
645 if (!canBeInternal(loadValue))
646 return Arg();
647 if (crossesInterference(loadValue))
648 return Arg();
649 // On x86, all loads have fences. Doing this kind of instruction selection will move the load,
650 // but that's fine because our interference analysis stops the motion of fences around other
651 // fences. So, any load motion we introduce here would not be observable.
652 if (!isX86() && loadValue->as<MemoryValue>()->hasFence())
653 return Arg();
654 Arg loadAddr = addr(loadValue);
655 RELEASE_ASSERT(loadAddr);
656 ArgPromise result(loadAddr, loadValue);
657 if (loadValue->traps())
658 result.setTraps(true);
659 return result;
660 }
661
662 ArgPromise loadPromise(Value* loadValue, B3::Opcode loadOpcode)
663 {
664 if (loadValue->opcode() != loadOpcode)
665 return Arg();
666 return loadPromiseAnyOpcode(loadValue);
667 }
668
669 ArgPromise loadPromise(Value* loadValue)
670 {
671 return loadPromise(loadValue, Load);
672 }
673
674 Arg imm(int64_t intValue)
675 {
676 if (Arg::isValidImmForm(intValue))
677 return Arg::imm(intValue);
678 return Arg();
679 }
680
681 Arg imm(Value* value)
682 {
683 if (value->hasInt())
684 return imm(value->asInt());
685 return Arg();
686 }
687
688 Arg bitImm(Value* value)
689 {
690 if (value->hasInt()) {
691 int64_t intValue = value->asInt();
692 if (Arg::isValidBitImmForm(intValue))
693 return Arg::bitImm(intValue);
694 }
695 return Arg();
696 }
697
698 Arg bitImm64(Value* value)
699 {
700 if (value->hasInt()) {
701 int64_t intValue = value->asInt();
702 if (Arg::isValidBitImm64Form(intValue))
703 return Arg::bitImm64(intValue);
704 }
705 return Arg();
706 }
707
708 Arg immOrTmp(Value* value)
709 {
710 if (Arg result = imm(value))
711 return result;
712 return tmp(value);
713 }
714
715 template<typename Functor>
716 void forEachImmOrTmp(Value* value, const Functor& func)
717 {
718 ASSERT(value->type() != Void);
719 if (!value->type().isTuple()) {
720 func(immOrTmp(value), value->type(), 0);
721 return;
722 }
723
724 const Vector<Type>& tuple = m_procedure.tupleForType(value->type());
725 const auto& tmps = tmpsForTuple(value);
726 for (unsigned i = 0; i < tuple.size(); ++i)
727 func(tmps[i], tuple[i], i);
728 }
729
730 // By convention, we use Oops to mean "I don't know".
731 Air::Opcode tryOpcodeForType(
732 Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Type type)
733 {
734 Air::Opcode opcode;
735 switch (type.kind()) {
736 case Int32:
737 opcode = opcode32;
738 break;
739 case Int64:
740 opcode = opcode64;
741 break;
742 case Float:
743 opcode = opcodeFloat;
744 break;
745 case Double:
746 opcode = opcodeDouble;
747 break;
748 default:
749 opcode = Air::Oops;
750 break;
751 }
752
753 return opcode;
754 }
755
756 Air::Opcode tryOpcodeForType(Air::Opcode opcode32, Air::Opcode opcode64, Type type)
757 {
758 return tryOpcodeForType(opcode32, opcode64, Air::Oops, Air::Oops, type);
759 }
760
761 Air::Opcode opcodeForType(
762 Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Type type)
763 {
764 Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, type);
765 RELEASE_ASSERT(opcode != Air::Oops);
766 return opcode;
767 }
768
769 Air::Opcode opcodeForType(Air::Opcode opcode32, Air::Opcode opcode64, Type type)
770 {
771 return tryOpcodeForType(opcode32, opcode64, Air::Oops, Air::Oops, type);
772 }
773
774 template<Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble = Air::Oops, Air::Opcode opcodeFloat = Air::Oops>
775 void appendUnOp(Value* value)
776 {
777 Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, value->type());
778
779 Tmp result = tmp(m_value);
780
781 // Two operand forms like:
782 // Op a, b
783 // mean something like:
784 // b = Op a
785
786 ArgPromise addr = loadPromise(value);
787 if (isValidForm(opcode, addr.kind(), Arg::Tmp)) {
788 append(addr.inst(opcode, m_value, addr.consume(*this), result));
789 return;
790 }
791
792 if (isValidForm(opcode, Arg::Tmp, Arg::Tmp)) {
793 append(opcode, tmp(value), result);
794 return;
795 }
796
797 ASSERT(value->type() == m_value->type());
798 append(relaxedMoveForType(m_value->type()), tmp(value), result);
799 append(opcode, result);
800 }
801
802 // Call this method when doing two-operand lowering of a commutative operation. You have a choice of
803 // which incoming Value is moved into the result. This will select which one is likely to be most
804 // profitable to use as the result. Doing the right thing can have big performance consequences in tight
805 // kernels.
806 bool preferRightForResult(Value* left, Value* right)
807 {
808 // The default is to move left into result, because that's required for non-commutative instructions.
809 // The value that we want to move into result position is the one that dies here. So, if we're
810 // compiling a commutative operation and we know that actually right is the one that dies right here,
811 // then we can flip things around to help coalescing, which then kills the move instruction.
812 //
813 // But it's more complicated:
814 // - Used-once is a bad estimate of whether the variable dies here.
815 // - A child might be a candidate for coalescing with this value.
816 //
817 // Currently, we have machinery in place to recognize super obvious forms of the latter issue.
818
819 // We recognize when a child is a Phi that has this value as one of its children. We're very
820 // conservative about this; for example we don't even consider transitive Phi children.
821 bool leftIsPhiWithThis = m_phiChildren[left].transitivelyUses(m_value);
822 bool rightIsPhiWithThis = m_phiChildren[right].transitivelyUses(m_value);
823
824 if (leftIsPhiWithThis != rightIsPhiWithThis)
825 return rightIsPhiWithThis;
826
827 if (m_useCounts.numUsingInstructions(right) != 1)
828 return false;
829
830 if (m_useCounts.numUsingInstructions(left) != 1)
831 return true;
832
833 // The use count might be 1 if the variable is live around a loop. We can guarantee that we
834 // pick the variable that is least likely to suffer this problem if we pick the one that
835 // is closest to us in an idom walk. By convention, we slightly bias this in favor of
836 // returning true.
837
838 // We cannot prefer right if right is further away in an idom walk.
839 if (m_dominators.strictlyDominates(right->owner, left->owner))
840 return false;
841
842 return true;
843 }
844
845 template<Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Commutativity commutativity = NotCommutative>
846 void appendBinOp(Value* left, Value* right)
847 {
848 Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, left->type());
849
850 Tmp result = tmp(m_value);
851
852 // Three-operand forms like:
853 // Op a, b, c
854 // mean something like:
855 // c = a Op b
856
857 if (isValidForm(opcode, Arg::Imm, Arg::Tmp, Arg::Tmp)) {
858 if (commutativity == Commutative) {
859 if (imm(right)) {
860 append(opcode, imm(right), tmp(left), result);
861 return;
862 }
863 } else {
864 // A non-commutative operation could have an immediate in left.
865 if (imm(left)) {
866 append(opcode, imm(left), tmp(right), result);
867 return;
868 }
869 }
870 }
871
872 if (isValidForm(opcode, Arg::BitImm, Arg::Tmp, Arg::Tmp)) {
873 if (commutativity == Commutative) {
874 if (Arg rightArg = bitImm(right)) {
875 append(opcode, rightArg, tmp(left), result);
876 return;
877 }
878 } else {
879 // A non-commutative operation could have an immediate in left.
880 if (Arg leftArg = bitImm(left)) {
881 append(opcode, leftArg, tmp(right), result);
882 return;
883 }
884 }
885 }
886
887 if (isValidForm(opcode, Arg::BitImm64, Arg::Tmp, Arg::Tmp)) {
888 if (commutativity == Commutative) {
889 if (Arg rightArg = bitImm64(right)) {
890 append(opcode, rightArg, tmp(left), result);
891 return;
892 }
893 } else {
894 // A non-commutative operation could have an immediate in left.
895 if (Arg leftArg = bitImm64(left)) {
896 append(opcode, leftArg, tmp(right), result);
897 return;
898 }
899 }
900 }
901
902 if (imm(right) && isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) {
903 append(opcode, tmp(left), imm(right), result);
904 return;
905 }
906
907 // Note that no extant architecture has a three-operand form of binary operations that also
908 // load from memory. If such an abomination did exist, we would handle it somewhere around
909 // here.
910
911 // Two-operand forms like:
912 // Op a, b
913 // mean something like:
914 // b = b Op a
915
916 // At this point, we prefer versions of the operation that have a fused load or an immediate
917 // over three operand forms.
918
919 if (left != right) {
920 ArgPromise leftAddr = loadPromise(left);
921 if (isValidForm(opcode, leftAddr.kind(), Arg::Tmp, Arg::Tmp)) {
922 append(leftAddr.inst(opcode, m_value, leftAddr.consume(*this), tmp(right), result));
923 return;
924 }
925
926 if (commutativity == Commutative) {
927 if (isValidForm(opcode, leftAddr.kind(), Arg::Tmp)) {
928 append(relaxedMoveForType(m_value->type()), tmp(right), result);
929 append(leftAddr.inst(opcode, m_value, leftAddr.consume(*this), result));
930 return;
931 }
932 }
933
934 ArgPromise rightAddr = loadPromise(right);
935 if (isValidForm(opcode, Arg::Tmp, rightAddr.kind(), Arg::Tmp)) {
936 append(rightAddr.inst(opcode, m_value, tmp(left), rightAddr.consume(*this), result));
937 return;
938 }
939
940 if (commutativity == Commutative) {
941 if (isValidForm(opcode, rightAddr.kind(), Arg::Tmp, Arg::Tmp)) {
942 append(rightAddr.inst(opcode, m_value, rightAddr.consume(*this), tmp(left), result));
943 return;
944 }
945 }
946
947 if (isValidForm(opcode, rightAddr.kind(), Arg::Tmp)) {
948 append(relaxedMoveForType(m_value->type()), tmp(left), result);
949 append(rightAddr.inst(opcode, m_value, rightAddr.consume(*this), result));
950 return;
951 }
952 }
953
954 if (imm(right) && isValidForm(opcode, Arg::Imm, Arg::Tmp)) {
955 append(relaxedMoveForType(m_value->type()), tmp(left), result);
956 append(opcode, imm(right), result);
957 return;
958 }
959
960 if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
961 append(opcode, tmp(left), tmp(right), result);
962 return;
963 }
964
965 if (commutativity == Commutative && preferRightForResult(left, right)) {
966 append(relaxedMoveForType(m_value->type()), tmp(right), result);
967 append(opcode, tmp(left), result);
968 return;
969 }
970
971 append(relaxedMoveForType(m_value->type()), tmp(left), result);
972 append(opcode, tmp(right), result);
973 }
974
975 template<Air::Opcode opcode32, Air::Opcode opcode64, Commutativity commutativity = NotCommutative>
976 void appendBinOp(Value* left, Value* right)
977 {
978 appendBinOp<opcode32, opcode64, Air::Oops, Air::Oops, commutativity>(left, right);
979 }
980
981 template<Air::Opcode opcode32, Air::Opcode opcode64>
982 void appendShift(Value* value, Value* amount)
983 {
984 using namespace Air;
985 Air::Opcode opcode = opcodeForType(opcode32, opcode64, value->type());
986
987 if (imm(amount)) {
988 if (isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) {
989 append(opcode, tmp(value), imm(amount), tmp(m_value));
990 return;
991 }
992 if (isValidForm(opcode, Arg::Imm, Arg::Tmp)) {
993 append(Move, tmp(value), tmp(m_value));
994 append(opcode, imm(amount), tmp(m_value));
995 return;
996 }
997 }
998
999 if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
1000 append(opcode, tmp(value), tmp(amount), tmp(m_value));
1001 return;
1002 }
1003
1004 append(Move, tmp(value), tmp(m_value));
1005 append(Move, tmp(amount), m_ecx);
1006 append(opcode, m_ecx, tmp(m_value));
1007 }
1008
1009 template<Air::Opcode opcode32, Air::Opcode opcode64>
1010 bool tryAppendStoreUnOp(Value* value)
1011 {
1012 Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, value->type());
1013 if (opcode == Air::Oops)
1014 return false;
1015
1016 Arg storeAddr = addr(m_value);
1017 ASSERT(storeAddr);
1018
1019 ArgPromise loadPromise = this->loadPromise(value);
1020 if (loadPromise.peek() != storeAddr)
1021 return false;
1022
1023 if (!isValidForm(opcode, storeAddr.kind()))
1024 return false;
1025
1026 loadPromise.consume(*this);
1027 append(trappingInst(m_value, loadPromise.inst(opcode, m_value, storeAddr)));
1028 return true;
1029 }
1030
1031 template<
1032 Air::Opcode opcode32, Air::Opcode opcode64, Commutativity commutativity = NotCommutative>
1033 bool tryAppendStoreBinOp(Value* left, Value* right)
1034 {
1035 RELEASE_ASSERT(m_value->as<MemoryValue>());
1036
1037 Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, left->type());
1038 if (opcode == Air::Oops)
1039 return false;
1040
1041 if (m_value->as<MemoryValue>()->hasFence())
1042 return false;
1043
1044 Arg storeAddr = addr(m_value);
1045 ASSERT(storeAddr);
1046
1047 auto getLoadPromise = [&] (Value* load) -> ArgPromise {
1048 switch (m_value->opcode()) {
1049 case B3::Store:
1050 if (load->opcode() != B3::Load)
1051 return ArgPromise();
1052 break;
1053 case B3::Store8:
1054 if (load->opcode() != B3::Load8Z && load->opcode() != B3::Load8S)
1055 return ArgPromise();
1056 break;
1057 case B3::Store16:
1058 if (load->opcode() != B3::Load16Z && load->opcode() != B3::Load16S)
1059 return ArgPromise();
1060 break;
1061 default:
1062 return ArgPromise();
1063 }
1064 return loadPromiseAnyOpcode(load);
1065 };
1066
1067 ArgPromise loadPromise;
1068 Value* otherValue = nullptr;
1069
1070 loadPromise = getLoadPromise(left);
1071 if (loadPromise.peek() == storeAddr)
1072 otherValue = right;
1073 else if (commutativity == Commutative) {
1074 loadPromise = getLoadPromise(right);
1075 if (loadPromise.peek() == storeAddr)
1076 otherValue = left;
1077 }
1078
1079 if (!otherValue)
1080 return false;
1081
1082 if (isValidForm(opcode, Arg::Imm, storeAddr.kind()) && imm(otherValue)) {
1083 loadPromise.consume(*this);
1084 append(trappingInst(m_value, loadPromise.inst(opcode, m_value, imm(otherValue), storeAddr)));
1085 return true;
1086 }
1087
1088 if (!isValidForm(opcode, Arg::Tmp, storeAddr.kind()))
1089 return false;
1090
1091 loadPromise.consume(*this);
1092 append(trappingInst(m_value, loadPromise.inst(opcode, m_value, tmp(otherValue), storeAddr)));
1093 return true;
1094 }
1095
1096 Inst createStore(Air::Kind move, Value* value, const Arg& dest)
1097 {
1098 using namespace Air;
1099 if (auto imm_value = imm(value)) {
1100 if (isARM64() && imm_value.value() == 0) {
1101 switch (move.opcode) {
1102 default:
1103 break;
1104 case Air::Move32:
1105 if (isValidForm(StoreZero32, dest.kind()) && dest.isValidForm(Width32))
1106 return Inst(StoreZero32, m_value, dest);
1107 break;
1108 case Air::Move:
1109 if (isValidForm(StoreZero64, dest.kind()) && dest.isValidForm(Width64))
1110 return Inst(StoreZero64, m_value, dest);
1111 break;
1112 }
1113 }
1114 if (isValidForm(move.opcode, Arg::Imm, dest.kind()))
1115 return Inst(move, m_value, imm_value, dest);
1116 }
1117
1118 return Inst(move, m_value, tmp(value), dest);
1119 }
1120
1121 Air::Opcode storeOpcode(Width width, Bank bank)
1122 {
1123 using namespace Air;
1124 switch (width) {
1125 case Width8:
1126 RELEASE_ASSERT(bank == GP);
1127 return Air::Store8;
1128 case Width16:
1129 RELEASE_ASSERT(bank == GP);
1130 return Air::Store16;
1131 case Width32:
1132 switch (bank) {
1133 case GP:
1134 return Move32;
1135 case FP:
1136 return MoveFloat;
1137 }
1138 break;
1139 case Width64:
1140 RELEASE_ASSERT(is64Bit());
1141 switch (bank) {
1142 case GP:
1143 return Move;
1144 case FP:
1145 return MoveDouble;
1146 }
1147 break;
1148 }
1149 RELEASE_ASSERT_NOT_REACHED();
1150 }
1151
1152 void appendStore(Value* value, const Arg& dest)
1153 {
1154 using namespace Air;
1155 MemoryValue* memory = value->as<MemoryValue>();
1156 RELEASE_ASSERT(memory->isStore());
1157
1158 Air::Kind kind;
1159 if (memory->hasFence()) {
1160 RELEASE_ASSERT(memory->accessBank() == GP);
1161
1162 if (isX86()) {
1163 kind = OPCODE_FOR_WIDTH(Xchg, memory->accessWidth());
1164 kind.effects = true;
1165 Tmp swapTmp = m_code.newTmp(GP);
1166 append(relaxedMoveForType(memory->accessType()), tmp(memory->child(0)), swapTmp);
1167 append(kind, swapTmp, dest);
1168 return;
1169 }
1170
1171 kind = OPCODE_FOR_WIDTH(StoreRel, memory->accessWidth());
1172 } else
1173 kind = storeOpcode(memory->accessWidth(), memory->accessBank());
1174
1175 kind.effects |= memory->traps();
1176
1177 append(createStore(kind, memory->child(0), dest));
1178 }
1179
1180#if ENABLE(MASM_PROBE)
1181 template<typename... Arguments>
1182 void print(Arguments&&... arguments)
1183 {
1184 Value* origin = m_value;
1185 print(origin, std::forward<Arguments>(arguments)...);
1186 }
1187
1188 template<typename... Arguments>
1189 void print(Value* origin, Arguments&&... arguments)
1190 {
1191 auto printList = Printer::makePrintRecordList(arguments...);
1192 auto printSpecial = static_cast<Air::PrintSpecial*>(m_code.addSpecial(makeUnique<Air::PrintSpecial>(printList)));
1193 Inst inst(Air::Patch, origin, Arg::special(printSpecial));
1194 Printer::appendAirArgs(inst, std::forward<Arguments>(arguments)...);
1195 append(WTFMove(inst));
1196 }
1197#endif // ENABLE(MASM_PROBE)
1198
1199 template<typename... Arguments>
1200 void append(Air::Kind kind, Arguments&&... arguments)
1201 {
1202 m_insts.last().append(Inst(kind, m_value, std::forward<Arguments>(arguments)...));
1203 }
1204
1205 template<typename... Arguments>
1206 void appendTrapping(Air::Kind kind, Arguments&&... arguments)
1207 {
1208 m_insts.last().append(trappingInst(m_value, kind, m_value, std::forward<Arguments>(arguments)...));
1209 }
1210
1211 void append(Inst&& inst)
1212 {
1213 m_insts.last().append(WTFMove(inst));
1214 }
1215 void append(const Inst& inst)
1216 {
1217 m_insts.last().append(inst);
1218 }
1219
1220 void finishAppendingInstructions(Air::BasicBlock* target)
1221 {
1222 // Now append the instructions. m_insts contains them in reverse order, so we process
1223 // it in reverse.
1224 for (unsigned i = m_insts.size(); i--;) {
1225 for (Inst& inst : m_insts[i])
1226 target->appendInst(WTFMove(inst));
1227 }
1228 m_insts.shrink(0);
1229 }
1230
1231 Air::BasicBlock* newBlock()
1232 {
1233 return m_blockInsertionSet.insertAfter(m_blockToBlock[m_block]);
1234 }
1235
1236 // NOTE: This will create a continuation block (`nextBlock`) *after* any blocks you've created using
1237 // newBlock(). So, it's preferable to create all of your blocks upfront using newBlock(). Also note
1238 // that any code you emit before this will be prepended to the continuation, and any code you emit
1239 // after this will be appended to the previous block.
1240 void splitBlock(Air::BasicBlock*& previousBlock, Air::BasicBlock*& nextBlock)
1241 {
1242 Air::BasicBlock* block = m_blockToBlock[m_block];
1243
1244 previousBlock = block;
1245 nextBlock = m_blockInsertionSet.insertAfter(block);
1246
1247 finishAppendingInstructions(nextBlock);
1248 nextBlock->successors() = block->successors();
1249 block->successors().clear();
1250
1251 m_insts.append(Vector<Inst>());
1252 }
1253
1254 template<typename T, typename... Arguments>
1255 T* ensureSpecial(T*& field, Arguments&&... arguments)
1256 {
1257 if (!field) {
1258 field = static_cast<T*>(
1259 m_code.addSpecial(makeUnique<T>(std::forward<Arguments>(arguments)...)));
1260 }
1261 return field;
1262 }
1263
1264 template<typename... Arguments>
1265 CheckSpecial* ensureCheckSpecial(Arguments&&... arguments)
1266 {
1267 CheckSpecial::Key key(std::forward<Arguments>(arguments)...);
1268 auto result = m_checkSpecials.add(key, nullptr);
1269 return ensureSpecial(result.iterator->value, key);
1270 }
1271
1272 void fillStackmap(Inst& inst, StackmapValue* stackmap, unsigned numSkipped)
1273 {
1274 for (unsigned i = numSkipped; i < stackmap->numChildren(); ++i) {
1275 ConstrainedValue value = stackmap->constrainedChild(i);
1276
1277 Arg arg;
1278 switch (value.rep().kind()) {
1279 case ValueRep::WarmAny:
1280 case ValueRep::ColdAny:
1281 case ValueRep::LateColdAny:
1282 if (imm(value.value()))
1283 arg = imm(value.value());
1284 else if (value.value()->hasInt64())
1285 arg = Arg::bigImm(value.value()->asInt64());
1286 else if (value.value()->hasDouble() && canBeInternal(value.value())) {
1287 commitInternal(value.value());
1288 arg = Arg::bigImm(bitwise_cast<int64_t>(value.value()->asDouble()));
1289 } else if (value.value()->hasFloat() && canBeInternal(value.value())) {
1290 commitInternal(value.value());
1291 arg = Arg::bigImm(static_cast<uint64_t>(bitwise_cast<uint32_t>(value.value()->asFloat())));
1292 } else
1293 arg = tmp(value.value());
1294 break;
1295 case ValueRep::SomeRegister:
1296 case ValueRep::SomeLateRegister:
1297 arg = tmp(value.value());
1298 break;
1299 case ValueRep::SomeRegisterWithClobber: {
1300 Tmp dstTmp = m_code.newTmp(value.value()->resultBank());
1301 append(relaxedMoveForType(value.value()->type()), immOrTmp(value.value()), dstTmp);
1302 arg = dstTmp;
1303 break;
1304 }
1305 case ValueRep::LateRegister:
1306 case ValueRep::Register:
1307 stackmap->earlyClobbered().clear(value.rep().reg());
1308 arg = Tmp(value.rep().reg());
1309 append(relaxedMoveForType(value.value()->type()), immOrTmp(value.value()), arg);
1310 break;
1311 case ValueRep::StackArgument:
1312 arg = Arg::callArg(value.rep().offsetFromSP());
1313 append(trappingInst(m_value, createStore(moveForType(value.value()->type()), value.value(), arg)));
1314 break;
1315 default:
1316 RELEASE_ASSERT_NOT_REACHED();
1317 break;
1318 }
1319 inst.args.append(arg);
1320 }
1321 }
1322
1323 // Create an Inst to do the comparison specified by the given value.
1324 template<typename CompareFunctor, typename TestFunctor, typename CompareDoubleFunctor, typename CompareFloatFunctor>
1325 Inst createGenericCompare(
1326 Value* value,
1327 const CompareFunctor& compare, // Signature: (Width, Arg relCond, Arg, Arg) -> Inst
1328 const TestFunctor& test, // Signature: (Width, Arg resCond, Arg, Arg) -> Inst
1329 const CompareDoubleFunctor& compareDouble, // Signature: (Arg doubleCond, Arg, Arg) -> Inst
1330 const CompareFloatFunctor& compareFloat, // Signature: (Arg doubleCond, Arg, Arg) -> Inst
1331 bool inverted = false)
1332 {
1333 // NOTE: This is totally happy to match comparisons that have already been computed elsewhere
1334 // since on most architectures, the cost of branching on a previously computed comparison
1335 // result is almost always higher than just doing another fused compare/branch. The only time
1336 // it could be worse is if we have a binary comparison and both operands are variables (not
1337 // constants), and we encounter register pressure. Even in this case, duplicating the compare
1338 // so that we can fuse it to the branch will be more efficient most of the time, since
1339 // register pressure is not *that* common. For this reason, this algorithm will always
1340 // duplicate the comparison.
1341 //
1342 // However, we cannot duplicate loads. The canBeInternal() on a load will assume that we
1343 // already validated canBeInternal() on all of the values that got us to the load. So, even
1344 // if we are sharing a value, we still need to call canBeInternal() for the purpose of
1345 // tracking whether we are still in good shape to fuse loads.
1346 //
1347 // We could even have a chain of compare values that we fuse, and any member of the chain
1348 // could be shared. Once any of them are shared, then the shared one's transitive children
1349 // cannot be locked (i.e. commitInternal()). But if none of them are shared, then we want to
1350 // lock all of them because that's a prerequisite to fusing the loads so that the loads don't
1351 // get duplicated. For example, we might have:
1352 //
1353 // @tmp1 = LessThan(@a, @b)
1354 // @tmp2 = Equal(@tmp1, 0)
1355 // Branch(@tmp2)
1356 //
1357 // If either @a or @b are loads, then we want to have locked @tmp1 and @tmp2 so that they
1358 // don't emit the loads a second time. But if we had another use of @tmp2, then we cannot
1359 // lock @tmp1 (or @a or @b) because then we'll get into trouble when the other values that
1360 // try to share @tmp1 with us try to do their lowering.
1361 //
1362 // There's one more wrinkle. If we don't lock an internal value, then this internal value may
1363 // have already separately locked its children. So, if we're not locking a value then we need
1364 // to make sure that its children aren't locked. We encapsulate this in two ways:
1365 //
1366 // canCommitInternal: This variable tells us if the values that we've fused so far are
1367 // locked. This means that we're not sharing any of them with anyone. This permits us to fuse
1368 // loads. If it's false, then we cannot fuse loads and we also need to ensure that the
1369 // children of any values we try to fuse-by-sharing are not already locked. You don't have to
1370 // worry about the children locking thing if you use prepareToFuse() before trying to fuse a
1371 // sharable value. But, you do need to guard any load fusion by checking if canCommitInternal
1372 // is true.
1373 //
1374 // FusionResult prepareToFuse(value): Call this when you think that you would like to fuse
1375 // some value and that value is not a load. It will automatically handle the shared-or-locked
1376 // issues and it will clear canCommitInternal if necessary. This will return CannotFuse
1377 // (which acts like false) if the value cannot be locked and its children are locked. That's
1378 // rare, but you just need to make sure that you do smart things when this happens (i.e. just
1379 // use the value rather than trying to fuse it). After you call prepareToFuse(), you can
1380 // still change your mind about whether you will actually fuse the value. If you do fuse it,
1381 // you need to call commitFusion(value, fusionResult).
1382 //
1383 // commitFusion(value, fusionResult): Handles calling commitInternal(value) if fusionResult
1384 // is FuseAndCommit.
1385
1386 bool canCommitInternal = true;
1387
1388 enum FusionResult {
1389 CannotFuse,
1390 FuseAndCommit,
1391 Fuse
1392 };
1393 auto prepareToFuse = [&] (Value* value) -> FusionResult {
1394 if (value == m_value) {
1395 // It's not actually internal. It's the root value. We're good to go.
1396 return Fuse;
1397 }
1398
1399 if (canCommitInternal && canBeInternal(value)) {
1400 // We are the only users of this value. This also means that the value's children
1401 // could not have been locked, since we have now proved that m_value dominates value
1402 // in the data flow graph. To only other way to value is from a user of m_value. If
1403 // value's children are shared with others, then they could not have been locked
1404 // because their use count is greater than 1. If they are only used from value, then
1405 // in order for value's children to be locked, value would also have to be locked,
1406 // and we just proved that it wasn't.
1407 return FuseAndCommit;
1408 }
1409
1410 // We're going to try to share value with others. It's possible that some other basic
1411 // block had already emitted code for value and then matched over its children and then
1412 // locked them, in which case we just want to use value instead of duplicating it. So, we
1413 // validate the children. Note that this only arises in linear chains like:
1414 //
1415 // BB#1:
1416 // @1 = Foo(...)
1417 // @2 = Bar(@1)
1418 // Jump(#2)
1419 // BB#2:
1420 // @3 = Baz(@2)
1421 //
1422 // Notice how we could start by generating code for BB#1 and then decide to lock @1 when
1423 // generating code for @2, if we have some way of fusing Bar and Foo into a single
1424 // instruction. This is legal, since indeed @1 only has one user. The fact that @2 now
1425 // has a tmp (i.e. @2 is pinned), canBeInternal(@2) will return false, which brings us
1426 // here. In that case, we cannot match over @2 because then we'd hit a hazard if we end
1427 // up deciding not to fuse Foo into the fused Baz/Bar.
1428 //
1429 // Happily, there are only two places where this kind of child validation happens is in
1430 // rules that admit sharing, like this and effectiveAddress().
1431 //
1432 // N.B. We could probably avoid the need to do value locking if we committed to a well
1433 // chosen code generation order. For example, if we guaranteed that all of the users of
1434 // a value get generated before that value, then there's no way for the lowering of @3 to
1435 // see @1 locked. But we don't want to do that, since this is a greedy instruction
1436 // selector and so we want to be able to play with order.
1437 for (Value* child : value->children()) {
1438 if (m_locked.contains(child))
1439 return CannotFuse;
1440 }
1441
1442 // It's safe to share value, but since we're sharing, it means that we aren't locking it.
1443 // If we don't lock it, then fusing loads is off limits and all of value's children will
1444 // have to go through the sharing path as well. Fusing loads is off limits because the load
1445 // could already have been emitted elsehwere - so fusing it here would duplicate the load.
1446 // We don't consider that to be a legal optimization.
1447 canCommitInternal = false;
1448
1449 return Fuse;
1450 };
1451
1452 auto commitFusion = [&] (Value* value, FusionResult result) {
1453 if (result == FuseAndCommit)
1454 commitInternal(value);
1455 };
1456
1457 // Chew through any inversions. This loop isn't necessary for comparisons and branches, but
1458 // we do need at least one iteration of it for Check.
1459 for (;;) {
1460 bool shouldInvert =
1461 (value->opcode() == BitXor && value->child(1)->hasInt() && (value->child(1)->asInt() == 1) && value->child(0)->returnsBool())
1462 || (value->opcode() == Equal && value->child(1)->isInt(0));
1463 if (!shouldInvert)
1464 break;
1465
1466 FusionResult fusionResult = prepareToFuse(value);
1467 if (fusionResult == CannotFuse)
1468 break;
1469 commitFusion(value, fusionResult);
1470
1471 value = value->child(0);
1472 inverted = !inverted;
1473 }
1474
1475 auto createRelCond = [&] (
1476 MacroAssembler::RelationalCondition relationalCondition,
1477 MacroAssembler::DoubleCondition doubleCondition) {
1478 Arg relCond = Arg::relCond(relationalCondition).inverted(inverted);
1479 Arg doubleCond = Arg::doubleCond(doubleCondition).inverted(inverted);
1480 Value* left = value->child(0);
1481 Value* right = value->child(1);
1482
1483 if (value->child(0)->type().isInt()) {
1484 Arg rightImm = imm(right);
1485
1486 auto tryCompare = [&] (
1487 Width width, ArgPromise&& left, ArgPromise&& right) -> Inst {
1488 if (Inst result = compare(width, relCond, left, right))
1489 return result;
1490 if (Inst result = compare(width, relCond.flipped(), right, left))
1491 return result;
1492 return Inst();
1493 };
1494
1495 auto tryCompareLoadImm = [&] (
1496 Width width, B3::Opcode loadOpcode, Arg::Signedness signedness) -> Inst {
1497 if (rightImm && rightImm.isRepresentableAs(width, signedness)) {
1498 if (Inst result = tryCompare(width, loadPromise(left, loadOpcode), rightImm)) {
1499 commitInternal(left);
1500 return result;
1501 }
1502 }
1503 return Inst();
1504 };
1505
1506 Width width = value->child(0)->resultWidth();
1507
1508 if (canCommitInternal) {
1509 // First handle compares that involve fewer bits than B3's type system supports.
1510 // This is pretty important. For example, we want this to be a single
1511 // instruction:
1512 //
1513 // @1 = Load8S(...)
1514 // @2 = Const32(...)
1515 // @3 = LessThan(@1, @2)
1516 // Branch(@3)
1517
1518 if (relCond.isSignedCond()) {
1519 if (Inst result = tryCompareLoadImm(Width8, Load8S, Arg::Signed))
1520 return result;
1521 }
1522
1523 if (relCond.isUnsignedCond()) {
1524 if (Inst result = tryCompareLoadImm(Width8, Load8Z, Arg::Unsigned))
1525 return result;
1526 }
1527
1528 if (relCond.isSignedCond()) {
1529 if (Inst result = tryCompareLoadImm(Width16, Load16S, Arg::Signed))
1530 return result;
1531 }
1532
1533 if (relCond.isUnsignedCond()) {
1534 if (Inst result = tryCompareLoadImm(Width16, Load16Z, Arg::Unsigned))
1535 return result;
1536 }
1537
1538 // Now handle compares that involve a load and an immediate.
1539
1540 if (Inst result = tryCompareLoadImm(width, Load, Arg::Signed))
1541 return result;
1542
1543 // Now handle compares that involve a load. It's not obvious that it's better to
1544 // handle this before the immediate cases or not. Probably doesn't matter.
1545
1546 if (Inst result = tryCompare(width, loadPromise(left), tmpPromise(right))) {
1547 commitInternal(left);
1548 return result;
1549 }
1550
1551 if (Inst result = tryCompare(width, tmpPromise(left), loadPromise(right))) {
1552 commitInternal(right);
1553 return result;
1554 }
1555 }
1556
1557 // Now handle compares that involve an immediate and a tmp.
1558
1559 if (rightImm && rightImm.isRepresentableAs<int32_t>()) {
1560 if (Inst result = tryCompare(width, tmpPromise(left), rightImm))
1561 return result;
1562 }
1563
1564 // Finally, handle comparison between tmps.
1565 ArgPromise leftPromise = tmpPromise(left);
1566 ArgPromise rightPromise = tmpPromise(right);
1567 return compare(width, relCond, leftPromise, rightPromise);
1568 }
1569
1570 // Floating point comparisons can't really do anything smart.
1571 ArgPromise leftPromise = tmpPromise(left);
1572 ArgPromise rightPromise = tmpPromise(right);
1573 if (value->child(0)->type() == Float)
1574 return compareFloat(doubleCond, leftPromise, rightPromise);
1575 return compareDouble(doubleCond, leftPromise, rightPromise);
1576 };
1577
1578 Width width = value->resultWidth();
1579 Arg resCond = Arg::resCond(MacroAssembler::NonZero).inverted(inverted);
1580
1581 auto tryTest = [&] (
1582 Width width, ArgPromise&& left, ArgPromise&& right) -> Inst {
1583 if (Inst result = test(width, resCond, left, right))
1584 return result;
1585 if (Inst result = test(width, resCond, right, left))
1586 return result;
1587 return Inst();
1588 };
1589
1590 auto attemptFused = [&] () -> Inst {
1591 switch (value->opcode()) {
1592 case NotEqual:
1593 return createRelCond(MacroAssembler::NotEqual, MacroAssembler::DoubleNotEqualOrUnordered);
1594 case Equal:
1595 return createRelCond(MacroAssembler::Equal, MacroAssembler::DoubleEqual);
1596 case LessThan:
1597 return createRelCond(MacroAssembler::LessThan, MacroAssembler::DoubleLessThan);
1598 case GreaterThan:
1599 return createRelCond(MacroAssembler::GreaterThan, MacroAssembler::DoubleGreaterThan);
1600 case LessEqual:
1601 return createRelCond(MacroAssembler::LessThanOrEqual, MacroAssembler::DoubleLessThanOrEqual);
1602 case GreaterEqual:
1603 return createRelCond(MacroAssembler::GreaterThanOrEqual, MacroAssembler::DoubleGreaterThanOrEqual);
1604 case EqualOrUnordered:
1605 // The integer condition is never used in this case.
1606 return createRelCond(MacroAssembler::Equal, MacroAssembler::DoubleEqualOrUnordered);
1607 case Above:
1608 // We use a bogus double condition because these integer comparisons won't got down that
1609 // path anyway.
1610 return createRelCond(MacroAssembler::Above, MacroAssembler::DoubleEqual);
1611 case Below:
1612 return createRelCond(MacroAssembler::Below, MacroAssembler::DoubleEqual);
1613 case AboveEqual:
1614 return createRelCond(MacroAssembler::AboveOrEqual, MacroAssembler::DoubleEqual);
1615 case BelowEqual:
1616 return createRelCond(MacroAssembler::BelowOrEqual, MacroAssembler::DoubleEqual);
1617 case BitAnd: {
1618 Value* left = value->child(0);
1619 Value* right = value->child(1);
1620
1621 bool hasRightConst;
1622 int64_t rightConst;
1623 Arg rightImm;
1624 Arg rightImm64;
1625
1626 hasRightConst = right->hasInt();
1627 if (hasRightConst) {
1628 rightConst = right->asInt();
1629 rightImm = bitImm(right);
1630 rightImm64 = bitImm64(right);
1631 }
1632
1633 auto tryTestLoadImm = [&] (Width width, Arg::Signedness signedness, B3::Opcode loadOpcode) -> Inst {
1634 if (!hasRightConst)
1635 return Inst();
1636 // Signed loads will create high bits, so if the immediate has high bits
1637 // then we cannot proceed. Consider BitAnd(Load8S(ptr), 0x101). This cannot
1638 // be turned into testb (ptr), $1, since if the high bit within that byte
1639 // was set then it would be extended to include 0x100. The handling below
1640 // won't anticipate this, so we need to catch it here.
1641 if (signedness == Arg::Signed
1642 && !Arg::isRepresentableAs(width, Arg::Unsigned, rightConst))
1643 return Inst();
1644
1645 // FIXME: If this is unsigned then we can chop things off of the immediate.
1646 // This might make the immediate more legal. Perhaps that's a job for
1647 // strength reduction?
1648 // https://bugs.webkit.org/show_bug.cgi?id=169248
1649
1650 if (rightImm) {
1651 if (Inst result = tryTest(width, loadPromise(left, loadOpcode), rightImm)) {
1652 commitInternal(left);
1653 return result;
1654 }
1655 }
1656 if (rightImm64) {
1657 if (Inst result = tryTest(width, loadPromise(left, loadOpcode), rightImm64)) {
1658 commitInternal(left);
1659 return result;
1660 }
1661 }
1662 return Inst();
1663 };
1664
1665 if (canCommitInternal) {
1666 // First handle test's that involve fewer bits than B3's type system supports.
1667
1668 if (Inst result = tryTestLoadImm(Width8, Arg::Unsigned, Load8Z))
1669 return result;
1670
1671 if (Inst result = tryTestLoadImm(Width8, Arg::Signed, Load8S))
1672 return result;
1673
1674 if (Inst result = tryTestLoadImm(Width16, Arg::Unsigned, Load16Z))
1675 return result;
1676
1677 if (Inst result = tryTestLoadImm(Width16, Arg::Signed, Load16S))
1678 return result;
1679
1680 // This allows us to use a 32-bit test for 64-bit BitAnd if the immediate is
1681 // representable as an unsigned 32-bit value. The logic involved is the same
1682 // as if we were pondering using a 32-bit test for
1683 // BitAnd(SExt(Load(ptr)), const), in the sense that in both cases we have
1684 // to worry about high bits. So, we use the "Signed" version of this helper.
1685 if (Inst result = tryTestLoadImm(Width32, Arg::Signed, Load))
1686 return result;
1687
1688 // This is needed to handle 32-bit test for arbitrary 32-bit immediates.
1689 if (Inst result = tryTestLoadImm(width, Arg::Unsigned, Load))
1690 return result;
1691
1692 // Now handle test's that involve a load.
1693
1694 Width width = value->child(0)->resultWidth();
1695 if (Inst result = tryTest(width, loadPromise(left), tmpPromise(right))) {
1696 commitInternal(left);
1697 return result;
1698 }
1699
1700 if (Inst result = tryTest(width, tmpPromise(left), loadPromise(right))) {
1701 commitInternal(right);
1702 return result;
1703 }
1704 }
1705
1706 // Now handle test's that involve an immediate and a tmp.
1707
1708 if (hasRightConst) {
1709 if ((width == Width32 && rightConst == 0xffffffff)
1710 || (width == Width64 && rightConst == -1)) {
1711 if (Inst result = tryTest(width, tmpPromise(left), tmpPromise(left)))
1712 return result;
1713 }
1714 if (isRepresentableAs<uint32_t>(rightConst)) {
1715 if (Inst result = tryTest(Width32, tmpPromise(left), rightImm))
1716 return result;
1717 if (Inst result = tryTest(Width32, tmpPromise(left), rightImm64))
1718 return result;
1719 }
1720 if (Inst result = tryTest(width, tmpPromise(left), rightImm))
1721 return result;
1722 if (Inst result = tryTest(width, tmpPromise(left), rightImm64))
1723 return result;
1724 }
1725
1726 // Finally, just do tmp's.
1727 return tryTest(width, tmpPromise(left), tmpPromise(right));
1728 }
1729 default:
1730 return Inst();
1731 }
1732 };
1733
1734 if (FusionResult fusionResult = prepareToFuse(value)) {
1735 if (Inst result = attemptFused()) {
1736 commitFusion(value, fusionResult);
1737 return result;
1738 }
1739 }
1740
1741 if (Arg::isValidBitImmForm(-1)) {
1742 if (canCommitInternal && value->as<MemoryValue>()) {
1743 // Handle things like Branch(Load8Z(value))
1744
1745 if (Inst result = tryTest(Width8, loadPromise(value, Load8Z), Arg::bitImm(-1))) {
1746 commitInternal(value);
1747 return result;
1748 }
1749
1750 if (Inst result = tryTest(Width8, loadPromise(value, Load8S), Arg::bitImm(-1))) {
1751 commitInternal(value);
1752 return result;
1753 }
1754
1755 if (Inst result = tryTest(Width16, loadPromise(value, Load16Z), Arg::bitImm(-1))) {
1756 commitInternal(value);
1757 return result;
1758 }
1759
1760 if (Inst result = tryTest(Width16, loadPromise(value, Load16S), Arg::bitImm(-1))) {
1761 commitInternal(value);
1762 return result;
1763 }
1764
1765 if (Inst result = tryTest(width, loadPromise(value), Arg::bitImm(-1))) {
1766 commitInternal(value);
1767 return result;
1768 }
1769 }
1770
1771 ArgPromise leftPromise = tmpPromise(value);
1772 ArgPromise rightPromise = Arg::bitImm(-1);
1773 if (Inst result = test(width, resCond, leftPromise, rightPromise))
1774 return result;
1775 }
1776
1777 // Sometimes this is the only form of test available. We prefer not to use this because
1778 // it's less canonical.
1779 ArgPromise leftPromise = tmpPromise(value);
1780 ArgPromise rightPromise = tmpPromise(value);
1781 return test(width, resCond, leftPromise, rightPromise);
1782 }
1783
1784 Inst createBranch(Value* value, bool inverted = false)
1785 {
1786 using namespace Air;
1787 return createGenericCompare(
1788 value,
1789 [this] (
1790 Width width, const Arg& relCond,
1791 ArgPromise& left, ArgPromise& right) -> Inst {
1792 switch (width) {
1793 case Width8:
1794 if (isValidForm(Branch8, Arg::RelCond, left.kind(), right.kind())) {
1795 return left.inst(right.inst(
1796 Branch8, m_value, relCond,
1797 left.consume(*this), right.consume(*this)));
1798 }
1799 return Inst();
1800 case Width16:
1801 return Inst();
1802 case Width32:
1803 if (isValidForm(Branch32, Arg::RelCond, left.kind(), right.kind())) {
1804 return left.inst(right.inst(
1805 Branch32, m_value, relCond,
1806 left.consume(*this), right.consume(*this)));
1807 }
1808 return Inst();
1809 case Width64:
1810 if (isValidForm(Branch64, Arg::RelCond, left.kind(), right.kind())) {
1811 return left.inst(right.inst(
1812 Branch64, m_value, relCond,
1813 left.consume(*this), right.consume(*this)));
1814 }
1815 return Inst();
1816 }
1817 ASSERT_NOT_REACHED();
1818 },
1819 [this] (
1820 Width width, const Arg& resCond,
1821 ArgPromise& left, ArgPromise& right) -> Inst {
1822 switch (width) {
1823 case Width8:
1824 if (isValidForm(BranchTest8, Arg::ResCond, left.kind(), right.kind())) {
1825 return left.inst(right.inst(
1826 BranchTest8, m_value, resCond,
1827 left.consume(*this), right.consume(*this)));
1828 }
1829 return Inst();
1830 case Width16:
1831 return Inst();
1832 case Width32:
1833 if (isValidForm(BranchTest32, Arg::ResCond, left.kind(), right.kind())) {
1834 return left.inst(right.inst(
1835 BranchTest32, m_value, resCond,
1836 left.consume(*this), right.consume(*this)));
1837 }
1838 return Inst();
1839 case Width64:
1840 if (isValidForm(BranchTest64, Arg::ResCond, left.kind(), right.kind())) {
1841 return left.inst(right.inst(
1842 BranchTest64, m_value, resCond,
1843 left.consume(*this), right.consume(*this)));
1844 }
1845 return Inst();
1846 }
1847 ASSERT_NOT_REACHED();
1848 },
1849 [this] (Arg doubleCond, ArgPromise& left, ArgPromise& right) -> Inst {
1850 if (isValidForm(BranchDouble, Arg::DoubleCond, left.kind(), right.kind())) {
1851 return left.inst(right.inst(
1852 BranchDouble, m_value, doubleCond,
1853 left.consume(*this), right.consume(*this)));
1854 }
1855 return Inst();
1856 },
1857 [this] (Arg doubleCond, ArgPromise& left, ArgPromise& right) -> Inst {
1858 if (isValidForm(BranchFloat, Arg::DoubleCond, left.kind(), right.kind())) {
1859 return left.inst(right.inst(
1860 BranchFloat, m_value, doubleCond,
1861 left.consume(*this), right.consume(*this)));
1862 }
1863 return Inst();
1864 },
1865 inverted);
1866 }
1867
1868 Inst createCompare(Value* value, bool inverted = false)
1869 {
1870 using namespace Air;
1871 return createGenericCompare(
1872 value,
1873 [this] (
1874 Width width, const Arg& relCond,
1875 ArgPromise& left, ArgPromise& right) -> Inst {
1876 switch (width) {
1877 case Width8:
1878 case Width16:
1879 return Inst();
1880 case Width32:
1881 if (isValidForm(Compare32, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) {
1882 return left.inst(right.inst(
1883 Compare32, m_value, relCond,
1884 left.consume(*this), right.consume(*this), tmp(m_value)));
1885 }
1886 return Inst();
1887 case Width64:
1888 if (isValidForm(Compare64, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) {
1889 return left.inst(right.inst(
1890 Compare64, m_value, relCond,
1891 left.consume(*this), right.consume(*this), tmp(m_value)));
1892 }
1893 return Inst();
1894 }
1895 ASSERT_NOT_REACHED();
1896 },
1897 [this] (
1898 Width width, const Arg& resCond,
1899 ArgPromise& left, ArgPromise& right) -> Inst {
1900 switch (width) {
1901 case Width8:
1902 case Width16:
1903 return Inst();
1904 case Width32:
1905 if (isValidForm(Test32, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) {
1906 return left.inst(right.inst(
1907 Test32, m_value, resCond,
1908 left.consume(*this), right.consume(*this), tmp(m_value)));
1909 }
1910 return Inst();
1911 case Width64:
1912 if (isValidForm(Test64, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) {
1913 return left.inst(right.inst(
1914 Test64, m_value, resCond,
1915 left.consume(*this), right.consume(*this), tmp(m_value)));
1916 }
1917 return Inst();
1918 }
1919 ASSERT_NOT_REACHED();
1920 },
1921 [this] (const Arg& doubleCond, ArgPromise& left, ArgPromise& right) -> Inst {
1922 if (isValidForm(CompareDouble, Arg::DoubleCond, left.kind(), right.kind(), Arg::Tmp)) {
1923 return left.inst(right.inst(
1924 CompareDouble, m_value, doubleCond,
1925 left.consume(*this), right.consume(*this), tmp(m_value)));
1926 }
1927 return Inst();
1928 },
1929 [this] (const Arg& doubleCond, ArgPromise& left, ArgPromise& right) -> Inst {
1930 if (isValidForm(CompareFloat, Arg::DoubleCond, left.kind(), right.kind(), Arg::Tmp)) {
1931 return left.inst(right.inst(
1932 CompareFloat, m_value, doubleCond,
1933 left.consume(*this), right.consume(*this), tmp(m_value)));
1934 }
1935 return Inst();
1936 },
1937 inverted);
1938 }
1939
1940 struct MoveConditionallyConfig {
1941 Air::Opcode moveConditionally32;
1942 Air::Opcode moveConditionally64;
1943 Air::Opcode moveConditionallyTest32;
1944 Air::Opcode moveConditionallyTest64;
1945 Air::Opcode moveConditionallyDouble;
1946 Air::Opcode moveConditionallyFloat;
1947 };
1948 Inst createSelect(const MoveConditionallyConfig& config)
1949 {
1950 using namespace Air;
1951 auto createSelectInstruction = [&] (Air::Opcode opcode, const Arg& condition, ArgPromise& left, ArgPromise& right) -> Inst {
1952 if (isValidForm(opcode, condition.kind(), left.kind(), right.kind(), Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
1953 Tmp result = tmp(m_value);
1954 Tmp thenCase = tmp(m_value->child(1));
1955 Tmp elseCase = tmp(m_value->child(2));
1956 return left.inst(right.inst(
1957 opcode, m_value, condition,
1958 left.consume(*this), right.consume(*this), thenCase, elseCase, result));
1959 }
1960 if (isValidForm(opcode, condition.kind(), left.kind(), right.kind(), Arg::Tmp, Arg::Tmp)) {
1961 Tmp result = tmp(m_value);
1962 Tmp source = tmp(m_value->child(1));
1963 append(relaxedMoveForType(m_value->type()), tmp(m_value->child(2)), result);
1964 return left.inst(right.inst(
1965 opcode, m_value, condition,
1966 left.consume(*this), right.consume(*this), source, result));
1967 }
1968 return Inst();
1969 };
1970
1971 return createGenericCompare(
1972 m_value->child(0),
1973 [&] (Width width, const Arg& relCond, ArgPromise& left, ArgPromise& right) -> Inst {
1974 switch (width) {
1975 case Width8:
1976 // FIXME: Support these things.
1977 // https://bugs.webkit.org/show_bug.cgi?id=151504
1978 return Inst();
1979 case Width16:
1980 return Inst();
1981 case Width32:
1982 return createSelectInstruction(config.moveConditionally32, relCond, left, right);
1983 case Width64:
1984 return createSelectInstruction(config.moveConditionally64, relCond, left, right);
1985 }
1986 ASSERT_NOT_REACHED();
1987 },
1988 [&] (Width width, const Arg& resCond, ArgPromise& left, ArgPromise& right) -> Inst {
1989 switch (width) {
1990 case Width8:
1991 // FIXME: Support more things.
1992 // https://bugs.webkit.org/show_bug.cgi?id=151504
1993 return Inst();
1994 case Width16:
1995 return Inst();
1996 case Width32:
1997 return createSelectInstruction(config.moveConditionallyTest32, resCond, left, right);
1998 case Width64:
1999 return createSelectInstruction(config.moveConditionallyTest64, resCond, left, right);
2000 }
2001 ASSERT_NOT_REACHED();
2002 },
2003 [&] (Arg doubleCond, ArgPromise& left, ArgPromise& right) -> Inst {
2004 return createSelectInstruction(config.moveConditionallyDouble, doubleCond, left, right);
2005 },
2006 [&] (Arg doubleCond, ArgPromise& left, ArgPromise& right) -> Inst {
2007 return createSelectInstruction(config.moveConditionallyFloat, doubleCond, left, right);
2008 },
2009 false);
2010 }
2011
2012 bool tryAppendLea()
2013 {
2014 using namespace Air;
2015 Air::Opcode leaOpcode = tryOpcodeForType(Lea32, Lea64, m_value->type());
2016 if (!isValidForm(leaOpcode, Arg::Index, Arg::Tmp))
2017 return false;
2018
2019 // This lets us turn things like this:
2020 //
2021 // Add(Add(@x, Shl(@y, $2)), $100)
2022 //
2023 // Into this:
2024 //
2025 // lea 100(%rdi,%rsi,4), %rax
2026 //
2027 // We have a choice here between committing the internal bits of an index or sharing
2028 // them. There are solid arguments for both.
2029 //
2030 // Sharing: The word on the street is that the cost of a lea is one cycle no matter
2031 // what it does. Every experiment I've ever seen seems to confirm this. So, sharing
2032 // helps us in situations where Wasm input did this:
2033 //
2034 // x = a[i].x;
2035 // y = a[i].y;
2036 //
2037 // With sharing we would do:
2038 //
2039 // leal (%a,%i,4), %tmp
2040 // cmp (%size, %tmp)
2041 // ja _fail
2042 // movl (%base, %tmp), %x
2043 // leal 4(%a,%i,4), %tmp
2044 // cmp (%size, %tmp)
2045 // ja _fail
2046 // movl (%base, %tmp), %y
2047 //
2048 // In the absence of sharing, we may find ourselves needing separate registers for
2049 // the innards of the index. That's relatively unlikely to be a thing due to other
2050 // optimizations that we already have, but it could happen
2051 //
2052 // Committing: The worst case is that there is a complicated graph of additions and
2053 // shifts, where each value has multiple uses. In that case, it's better to compute
2054 // each one separately from the others since that way, each calculation will use a
2055 // relatively nearby tmp as its input. That seems uncommon, but in those cases,
2056 // committing is a clear winner: it would result in a simple interference graph
2057 // while sharing would result in a complex one. Interference sucks because it means
2058 // more time in IRC and it means worse code.
2059 //
2060 // It's not super clear if any of these corner cases would ever arise. Committing
2061 // has the benefit that it's easier to reason about, and protects a much darker
2062 // corner case (more interference).
2063
2064 // Here are the things we want to match:
2065 // Add(Add(@x, @y), $c)
2066 // Add(Shl(@x, $c), @y)
2067 // Add(@x, Shl(@y, $c))
2068 // Add(Add(@x, Shl(@y, $c)), $d)
2069 // Add(Add(Shl(@x, $c), @y), $d)
2070 //
2071 // Note that if you do Add(Shl(@x, $c), $d) then we will treat $d as a non-constant and
2072 // force it to materialize. You'll get something like this:
2073 //
2074 // movl $d, %tmp
2075 // leal (%tmp,%x,1<<c), %result
2076 //
2077 // Which is pretty close to optimal and has the nice effect of being able to handle large
2078 // constants gracefully.
2079
2080 Value* innerAdd = nullptr;
2081
2082 Value* value = m_value;
2083
2084 // We're going to consume Add(Add(_), $c). If we succeed at consuming it then we have these
2085 // patterns left (i.e. in the Add(_)):
2086 //
2087 // Add(Add(@x, @y), $c)
2088 // Add(Add(@x, Shl(@y, $c)), $d)
2089 // Add(Add(Shl(@x, $c), @y), $d)
2090 //
2091 // Otherwise we are looking at these patterns:
2092 //
2093 // Add(Shl(@x, $c), @y)
2094 // Add(@x, Shl(@y, $c))
2095 //
2096 // This means that the subsequent code only has to worry about three patterns:
2097 //
2098 // Add(Shl(@x, $c), @y)
2099 // Add(@x, Shl(@y, $c))
2100 // Add(@x, @y) (only if offset != 0)
2101 Value::OffsetType offset = 0;
2102 if (value->child(1)->isRepresentableAs<Value::OffsetType>()
2103 && canBeInternal(value->child(0))
2104 && value->child(0)->opcode() == Add) {
2105 innerAdd = value->child(0);
2106 offset = static_cast<Value::OffsetType>(value->child(1)->asInt());
2107 value = value->child(0);
2108 }
2109
2110 auto tryShl = [&] (Value* shl, Value* other) -> bool {
2111 Optional<unsigned> scale = scaleForShl(shl, offset);
2112 if (!scale)
2113 return false;
2114 if (!canBeInternal(shl))
2115 return false;
2116
2117 ASSERT(!m_locked.contains(shl->child(0)));
2118 ASSERT(!m_locked.contains(other));
2119
2120 append(leaOpcode, Arg::index(tmp(other), tmp(shl->child(0)), *scale, offset), tmp(m_value));
2121 commitInternal(innerAdd);
2122 commitInternal(shl);
2123 return true;
2124 };
2125
2126 if (tryShl(value->child(0), value->child(1)))
2127 return true;
2128 if (tryShl(value->child(1), value->child(0)))
2129 return true;
2130
2131 // The remaining pattern is just:
2132 // Add(@x, @y) (only if offset != 0)
2133 if (!offset)
2134 return false;
2135 ASSERT(!m_locked.contains(value->child(0)));
2136 ASSERT(!m_locked.contains(value->child(1)));
2137 append(leaOpcode, Arg::index(tmp(value->child(0)), tmp(value->child(1)), 1, offset), tmp(m_value));
2138 commitInternal(innerAdd);
2139 return true;
2140 }
2141
2142 void appendX86Div(B3::Opcode op)
2143 {
2144 using namespace Air;
2145 Air::Opcode convertToDoubleWord;
2146 Air::Opcode div;
2147 switch (m_value->type().kind()) {
2148 case Int32:
2149 convertToDoubleWord = X86ConvertToDoubleWord32;
2150 div = X86Div32;
2151 break;
2152 case Int64:
2153 convertToDoubleWord = X86ConvertToQuadWord64;
2154 div = X86Div64;
2155 break;
2156 default:
2157 RELEASE_ASSERT_NOT_REACHED();
2158 return;
2159 }
2160
2161 ASSERT(op == Div || op == Mod);
2162 Tmp result = op == Div ? m_eax : m_edx;
2163
2164 append(Move, tmp(m_value->child(0)), m_eax);
2165 append(convertToDoubleWord, m_eax, m_edx);
2166 append(div, m_eax, m_edx, tmp(m_value->child(1)));
2167 append(Move, result, tmp(m_value));
2168 }
2169
2170 void appendX86UDiv(B3::Opcode op)
2171 {
2172 using namespace Air;
2173 Air::Opcode div = m_value->type() == Int32 ? X86UDiv32 : X86UDiv64;
2174
2175 ASSERT(op == UDiv || op == UMod);
2176 Tmp result = op == UDiv ? m_eax : m_edx;
2177
2178 append(Move, tmp(m_value->child(0)), m_eax);
2179 append(Xor64, m_edx, m_edx);
2180 append(div, m_eax, m_edx, tmp(m_value->child(1)));
2181 append(Move, result, tmp(m_value));
2182 }
2183
2184 Air::Opcode loadLinkOpcode(Width width, bool fence)
2185 {
2186 return fence ? OPCODE_FOR_WIDTH(LoadLinkAcq, width) : OPCODE_FOR_WIDTH(LoadLink, width);
2187 }
2188
2189 Air::Opcode storeCondOpcode(Width width, bool fence)
2190 {
2191 return fence ? OPCODE_FOR_WIDTH(StoreCondRel, width) : OPCODE_FOR_WIDTH(StoreCond, width);
2192 }
2193
2194 // This can emit code for the following patterns:
2195 // AtomicWeakCAS
2196 // BitXor(AtomicWeakCAS, 1)
2197 // AtomicStrongCAS
2198 // Equal(AtomicStrongCAS, expected)
2199 // NotEqual(AtomicStrongCAS, expected)
2200 // Branch(AtomicWeakCAS)
2201 // Branch(Equal(AtomicStrongCAS, expected))
2202 // Branch(NotEqual(AtomicStrongCAS, expected))
2203 //
2204 // It assumes that atomicValue points to the CAS, and m_value points to the instruction being
2205 // generated. It assumes that you've consumed everything that needs to be consumed.
2206 void appendCAS(Value* atomicValue, bool invert)
2207 {
2208 using namespace Air;
2209 AtomicValue* atomic = atomicValue->as<AtomicValue>();
2210 RELEASE_ASSERT(atomic);
2211
2212 bool isBranch = m_value->opcode() == Branch;
2213 bool isStrong = atomic->opcode() == AtomicStrongCAS;
2214 bool returnsOldValue = m_value->opcode() == AtomicStrongCAS;
2215 bool hasFence = atomic->hasFence();
2216
2217 Width width = atomic->accessWidth();
2218 Arg address = addr(atomic);
2219
2220 Tmp valueResultTmp;
2221 Tmp boolResultTmp;
2222 if (returnsOldValue) {
2223 RELEASE_ASSERT(!invert);
2224 valueResultTmp = tmp(m_value);
2225 boolResultTmp = m_code.newTmp(GP);
2226 } else if (isBranch) {
2227 valueResultTmp = m_code.newTmp(GP);
2228 boolResultTmp = m_code.newTmp(GP);
2229 } else {
2230 valueResultTmp = m_code.newTmp(GP);
2231 boolResultTmp = tmp(m_value);
2232 }
2233
2234 Tmp successBoolResultTmp;
2235 if (isStrong && !isBranch)
2236 successBoolResultTmp = m_code.newTmp(GP);
2237 else
2238 successBoolResultTmp = boolResultTmp;
2239
2240 Tmp expectedValueTmp = tmp(atomic->child(0));
2241 Tmp newValueTmp = tmp(atomic->child(1));
2242
2243 Air::FrequentedBlock success;
2244 Air::FrequentedBlock failure;
2245 if (isBranch) {
2246 success = m_blockToBlock[m_block]->successor(invert);
2247 failure = m_blockToBlock[m_block]->successor(!invert);
2248 }
2249
2250 if (isX86()) {
2251 append(relaxedMoveForType(atomic->accessType()), immOrTmp(atomic->child(0)), m_eax);
2252 if (returnsOldValue) {
2253 appendTrapping(OPCODE_FOR_WIDTH(AtomicStrongCAS, width), m_eax, newValueTmp, address);
2254 append(relaxedMoveForType(atomic->accessType()), m_eax, valueResultTmp);
2255 } else if (isBranch) {
2256 appendTrapping(OPCODE_FOR_WIDTH(BranchAtomicStrongCAS, width), Arg::statusCond(MacroAssembler::Success), m_eax, newValueTmp, address);
2257 m_blockToBlock[m_block]->setSuccessors(success, failure);
2258 } else
2259 appendTrapping(OPCODE_FOR_WIDTH(AtomicStrongCAS, width), Arg::statusCond(invert ? MacroAssembler::Failure : MacroAssembler::Success), m_eax, tmp(atomic->child(1)), address, boolResultTmp);
2260 return;
2261 }
2262
2263 RELEASE_ASSERT(isARM64());
2264 // We wish to emit:
2265 //
2266 // Block #reloop:
2267 // LoadLink
2268 // Branch NotEqual
2269 // Successors: Then:#fail, Else: #store
2270 // Block #store:
2271 // StoreCond
2272 // Xor $1, %result <--- only if !invert
2273 // Jump
2274 // Successors: #done
2275 // Block #fail:
2276 // Move $invert, %result
2277 // Jump
2278 // Successors: #done
2279 // Block #done:
2280
2281 Air::BasicBlock* reloopBlock = newBlock();
2282 Air::BasicBlock* storeBlock = newBlock();
2283 Air::BasicBlock* successBlock = nullptr;
2284 if (!isBranch && isStrong)
2285 successBlock = newBlock();
2286 Air::BasicBlock* failBlock = nullptr;
2287 if (!isBranch) {
2288 failBlock = newBlock();
2289 failure = failBlock;
2290 }
2291 Air::BasicBlock* strongFailBlock;
2292 if (isStrong && hasFence)
2293 strongFailBlock = newBlock();
2294 Air::FrequentedBlock comparisonFail = failure;
2295 Air::FrequentedBlock weakFail;
2296 if (isStrong) {
2297 if (hasFence)
2298 comparisonFail = strongFailBlock;
2299 weakFail = reloopBlock;
2300 } else
2301 weakFail = failure;
2302 Air::BasicBlock* beginBlock;
2303 Air::BasicBlock* doneBlock;
2304 splitBlock(beginBlock, doneBlock);
2305
2306 append(Air::Jump);
2307 beginBlock->setSuccessors(reloopBlock);
2308
2309 reloopBlock->append(trappingInst(m_value, loadLinkOpcode(width, atomic->hasFence()), m_value, address, valueResultTmp));
2310 reloopBlock->append(OPCODE_FOR_CANONICAL_WIDTH(Branch, width), m_value, Arg::relCond(MacroAssembler::NotEqual), valueResultTmp, expectedValueTmp);
2311 reloopBlock->setSuccessors(comparisonFail, storeBlock);
2312
2313 storeBlock->append(trappingInst(m_value, storeCondOpcode(width, atomic->hasFence()), m_value, newValueTmp, address, successBoolResultTmp));
2314 if (isBranch) {
2315 storeBlock->append(BranchTest32, m_value, Arg::resCond(MacroAssembler::Zero), boolResultTmp, boolResultTmp);
2316 storeBlock->setSuccessors(success, weakFail);
2317 doneBlock->successors().clear();
2318 RELEASE_ASSERT(!doneBlock->size());
2319 doneBlock->append(Air::Oops, m_value);
2320 } else {
2321 if (isStrong) {
2322 storeBlock->append(BranchTest32, m_value, Arg::resCond(MacroAssembler::Zero), successBoolResultTmp, successBoolResultTmp);
2323 storeBlock->setSuccessors(successBlock, reloopBlock);
2324
2325 successBlock->append(Move, m_value, Arg::imm(!invert), boolResultTmp);
2326 successBlock->append(Air::Jump, m_value);
2327 successBlock->setSuccessors(doneBlock);
2328 } else {
2329 if (!invert)
2330 storeBlock->append(Xor32, m_value, Arg::bitImm(1), boolResultTmp, boolResultTmp);
2331
2332 storeBlock->append(Air::Jump, m_value);
2333 storeBlock->setSuccessors(doneBlock);
2334 }
2335
2336 failBlock->append(Move, m_value, Arg::imm(invert), boolResultTmp);
2337 failBlock->append(Air::Jump, m_value);
2338 failBlock->setSuccessors(doneBlock);
2339 }
2340
2341 if (isStrong && hasFence) {
2342 Tmp tmp = m_code.newTmp(GP);
2343 strongFailBlock->append(trappingInst(m_value, storeCondOpcode(width, atomic->hasFence()), m_value, valueResultTmp, address, tmp));
2344 strongFailBlock->append(BranchTest32, m_value, Arg::resCond(MacroAssembler::Zero), tmp, tmp);
2345 strongFailBlock->setSuccessors(failure, reloopBlock);
2346 }
2347 }
2348
2349 bool appendVoidAtomic(Air::Opcode atomicOpcode)
2350 {
2351 if (m_useCounts.numUses(m_value))
2352 return false;
2353
2354 Arg address = addr(m_value);
2355
2356 if (isValidForm(atomicOpcode, Arg::Imm, address.kind()) && imm(m_value->child(0))) {
2357 append(atomicOpcode, imm(m_value->child(0)), address);
2358 return true;
2359 }
2360
2361 if (isValidForm(atomicOpcode, Arg::Tmp, address.kind())) {
2362 append(atomicOpcode, tmp(m_value->child(0)), address);
2363 return true;
2364 }
2365
2366 return false;
2367 }
2368
2369 void appendGeneralAtomic(Air::Opcode opcode, Commutativity commutativity = NotCommutative)
2370 {
2371 using namespace Air;
2372 AtomicValue* atomic = m_value->as<AtomicValue>();
2373
2374 Arg address = addr(m_value);
2375 Tmp oldValue = m_code.newTmp(GP);
2376 Tmp newValue = opcode == Air::Nop ? tmp(atomic->child(0)) : m_code.newTmp(GP);
2377
2378 // We need a CAS loop or a LL/SC loop. Using prepare/attempt jargon, we want:
2379 //
2380 // Block #reloop:
2381 // Prepare
2382 // opcode
2383 // Attempt
2384 // Successors: Then:#done, Else:#reloop
2385 // Block #done:
2386 // Move oldValue, result
2387
2388 append(relaxedMoveForType(atomic->type()), oldValue, tmp(atomic));
2389
2390 Air::BasicBlock* reloopBlock = newBlock();
2391 Air::BasicBlock* beginBlock;
2392 Air::BasicBlock* doneBlock;
2393 splitBlock(beginBlock, doneBlock);
2394
2395 append(Air::Jump);
2396 beginBlock->setSuccessors(reloopBlock);
2397
2398 Air::Opcode prepareOpcode;
2399 if (isX86()) {
2400 switch (atomic->accessWidth()) {
2401 case Width8:
2402 prepareOpcode = Load8SignedExtendTo32;
2403 break;
2404 case Width16:
2405 prepareOpcode = Load16SignedExtendTo32;
2406 break;
2407 case Width32:
2408 prepareOpcode = Move32;
2409 break;
2410 case Width64:
2411 prepareOpcode = Move;
2412 break;
2413 }
2414 } else {
2415 RELEASE_ASSERT(isARM64());
2416 prepareOpcode = loadLinkOpcode(atomic->accessWidth(), atomic->hasFence());
2417 }
2418 reloopBlock->append(trappingInst(m_value, prepareOpcode, m_value, address, oldValue));
2419
2420 if (opcode != Air::Nop) {
2421 // FIXME: If we ever have to write this again, we need to find a way to share the code with
2422 // appendBinOp.
2423 // https://bugs.webkit.org/show_bug.cgi?id=169249
2424 if (commutativity == Commutative && imm(atomic->child(0)) && isValidForm(opcode, Arg::Imm, Arg::Tmp, Arg::Tmp))
2425 reloopBlock->append(opcode, m_value, imm(atomic->child(0)), oldValue, newValue);
2426 else if (imm(atomic->child(0)) && isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp))
2427 reloopBlock->append(opcode, m_value, oldValue, imm(atomic->child(0)), newValue);
2428 else if (commutativity == Commutative && bitImm(atomic->child(0)) && isValidForm(opcode, Arg::BitImm, Arg::Tmp, Arg::Tmp))
2429 reloopBlock->append(opcode, m_value, bitImm(atomic->child(0)), oldValue, newValue);
2430 else if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp))
2431 reloopBlock->append(opcode, m_value, oldValue, tmp(atomic->child(0)), newValue);
2432 else {
2433 reloopBlock->append(relaxedMoveForType(atomic->type()), m_value, oldValue, newValue);
2434 if (imm(atomic->child(0)) && isValidForm(opcode, Arg::Imm, Arg::Tmp))
2435 reloopBlock->append(opcode, m_value, imm(atomic->child(0)), newValue);
2436 else
2437 reloopBlock->append(opcode, m_value, tmp(atomic->child(0)), newValue);
2438 }
2439 }
2440
2441 if (isX86()) {
2442 Air::Opcode casOpcode = OPCODE_FOR_WIDTH(BranchAtomicStrongCAS, atomic->accessWidth());
2443 reloopBlock->append(relaxedMoveForType(atomic->type()), m_value, oldValue, m_eax);
2444 reloopBlock->append(trappingInst(m_value, casOpcode, m_value, Arg::statusCond(MacroAssembler::Success), m_eax, newValue, address));
2445 } else {
2446 RELEASE_ASSERT(isARM64());
2447 Tmp boolResult = m_code.newTmp(GP);
2448 reloopBlock->append(trappingInst(m_value, storeCondOpcode(atomic->accessWidth(), atomic->hasFence()), m_value, newValue, address, boolResult));
2449 reloopBlock->append(BranchTest32, m_value, Arg::resCond(MacroAssembler::Zero), boolResult, boolResult);
2450 }
2451 reloopBlock->setSuccessors(doneBlock, reloopBlock);
2452 }
2453
2454 void lower()
2455 {
2456 using namespace Air;
2457 switch (m_value->opcode()) {
2458 case B3::Nop: {
2459 // Yes, we will totally see Nop's because some phases will replaceWithNop() instead of
2460 // properly removing things.
2461 return;
2462 }
2463
2464 case Load: {
2465 MemoryValue* memory = m_value->as<MemoryValue>();
2466 Air::Kind kind = moveForType(memory->type());
2467 if (memory->hasFence()) {
2468 if (isX86())
2469 kind.effects = true;
2470 else {
2471 switch (memory->type().kind()) {
2472 case Int32:
2473 kind = LoadAcq32;
2474 break;
2475 case Int64:
2476 kind = LoadAcq64;
2477 break;
2478 default:
2479 RELEASE_ASSERT_NOT_REACHED();
2480 break;
2481 }
2482 }
2483 }
2484 append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value)));
2485 return;
2486 }
2487
2488 case Load8S: {
2489 Air::Kind kind = Load8SignedExtendTo32;
2490 if (m_value->as<MemoryValue>()->hasFence()) {
2491 if (isX86())
2492 kind.effects = true;
2493 else
2494 kind = LoadAcq8SignedExtendTo32;
2495 }
2496 append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value)));
2497 return;
2498 }
2499
2500 case Load8Z: {
2501 Air::Kind kind = Load8;
2502 if (m_value->as<MemoryValue>()->hasFence()) {
2503 if (isX86())
2504 kind.effects = true;
2505 else
2506 kind = LoadAcq8;
2507 }
2508 append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value)));
2509 return;
2510 }
2511
2512 case Load16S: {
2513 Air::Kind kind = Load16SignedExtendTo32;
2514 if (m_value->as<MemoryValue>()->hasFence()) {
2515 if (isX86())
2516 kind.effects = true;
2517 else
2518 kind = LoadAcq16SignedExtendTo32;
2519 }
2520 append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value)));
2521 return;
2522 }
2523
2524 case Load16Z: {
2525 Air::Kind kind = Load16;
2526 if (m_value->as<MemoryValue>()->hasFence()) {
2527 if (isX86())
2528 kind.effects = true;
2529 else
2530 kind = LoadAcq16;
2531 }
2532 append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value)));
2533 return;
2534 }
2535
2536 case Add: {
2537 if (tryAppendLea())
2538 return;
2539
2540 Air::Opcode multiplyAddOpcode = tryOpcodeForType(MultiplyAdd32, MultiplyAdd64, m_value->type());
2541 if (isValidForm(multiplyAddOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
2542 Value* left = m_value->child(0);
2543 Value* right = m_value->child(1);
2544 if (!imm(right) || m_valueToTmp[right]) {
2545 auto tryAppendMultiplyAdd = [&] (Value* left, Value* right) -> bool {
2546 if (left->opcode() != Mul || !canBeInternal(left))
2547 return false;
2548
2549 Value* multiplyLeft = left->child(0);
2550 Value* multiplyRight = left->child(1);
2551 if (canBeInternal(multiplyLeft) || canBeInternal(multiplyRight))
2552 return false;
2553
2554 append(multiplyAddOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(right), tmp(m_value));
2555 commitInternal(left);
2556
2557 return true;
2558 };
2559
2560 if (tryAppendMultiplyAdd(left, right))
2561 return;
2562 if (tryAppendMultiplyAdd(right, left))
2563 return;
2564 }
2565 }
2566
2567 appendBinOp<Add32, Add64, AddDouble, AddFloat, Commutative>(
2568 m_value->child(0), m_value->child(1));
2569 return;
2570 }
2571
2572 case Sub: {
2573 Air::Opcode multiplySubOpcode = tryOpcodeForType(MultiplySub32, MultiplySub64, m_value->type());
2574 if (multiplySubOpcode != Air::Oops
2575 && isValidForm(multiplySubOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
2576 Value* left = m_value->child(0);
2577 Value* right = m_value->child(1);
2578 if (!imm(right) || m_valueToTmp[right]) {
2579 auto tryAppendMultiplySub = [&] () -> bool {
2580 if (right->opcode() != Mul || !canBeInternal(right))
2581 return false;
2582
2583 Value* multiplyLeft = right->child(0);
2584 Value* multiplyRight = right->child(1);
2585 if (m_locked.contains(multiplyLeft) || m_locked.contains(multiplyRight))
2586 return false;
2587
2588 append(multiplySubOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(left), tmp(m_value));
2589 commitInternal(right);
2590
2591 return true;
2592 };
2593
2594 if (tryAppendMultiplySub())
2595 return;
2596 }
2597 }
2598
2599 appendBinOp<Sub32, Sub64, SubDouble, SubFloat>(m_value->child(0), m_value->child(1));
2600 return;
2601 }
2602
2603 case Neg: {
2604 Air::Opcode multiplyNegOpcode = tryOpcodeForType(MultiplyNeg32, MultiplyNeg64, m_value->type());
2605 if (multiplyNegOpcode != Air::Oops
2606 && isValidForm(multiplyNegOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)
2607 && m_value->child(0)->opcode() == Mul
2608 && canBeInternal(m_value->child(0))) {
2609 Value* multiplyOperation = m_value->child(0);
2610 Value* multiplyLeft = multiplyOperation->child(0);
2611 Value* multiplyRight = multiplyOperation->child(1);
2612 if (!m_locked.contains(multiplyLeft) && !m_locked.contains(multiplyRight)) {
2613 append(multiplyNegOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(m_value));
2614 commitInternal(multiplyOperation);
2615 return;
2616 }
2617 }
2618
2619 appendUnOp<Neg32, Neg64, NegateDouble, NegateFloat>(m_value->child(0));
2620 return;
2621 }
2622
2623 case Mul: {
2624 if (m_value->type() == Int64
2625 && isValidForm(MultiplySignExtend32, Arg::Tmp, Arg::Tmp, Arg::Tmp)
2626 && m_value->child(0)->opcode() == SExt32
2627 && !m_locked.contains(m_value->child(0))) {
2628 Value* opLeft = m_value->child(0);
2629 Value* left = opLeft->child(0);
2630 Value* opRight = m_value->child(1);
2631 Value* right = nullptr;
2632
2633 if (opRight->opcode() == SExt32 && !m_locked.contains(opRight->child(0))) {
2634 right = opRight->child(0);
2635 } else if (m_value->child(1)->isRepresentableAs<int32_t>() && !m_locked.contains(m_value->child(1))) {
2636 // We just use the 64-bit const int as a 32 bit const int directly
2637 right = opRight;
2638 }
2639
2640 if (right) {
2641 append(MultiplySignExtend32, tmp(left), tmp(right), tmp(m_value));
2642 return;
2643 }
2644 }
2645 appendBinOp<Mul32, Mul64, MulDouble, MulFloat, Commutative>(
2646 m_value->child(0), m_value->child(1));
2647 return;
2648 }
2649
2650 case Div: {
2651 if (m_value->isChill())
2652 RELEASE_ASSERT(isARM64());
2653 if (m_value->type().isInt() && isX86()) {
2654 appendX86Div(Div);
2655 return;
2656 }
2657 ASSERT(!isX86() || m_value->type().isFloat());
2658
2659 appendBinOp<Div32, Div64, DivDouble, DivFloat>(m_value->child(0), m_value->child(1));
2660 return;
2661 }
2662
2663 case UDiv: {
2664 if (m_value->type().isInt() && isX86()) {
2665 appendX86UDiv(UDiv);
2666 return;
2667 }
2668
2669 ASSERT(!isX86() && !m_value->type().isFloat());
2670
2671 appendBinOp<UDiv32, UDiv64, Air::Oops, Air::Oops>(m_value->child(0), m_value->child(1));
2672 return;
2673
2674 }
2675
2676 case Mod: {
2677 RELEASE_ASSERT(isX86());
2678 RELEASE_ASSERT(!m_value->isChill());
2679 appendX86Div(Mod);
2680 return;
2681 }
2682
2683 case UMod: {
2684 RELEASE_ASSERT(isX86());
2685 appendX86UDiv(UMod);
2686 return;
2687 }
2688
2689 case BitAnd: {
2690 if (m_value->child(1)->isInt(0xff)) {
2691 appendUnOp<ZeroExtend8To32, ZeroExtend8To32>(m_value->child(0));
2692 return;
2693 }
2694
2695 if (m_value->child(1)->isInt(0xffff)) {
2696 appendUnOp<ZeroExtend16To32, ZeroExtend16To32>(m_value->child(0));
2697 return;
2698 }
2699
2700 if (m_value->child(1)->isInt64(0xffffffff) || m_value->child(1)->isInt32(0xffffffff)) {
2701 appendUnOp<Move32, Move32>(m_value->child(0));
2702 return;
2703 }
2704
2705 appendBinOp<And32, And64, AndDouble, AndFloat, Commutative>(
2706 m_value->child(0), m_value->child(1));
2707 return;
2708 }
2709
2710 case BitOr: {
2711 appendBinOp<Or32, Or64, OrDouble, OrFloat, Commutative>(
2712 m_value->child(0), m_value->child(1));
2713 return;
2714 }
2715
2716 case BitXor: {
2717 // FIXME: If canBeInternal(child), we should generate this using the comparison path.
2718 // https://bugs.webkit.org/show_bug.cgi?id=152367
2719
2720 if (m_value->child(1)->isInt(-1)) {
2721 appendUnOp<Not32, Not64>(m_value->child(0));
2722 return;
2723 }
2724
2725 // This pattern is super useful on both x86 and ARM64, since the inversion of the CAS result
2726 // can be done with zero cost on x86 (just flip the set from E to NE) and it's a progression
2727 // on ARM64 (since STX returns 0 on success, so ordinarily we have to flip it).
2728 if (m_value->child(1)->isInt(1)
2729 && m_value->child(0)->opcode() == AtomicWeakCAS
2730 && canBeInternal(m_value->child(0))) {
2731 commitInternal(m_value->child(0));
2732 appendCAS(m_value->child(0), true);
2733 return;
2734 }
2735
2736 appendBinOp<Xor32, Xor64, XorDouble, XorFloat, Commutative>(
2737 m_value->child(0), m_value->child(1));
2738 return;
2739 }
2740
2741 case Depend: {
2742 RELEASE_ASSERT(isARM64());
2743 appendUnOp<Depend32, Depend64>(m_value->child(0));
2744 return;
2745 }
2746
2747 case Shl: {
2748 if (m_value->child(1)->isInt32(1)) {
2749 appendBinOp<Add32, Add64, AddDouble, AddFloat, Commutative>(m_value->child(0), m_value->child(0));
2750 return;
2751 }
2752
2753 appendShift<Lshift32, Lshift64>(m_value->child(0), m_value->child(1));
2754 return;
2755 }
2756
2757 case SShr: {
2758 appendShift<Rshift32, Rshift64>(m_value->child(0), m_value->child(1));
2759 return;
2760 }
2761
2762 case ZShr: {
2763 appendShift<Urshift32, Urshift64>(m_value->child(0), m_value->child(1));
2764 return;
2765 }
2766
2767 case RotR: {
2768 appendShift<RotateRight32, RotateRight64>(m_value->child(0), m_value->child(1));
2769 return;
2770 }
2771
2772 case RotL: {
2773 appendShift<RotateLeft32, RotateLeft64>(m_value->child(0), m_value->child(1));
2774 return;
2775 }
2776
2777 case Clz: {
2778 appendUnOp<CountLeadingZeros32, CountLeadingZeros64>(m_value->child(0));
2779 return;
2780 }
2781
2782 case Abs: {
2783 RELEASE_ASSERT_WITH_MESSAGE(!isX86(), "Abs is not supported natively on x86. It must be replaced before generation.");
2784 appendUnOp<Air::Oops, Air::Oops, AbsDouble, AbsFloat>(m_value->child(0));
2785 return;
2786 }
2787
2788 case Ceil: {
2789 appendUnOp<Air::Oops, Air::Oops, CeilDouble, CeilFloat>(m_value->child(0));
2790 return;
2791 }
2792
2793 case Floor: {
2794 appendUnOp<Air::Oops, Air::Oops, FloorDouble, FloorFloat>(m_value->child(0));
2795 return;
2796 }
2797
2798 case Sqrt: {
2799 appendUnOp<Air::Oops, Air::Oops, SqrtDouble, SqrtFloat>(m_value->child(0));
2800 return;
2801 }
2802
2803 case BitwiseCast: {
2804 appendUnOp<Move32ToFloat, Move64ToDouble, MoveDoubleTo64, MoveFloatTo32>(m_value->child(0));
2805 return;
2806 }
2807
2808 case Store: {
2809 Value* valueToStore = m_value->child(0);
2810 if (canBeInternal(valueToStore)) {
2811 bool matched = false;
2812 switch (valueToStore->opcode()) {
2813 case Add:
2814 matched = tryAppendStoreBinOp<Add32, Add64, Commutative>(
2815 valueToStore->child(0), valueToStore->child(1));
2816 break;
2817 case Sub:
2818 if (valueToStore->child(0)->isInt(0)) {
2819 matched = tryAppendStoreUnOp<Neg32, Neg64>(valueToStore->child(1));
2820 break;
2821 }
2822 matched = tryAppendStoreBinOp<Sub32, Sub64>(
2823 valueToStore->child(0), valueToStore->child(1));
2824 break;
2825 case BitAnd:
2826 matched = tryAppendStoreBinOp<And32, And64, Commutative>(
2827 valueToStore->child(0), valueToStore->child(1));
2828 break;
2829 case BitXor:
2830 if (valueToStore->child(1)->isInt(-1)) {
2831 matched = tryAppendStoreUnOp<Not32, Not64>(valueToStore->child(0));
2832 break;
2833 }
2834 matched = tryAppendStoreBinOp<Xor32, Xor64, Commutative>(
2835 valueToStore->child(0), valueToStore->child(1));
2836 break;
2837 default:
2838 break;
2839 }
2840 if (matched) {
2841 commitInternal(valueToStore);
2842 return;
2843 }
2844 }
2845
2846 appendStore(m_value, addr(m_value));
2847 return;
2848 }
2849
2850 case B3::Store8: {
2851 Value* valueToStore = m_value->child(0);
2852 if (canBeInternal(valueToStore)) {
2853 bool matched = false;
2854 switch (valueToStore->opcode()) {
2855 case Add:
2856 matched = tryAppendStoreBinOp<Add8, Air::Oops, Commutative>(
2857 valueToStore->child(0), valueToStore->child(1));
2858 break;
2859 default:
2860 break;
2861 }
2862 if (matched) {
2863 commitInternal(valueToStore);
2864 return;
2865 }
2866 }
2867 appendStore(m_value, addr(m_value));
2868 return;
2869 }
2870
2871 case B3::Store16: {
2872 Value* valueToStore = m_value->child(0);
2873 if (canBeInternal(valueToStore)) {
2874 bool matched = false;
2875 switch (valueToStore->opcode()) {
2876 case Add:
2877 matched = tryAppendStoreBinOp<Add16, Air::Oops, Commutative>(
2878 valueToStore->child(0), valueToStore->child(1));
2879 break;
2880 default:
2881 break;
2882 }
2883 if (matched) {
2884 commitInternal(valueToStore);
2885 return;
2886 }
2887 }
2888 appendStore(m_value, addr(m_value));
2889 return;
2890 }
2891
2892 case WasmAddress: {
2893 WasmAddressValue* address = m_value->as<WasmAddressValue>();
2894
2895 append(Add64, Arg(address->pinnedGPR()), tmp(m_value->child(0)), tmp(address));
2896 return;
2897 }
2898
2899 case Fence: {
2900 FenceValue* fence = m_value->as<FenceValue>();
2901 if (!fence->write && !fence->read)
2902 return;
2903 if (!fence->write) {
2904 // A fence that reads but does not write is for protecting motion of stores.
2905 append(StoreFence);
2906 return;
2907 }
2908 if (!fence->read) {
2909 // A fence that writes but does not read is for protecting motion of loads.
2910 append(LoadFence);
2911 return;
2912 }
2913 append(MemoryFence);
2914 return;
2915 }
2916
2917 case Trunc: {
2918 ASSERT(tmp(m_value->child(0)) == tmp(m_value));
2919 return;
2920 }
2921
2922 case SExt8: {
2923 appendUnOp<SignExtend8To32, Air::Oops>(m_value->child(0));
2924 return;
2925 }
2926
2927 case SExt16: {
2928 appendUnOp<SignExtend16To32, Air::Oops>(m_value->child(0));
2929 return;
2930 }
2931
2932 case ZExt32: {
2933 appendUnOp<Move32, Air::Oops>(m_value->child(0));
2934 return;
2935 }
2936
2937 case SExt32: {
2938 // FIXME: We should have support for movsbq/movswq
2939 // https://bugs.webkit.org/show_bug.cgi?id=152232
2940
2941 appendUnOp<SignExtend32ToPtr, Air::Oops>(m_value->child(0));
2942 return;
2943 }
2944
2945 case FloatToDouble: {
2946 appendUnOp<Air::Oops, Air::Oops, Air::Oops, ConvertFloatToDouble>(m_value->child(0));
2947 return;
2948 }
2949
2950 case DoubleToFloat: {
2951 appendUnOp<Air::Oops, Air::Oops, ConvertDoubleToFloat>(m_value->child(0));
2952 return;
2953 }
2954
2955 case ArgumentReg: {
2956 m_prologue.append(Inst(
2957 moveForType(m_value->type()), m_value,
2958 Tmp(m_value->as<ArgumentRegValue>()->argumentReg()),
2959 tmp(m_value)));
2960 return;
2961 }
2962
2963 case Const32:
2964 case Const64: {
2965 if (imm(m_value))
2966 append(Move, imm(m_value), tmp(m_value));
2967 else
2968 append(Move, Arg::bigImm(m_value->asInt()), tmp(m_value));
2969 return;
2970 }
2971
2972 case ConstDouble:
2973 case ConstFloat: {
2974 // We expect that the moveConstants() phase has run, and any doubles referenced from
2975 // stackmaps get fused.
2976 RELEASE_ASSERT(m_value->opcode() == ConstFloat || isIdentical(m_value->asDouble(), 0.0));
2977 RELEASE_ASSERT(m_value->opcode() == ConstDouble || isIdentical(m_value->asFloat(), 0.0f));
2978 append(MoveZeroToDouble, tmp(m_value));
2979 return;
2980 }
2981
2982 case FramePointer: {
2983 ASSERT(tmp(m_value) == Tmp(GPRInfo::callFrameRegister));
2984 return;
2985 }
2986
2987 case SlotBase: {
2988 append(
2989 pointerType() == Int64 ? Lea64 : Lea32,
2990 Arg::stack(m_stackToStack.get(m_value->as<SlotBaseValue>()->slot())),
2991 tmp(m_value));
2992 return;
2993 }
2994
2995 case Equal:
2996 case NotEqual: {
2997 // FIXME: Teach this to match patterns that arise from subwidth CAS. The CAS's result has to
2998 // be either zero- or sign-extended, and the value it's compared to should also be zero- or
2999 // sign-extended in a matching way. It's not super clear that this is very profitable.
3000 // https://bugs.webkit.org/show_bug.cgi?id=169250
3001 if (m_value->child(0)->opcode() == AtomicStrongCAS
3002 && m_value->child(0)->as<AtomicValue>()->isCanonicalWidth()
3003 && m_value->child(0)->child(0) == m_value->child(1)
3004 && canBeInternal(m_value->child(0))) {
3005 ASSERT(!m_locked.contains(m_value->child(0)->child(1)));
3006 ASSERT(!m_locked.contains(m_value->child(1)));
3007
3008 commitInternal(m_value->child(0));
3009 appendCAS(m_value->child(0), m_value->opcode() == NotEqual);
3010 return;
3011 }
3012
3013 m_insts.last().append(createCompare(m_value));
3014 return;
3015 }
3016
3017 case LessThan:
3018 case GreaterThan:
3019 case LessEqual:
3020 case GreaterEqual:
3021 case Above:
3022 case Below:
3023 case AboveEqual:
3024 case BelowEqual:
3025 case EqualOrUnordered: {
3026 m_insts.last().append(createCompare(m_value));
3027 return;
3028 }
3029
3030 case Select: {
3031 MoveConditionallyConfig config;
3032 if (m_value->type().isInt()) {
3033 config.moveConditionally32 = MoveConditionally32;
3034 config.moveConditionally64 = MoveConditionally64;
3035 config.moveConditionallyTest32 = MoveConditionallyTest32;
3036 config.moveConditionallyTest64 = MoveConditionallyTest64;
3037 config.moveConditionallyDouble = MoveConditionallyDouble;
3038 config.moveConditionallyFloat = MoveConditionallyFloat;
3039 } else {
3040 // FIXME: it's not obvious that these are particularly efficient.
3041 // https://bugs.webkit.org/show_bug.cgi?id=169251
3042 config.moveConditionally32 = MoveDoubleConditionally32;
3043 config.moveConditionally64 = MoveDoubleConditionally64;
3044 config.moveConditionallyTest32 = MoveDoubleConditionallyTest32;
3045 config.moveConditionallyTest64 = MoveDoubleConditionallyTest64;
3046 config.moveConditionallyDouble = MoveDoubleConditionallyDouble;
3047 config.moveConditionallyFloat = MoveDoubleConditionallyFloat;
3048 }
3049
3050 m_insts.last().append(createSelect(config));
3051 return;
3052 }
3053
3054 case IToD: {
3055 appendUnOp<ConvertInt32ToDouble, ConvertInt64ToDouble>(m_value->child(0));
3056 return;
3057 }
3058
3059 case IToF: {
3060 appendUnOp<ConvertInt32ToFloat, ConvertInt64ToFloat>(m_value->child(0));
3061 return;
3062 }
3063
3064 case B3::CCall: {
3065 CCallValue* cCall = m_value->as<CCallValue>();
3066
3067 Inst inst(m_isRare ? Air::ColdCCall : Air::CCall, cCall);
3068
3069 // We have a ton of flexibility regarding the callee argument, but currently, we don't
3070 // use it yet. It gets weird for reasons:
3071 // 1) We probably will never take advantage of this. We don't have C calls to locations
3072 // loaded from addresses. We have JS calls like that, but those use Patchpoints.
3073 // 2) On X86_64 we still don't support call with BaseIndex.
3074 // 3) On non-X86, we don't natively support any kind of loading from address.
3075 // 4) We don't have an isValidForm() for the CCallSpecial so we have no smart way to
3076 // decide.
3077 // FIXME: https://bugs.webkit.org/show_bug.cgi?id=151052
3078 inst.args.append(tmp(cCall->child(0)));
3079
3080 if (cCall->type() != Void)
3081 inst.args.append(tmp(cCall));
3082
3083 for (unsigned i = 1; i < cCall->numChildren(); ++i)
3084 inst.args.append(immOrTmp(cCall->child(i)));
3085
3086 m_insts.last().append(WTFMove(inst));
3087 return;
3088 }
3089
3090 case Patchpoint: {
3091 PatchpointValue* patchpointValue = m_value->as<PatchpointValue>();
3092 ensureSpecial(m_patchpointSpecial);
3093
3094 Inst inst(Patch, patchpointValue, Arg::special(m_patchpointSpecial));
3095
3096 Vector<Inst> after;
3097 auto generateResultOperand = [&] (Type type, ValueRep rep, Tmp tmp) {
3098 switch (rep.kind()) {
3099 case ValueRep::WarmAny:
3100 case ValueRep::ColdAny:
3101 case ValueRep::LateColdAny:
3102 case ValueRep::SomeRegister:
3103 case ValueRep::SomeEarlyRegister:
3104 case ValueRep::SomeLateRegister:
3105 inst.args.append(tmp);
3106 return;
3107 case ValueRep::Register: {
3108 Tmp reg = Tmp(rep.reg());
3109 inst.args.append(reg);
3110 after.append(Inst(relaxedMoveForType(type), m_value, reg, tmp));
3111 return;
3112 }
3113 case ValueRep::StackArgument: {
3114 Arg arg = Arg::callArg(rep.offsetFromSP());
3115 inst.args.append(arg);
3116 after.append(Inst(moveForType(type), m_value, arg, tmp));
3117 return;
3118 }
3119 default:
3120 RELEASE_ASSERT_NOT_REACHED();
3121 return;
3122 }
3123 };
3124
3125 if (patchpointValue->type() != Void) {
3126 forEachImmOrTmp(patchpointValue, [&] (Arg arg, Type type, unsigned index) {
3127 generateResultOperand(type, patchpointValue->resultConstraints[index], arg.tmp());
3128 });
3129 }
3130
3131 fillStackmap(inst, patchpointValue, 0);
3132 for (auto& constraint : patchpointValue->resultConstraints) {
3133 if (constraint.isReg())
3134 patchpointValue->lateClobbered().clear(constraint.reg());
3135 }
3136
3137 for (unsigned i = patchpointValue->numGPScratchRegisters; i--;)
3138 inst.args.append(m_code.newTmp(GP));
3139 for (unsigned i = patchpointValue->numFPScratchRegisters; i--;)
3140 inst.args.append(m_code.newTmp(FP));
3141
3142 m_insts.last().append(WTFMove(inst));
3143 m_insts.last().appendVector(after);
3144 return;
3145 }
3146
3147 case Extract: {
3148 Value* tupleValue = m_value->child(0);
3149 unsigned index = m_value->as<ExtractValue>()->index();
3150
3151 const auto& tmps = tmpsForTuple(tupleValue);
3152 append(relaxedMoveForType(m_value->type()), tmps[index], tmp(m_value));
3153 return;
3154 }
3155
3156 case CheckAdd:
3157 case CheckSub:
3158 case CheckMul: {
3159 CheckValue* checkValue = m_value->as<CheckValue>();
3160
3161 Value* left = checkValue->child(0);
3162 Value* right = checkValue->child(1);
3163
3164 Tmp result = tmp(m_value);
3165
3166 // Handle checked negation.
3167 if (checkValue->opcode() == CheckSub && left->isInt(0)) {
3168 append(Move, tmp(right), result);
3169
3170 Air::Opcode opcode =
3171 opcodeForType(BranchNeg32, BranchNeg64, checkValue->type());
3172 CheckSpecial* special = ensureCheckSpecial(opcode, 2);
3173
3174 Inst inst(Patch, checkValue, Arg::special(special));
3175 inst.args.append(Arg::resCond(MacroAssembler::Overflow));
3176 inst.args.append(result);
3177
3178 fillStackmap(inst, checkValue, 2);
3179
3180 m_insts.last().append(WTFMove(inst));
3181 return;
3182 }
3183
3184 Air::Opcode opcode = Air::Oops;
3185 Commutativity commutativity = NotCommutative;
3186 StackmapSpecial::RoleMode stackmapRole = StackmapSpecial::SameAsRep;
3187 switch (m_value->opcode()) {
3188 case CheckAdd:
3189 opcode = opcodeForType(BranchAdd32, BranchAdd64, m_value->type());
3190 stackmapRole = StackmapSpecial::ForceLateUseUnlessRecoverable;
3191 commutativity = Commutative;
3192 break;
3193 case CheckSub:
3194 opcode = opcodeForType(BranchSub32, BranchSub64, m_value->type());
3195 break;
3196 case CheckMul:
3197 opcode = opcodeForType(BranchMul32, BranchMul64, checkValue->type());
3198 stackmapRole = StackmapSpecial::ForceLateUse;
3199 break;
3200 default:
3201 RELEASE_ASSERT_NOT_REACHED();
3202 break;
3203 }
3204
3205 // FIXME: It would be great to fuse Loads into these. We currently don't do it because the
3206 // rule for stackmaps is that all addresses are just stack addresses. Maybe we could relax
3207 // this rule here.
3208 // https://bugs.webkit.org/show_bug.cgi?id=151228
3209
3210 Vector<Arg, 2> sources;
3211 if (imm(right) && isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Imm, Arg::Tmp)) {
3212 sources.append(tmp(left));
3213 sources.append(imm(right));
3214 } else if (imm(right) && isValidForm(opcode, Arg::ResCond, Arg::Imm, Arg::Tmp)) {
3215 sources.append(imm(right));
3216 append(Move, tmp(left), result);
3217 } else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
3218 sources.append(tmp(left));
3219 sources.append(tmp(right));
3220 } else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp)) {
3221 if (commutativity == Commutative && preferRightForResult(left, right)) {
3222 sources.append(tmp(left));
3223 append(Move, tmp(right), result);
3224 } else {
3225 sources.append(tmp(right));
3226 append(Move, tmp(left), result);
3227 }
3228 } else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
3229 sources.append(tmp(left));
3230 sources.append(tmp(right));
3231 sources.append(m_code.newTmp(m_value->resultBank()));
3232 sources.append(m_code.newTmp(m_value->resultBank()));
3233 }
3234
3235 // There is a really hilarious case that arises when we do BranchAdd32(%x, %x). We won't emit
3236 // such code, but the coalescing in our register allocator also does copy propagation, so
3237 // although we emit:
3238 //
3239 // Move %tmp1, %tmp2
3240 // BranchAdd32 %tmp1, %tmp2
3241 //
3242 // The register allocator may turn this into:
3243 //
3244 // BranchAdd32 %rax, %rax
3245 //
3246 // Currently we handle this by ensuring that even this kind of addition can be undone. We can
3247 // undo it by using the carry flag. It's tempting to get rid of that code and just "fix" this
3248 // here by forcing LateUse on the stackmap. If we did that unconditionally, we'd lose a lot of
3249 // performance. So it's tempting to do it only if left == right. But that creates an awkward
3250 // constraint on Air: it means that Air would not be allowed to do any copy propagation.
3251 // Notice that the %rax,%rax situation happened after Air copy-propagated the Move we are
3252 // emitting. We know that copy-propagating over that Move causes add-to-self. But what if we
3253 // emit something like a Move - or even do other kinds of copy-propagation on tmp's -
3254 // somewhere else in this code. The add-to-self situation may only emerge after some other Air
3255 // optimizations remove other Move's or identity-like operations. That's why we don't use
3256 // LateUse here to take care of add-to-self.
3257
3258 CheckSpecial* special = ensureCheckSpecial(opcode, 2 + sources.size(), stackmapRole);
3259
3260 Inst inst(Patch, checkValue, Arg::special(special));
3261
3262 inst.args.append(Arg::resCond(MacroAssembler::Overflow));
3263
3264 inst.args.appendVector(sources);
3265 inst.args.append(result);
3266
3267 fillStackmap(inst, checkValue, 2);
3268
3269 m_insts.last().append(WTFMove(inst));
3270 return;
3271 }
3272
3273 case Check: {
3274 Inst branch = createBranch(m_value->child(0));
3275
3276 CheckSpecial* special = ensureCheckSpecial(branch);
3277
3278 CheckValue* checkValue = m_value->as<CheckValue>();
3279
3280 Inst inst(Patch, checkValue, Arg::special(special));
3281 inst.args.appendVector(branch.args);
3282
3283 fillStackmap(inst, checkValue, 1);
3284
3285 m_insts.last().append(WTFMove(inst));
3286 return;
3287 }
3288
3289 case B3::WasmBoundsCheck: {
3290 WasmBoundsCheckValue* value = m_value->as<WasmBoundsCheckValue>();
3291
3292 Value* ptr = value->child(0);
3293 Tmp pointer = tmp(ptr);
3294
3295 Arg ptrPlusImm = m_code.newTmp(GP);
3296 append(Inst(Move32, value, pointer, ptrPlusImm));
3297 if (value->offset()) {
3298 if (imm(value->offset()))
3299 append(Add64, imm(value->offset()), ptrPlusImm);
3300 else {
3301 Arg bigImm = m_code.newTmp(GP);
3302 append(Move, Arg::bigImm(value->offset()), bigImm);
3303 append(Add64, bigImm, ptrPlusImm);
3304 }
3305 }
3306
3307 Arg limit;
3308 switch (value->boundsType()) {
3309 case WasmBoundsCheckValue::Type::Pinned:
3310 limit = Arg(value->bounds().pinnedSize);
3311 break;
3312
3313 case WasmBoundsCheckValue::Type::Maximum:
3314 limit = m_code.newTmp(GP);
3315 if (imm(value->bounds().maximum))
3316 append(Move, imm(value->bounds().maximum), limit);
3317 else
3318 append(Move, Arg::bigImm(value->bounds().maximum), limit);
3319 break;
3320 }
3321
3322 append(Inst(Air::WasmBoundsCheck, value, ptrPlusImm, limit));
3323 return;
3324 }
3325
3326 case Upsilon: {
3327 Value* value = m_value->child(0);
3328 Value* phi = m_value->as<UpsilonValue>()->phi();
3329 if (value->type().isNumeric()) {
3330 append(relaxedMoveForType(value->type()), immOrTmp(value), m_phiToTmp[phi]);
3331 return;
3332 }
3333
3334 const Vector<Type>& tuple = m_procedure.tupleForType(value->type());
3335 const auto& valueTmps = tmpsForTuple(value);
3336 const auto& phiTmps = m_tuplePhiToTmps.find(phi)->value;
3337 ASSERT(valueTmps.size() == phiTmps.size());
3338 for (unsigned i = 0; i < valueTmps.size(); ++i)
3339 append(relaxedMoveForType(tuple[i]), valueTmps[i], phiTmps[i]);
3340 return;
3341 }
3342
3343 case Phi: {
3344 // Snapshot the value of the Phi. It may change under us because you could do:
3345 // a = Phi()
3346 // Upsilon(@x, ^a)
3347 // @a => this should get the value of the Phi before the Upsilon, i.e. not @x.
3348
3349 if (m_value->type().isNumeric()) {
3350 append(relaxedMoveForType(m_value->type()), m_phiToTmp[m_value], tmp(m_value));
3351 return;
3352 }
3353
3354 const Vector<Type>& tuple = m_procedure.tupleForType(m_value->type());
3355 const auto& valueTmps = tmpsForTuple(m_value);
3356 const auto& phiTmps = m_tuplePhiToTmps.find(m_value)->value;
3357 ASSERT(valueTmps.size() == phiTmps.size());
3358 for (unsigned i = 0; i < valueTmps.size(); ++i)
3359 append(relaxedMoveForType(tuple[i]), phiTmps[i], valueTmps[i]);
3360 return;
3361 }
3362
3363 case Set: {
3364 Value* value = m_value->child(0);
3365 const Vector<Tmp>& variableTmps = m_variableToTmps.get(m_value->as<VariableValue>()->variable());
3366 forEachImmOrTmp(value, [&] (Arg immOrTmp, Type type, unsigned index) {
3367 append(relaxedMoveForType(type), immOrTmp, variableTmps[index]);
3368 });
3369 return;
3370 }
3371
3372 case Get: {
3373 // Snapshot the value of the Get. It may change under us because you could do:
3374 // a = Get(var)
3375 // Set(@x, var)
3376 // @a => this should get the value of the Get before the Set, i.e. not @x.
3377
3378 const Vector<Tmp>& variableTmps = m_variableToTmps.get(m_value->as<VariableValue>()->variable());
3379 forEachImmOrTmp(m_value, [&] (Arg tmp, Type type, unsigned index) {
3380 append(relaxedMoveForType(type), variableTmps[index], tmp.tmp());
3381 });
3382 return;
3383 }
3384
3385 case Branch: {
3386 if (canBeInternal(m_value->child(0))) {
3387 Value* branchChild = m_value->child(0);
3388
3389 switch (branchChild->opcode()) {
3390 case BitAnd: {
3391 Value* andValue = branchChild->child(0);
3392 Value* andMask = branchChild->child(1);
3393 Air::Opcode opcode = opcodeForType(BranchTestBit32, BranchTestBit64, andValue->type());
3394
3395 Value* testValue = nullptr;
3396 Value* bitOffset = nullptr;
3397 Value* internalNode = nullptr;
3398 Value* negationNode = nullptr;
3399 bool inverted = false;
3400
3401 // if (~(val >> x)&1)
3402 if (andMask->isInt(1)
3403 && andValue->opcode() == BitXor && (andValue->child(1)->isInt32(-1) || andValue->child(1)->isInt64(-1l))
3404 && (andValue->child(0)->opcode() == SShr || andValue->child(0)->opcode() == ZShr)) {
3405
3406 negationNode = andValue;
3407 testValue = andValue->child(0)->child(0);
3408 bitOffset = andValue->child(0)->child(1);
3409 internalNode = andValue->child(0);
3410 inverted = !inverted;
3411 }
3412
3413 // Turn if ((val >> x)&1) -> Bt val x
3414 if (andMask->isInt(1) && (andValue->opcode() == SShr || andValue->opcode() == ZShr)) {
3415 testValue = andValue->child(0);
3416 bitOffset = andValue->child(1);
3417 internalNode = andValue;
3418 }
3419
3420 // Turn if (val & (1<<x)) -> Bt val x
3421 if ((andMask->opcode() == Shl) && andMask->child(0)->isInt(1)) {
3422 testValue = andValue;
3423 bitOffset = andMask->child(1);
3424 internalNode = andMask;
3425 }
3426
3427 // if (~val & (1<<x)) or if ((~val >> x)&1)
3428 if (!negationNode && testValue && testValue->opcode() == BitXor && (testValue->child(1)->isInt32(-1) || testValue->child(1)->isInt64(-1l))) {
3429 negationNode = testValue;
3430 testValue = testValue->child(0);
3431 inverted = !inverted;
3432 }
3433
3434 if (testValue && bitOffset) {
3435 for (auto& basePromise : Vector<ArgPromise>::from(loadPromise(testValue), tmpPromise(testValue))) {
3436 bool hasLoad = basePromise.kind() != Arg::Tmp;
3437 bool canMakeInternal = (hasLoad ? canBeInternal(testValue) : !m_locked.contains(testValue))
3438 && (!negationNode || canBeInternal(negationNode))
3439 && (!internalNode || canBeInternal(internalNode));
3440
3441 if (basePromise && canMakeInternal) {
3442 if (bitOffset->hasInt() && isValidForm(opcode, Arg::ResCond, basePromise.kind(), Arg::Imm)) {
3443 commitInternal(branchChild);
3444 commitInternal(internalNode);
3445 if (hasLoad)
3446 commitInternal(testValue);
3447 commitInternal(negationNode);
3448 append(basePromise.inst(opcode, m_value, Arg::resCond(MacroAssembler::NonZero).inverted(inverted), basePromise.consume(*this), Arg::imm(bitOffset->asInt())));
3449 return;
3450 }
3451
3452 if (!m_locked.contains(bitOffset) && isValidForm(opcode, Arg::ResCond, basePromise.kind(), Arg::Tmp)) {
3453 commitInternal(branchChild);
3454 commitInternal(internalNode);
3455 if (hasLoad)
3456 commitInternal(testValue);
3457 commitInternal(negationNode);
3458 append(basePromise.inst(opcode, m_value, Arg::resCond(MacroAssembler::NonZero).inverted(inverted), basePromise.consume(*this), tmp(bitOffset)));
3459 return;
3460 }
3461 }
3462 }
3463 }
3464 break;
3465 }
3466 case AtomicWeakCAS:
3467 commitInternal(branchChild);
3468 appendCAS(branchChild, false);
3469 return;
3470
3471 case AtomicStrongCAS:
3472 // A branch is a comparison to zero.
3473 // FIXME: Teach this to match patterns that arise from subwidth CAS.
3474 // https://bugs.webkit.org/show_bug.cgi?id=169250
3475 if (branchChild->child(0)->isInt(0)
3476 && branchChild->as<AtomicValue>()->isCanonicalWidth()) {
3477 commitInternal(branchChild);
3478 appendCAS(branchChild, true);
3479 return;
3480 }
3481 break;
3482
3483 case Equal:
3484 case NotEqual:
3485 // FIXME: Teach this to match patterns that arise from subwidth CAS.
3486 // https://bugs.webkit.org/show_bug.cgi?id=169250
3487 if (branchChild->child(0)->opcode() == AtomicStrongCAS
3488 && branchChild->child(0)->as<AtomicValue>()->isCanonicalWidth()
3489 && canBeInternal(branchChild->child(0))
3490 && branchChild->child(0)->child(0) == branchChild->child(1)) {
3491 commitInternal(branchChild);
3492 commitInternal(branchChild->child(0));
3493 appendCAS(branchChild->child(0), branchChild->opcode() == NotEqual);
3494 return;
3495 }
3496 break;
3497
3498 default:
3499 break;
3500 }
3501 }
3502
3503 m_insts.last().append(createBranch(m_value->child(0)));
3504 return;
3505 }
3506
3507 case B3::Jump: {
3508 append(Air::Jump);
3509 return;
3510 }
3511
3512 case Identity:
3513 case Opaque: {
3514 ASSERT(tmp(m_value->child(0)) == tmp(m_value));
3515 return;
3516 }
3517
3518 case Return: {
3519 if (!m_value->numChildren()) {
3520 append(RetVoid);
3521 return;
3522 }
3523 Value* value = m_value->child(0);
3524 Tmp returnValueGPR = Tmp(GPRInfo::returnValueGPR);
3525 Tmp returnValueFPR = Tmp(FPRInfo::returnValueFPR);
3526 switch (value->type().kind()) {
3527 case Void:
3528 case Tuple:
3529 // It's impossible for a void value to be used as a child. We use RetVoid
3530 // for void returns.
3531 RELEASE_ASSERT_NOT_REACHED();
3532 break;
3533 case Int32:
3534 append(Move, immOrTmp(value), returnValueGPR);
3535 append(Ret32, returnValueGPR);
3536 break;
3537 case Int64:
3538 append(Move, immOrTmp(value), returnValueGPR);
3539 append(Ret64, returnValueGPR);
3540 break;
3541 case Float:
3542 append(MoveFloat, tmp(value), returnValueFPR);
3543 append(RetFloat, returnValueFPR);
3544 break;
3545 case Double:
3546 append(MoveDouble, tmp(value), returnValueFPR);
3547 append(RetDouble, returnValueFPR);
3548 break;
3549 }
3550 return;
3551 }
3552
3553 case B3::Oops: {
3554 append(Air::Oops);
3555 return;
3556 }
3557
3558 case B3::EntrySwitch: {
3559 append(Air::EntrySwitch);
3560 return;
3561 }
3562
3563 case AtomicWeakCAS:
3564 case AtomicStrongCAS: {
3565 appendCAS(m_value, false);
3566 return;
3567 }
3568
3569 case AtomicXchgAdd: {
3570 AtomicValue* atomic = m_value->as<AtomicValue>();
3571 if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicAdd, atomic->accessWidth())))
3572 return;
3573
3574 Arg address = addr(atomic);
3575 Air::Opcode opcode = OPCODE_FOR_WIDTH(AtomicXchgAdd, atomic->accessWidth());
3576 if (isValidForm(opcode, Arg::Tmp, address.kind())) {
3577 append(relaxedMoveForType(atomic->type()), tmp(atomic->child(0)), tmp(atomic));
3578 append(opcode, tmp(atomic), address);
3579 return;
3580 }
3581
3582 appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(Add, atomic->accessWidth()), Commutative);
3583 return;
3584 }
3585
3586 case AtomicXchgSub: {
3587 AtomicValue* atomic = m_value->as<AtomicValue>();
3588 if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicSub, atomic->accessWidth())))
3589 return;
3590
3591 appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(Sub, atomic->accessWidth()));
3592 return;
3593 }
3594
3595 case AtomicXchgAnd: {
3596 AtomicValue* atomic = m_value->as<AtomicValue>();
3597 if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicAnd, atomic->accessWidth())))
3598 return;
3599
3600 appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(And, atomic->accessWidth()), Commutative);
3601 return;
3602 }
3603
3604 case AtomicXchgOr: {
3605 AtomicValue* atomic = m_value->as<AtomicValue>();
3606 if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicOr, atomic->accessWidth())))
3607 return;
3608
3609 appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(Or, atomic->accessWidth()), Commutative);
3610 return;
3611 }
3612
3613 case AtomicXchgXor: {
3614 AtomicValue* atomic = m_value->as<AtomicValue>();
3615 if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicXor, atomic->accessWidth())))
3616 return;
3617
3618 appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(Xor, atomic->accessWidth()), Commutative);
3619 return;
3620 }
3621
3622 case AtomicXchg: {
3623 AtomicValue* atomic = m_value->as<AtomicValue>();
3624
3625 Arg address = addr(atomic);
3626 Air::Opcode opcode = OPCODE_FOR_WIDTH(AtomicXchg, atomic->accessWidth());
3627 if (isValidForm(opcode, Arg::Tmp, address.kind())) {
3628 append(relaxedMoveForType(atomic->type()), tmp(atomic->child(0)), tmp(atomic));
3629 append(opcode, tmp(atomic), address);
3630 return;
3631 }
3632
3633 appendGeneralAtomic(Air::Nop);
3634 return;
3635 }
3636
3637 default:
3638 break;
3639 }
3640
3641 dataLog("FATAL: could not lower ", deepDump(m_procedure, m_value), "\n");
3642 RELEASE_ASSERT_NOT_REACHED();
3643 }
3644
3645 IndexSet<Value*> m_locked; // These are values that will have no Tmp in Air.
3646 IndexMap<Value*, Tmp> m_valueToTmp; // These are values that must have a Tmp in Air. We say that a Value* with a non-null Tmp is "pinned".
3647 IndexMap<Value*, Tmp> m_phiToTmp; // Each Phi gets its own Tmp.
3648 HashMap<Value*, Vector<Tmp>> m_tupleValueToTmps; // This is the same as m_valueToTmp for Values that are Tuples.
3649 HashMap<Value*, Vector<Tmp>> m_tuplePhiToTmps; // This is the same as m_phiToTmp for Phis that are Tuples.
3650 IndexMap<B3::BasicBlock*, Air::BasicBlock*> m_blockToBlock;
3651 HashMap<B3::StackSlot*, Air::StackSlot*> m_stackToStack;
3652 HashMap<Variable*, Vector<Tmp>> m_variableToTmps;
3653
3654 UseCounts m_useCounts;
3655 PhiChildren m_phiChildren;
3656 BlockWorklist m_fastWorklist;
3657 Dominators& m_dominators;
3658
3659 Vector<Vector<Inst, 4>> m_insts;
3660 Vector<Inst> m_prologue;
3661
3662 B3::BasicBlock* m_block;
3663 bool m_isRare;
3664 unsigned m_index;
3665 Value* m_value;
3666
3667 PatchpointSpecial* m_patchpointSpecial { nullptr };
3668 HashMap<CheckSpecial::Key, CheckSpecial*> m_checkSpecials;
3669
3670 Procedure& m_procedure;
3671 Code& m_code;
3672
3673 Air::BlockInsertionSet m_blockInsertionSet;
3674
3675 Tmp m_eax;
3676 Tmp m_ecx;
3677 Tmp m_edx;
3678};
3679
3680} // anonymous namespace
3681
3682void lowerToAir(Procedure& procedure)
3683{
3684 PhaseScope phaseScope(procedure, "lowerToAir");
3685 LowerToAir lowerToAir(procedure);
3686 lowerToAir.run();
3687}
3688
3689} } // namespace JSC::B3
3690
3691#if ASSERT_DISABLED
3692IGNORE_RETURN_TYPE_WARNINGS_END
3693#endif
3694
3695#endif // ENABLE(B3_JIT)
3696